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Take home message

⇒ Take (super)Yang–Mills theories at strong coupling and large
N

⇒ Add fundamental matter (quarks) at finite charge density

⇒ Then...

...the simplest(∗) ground states are described in
the IR by a non-relativistic field theory with
specific scaling properties...

...and they are probably unstable towards
color-superconducting phases
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Interest and use of holography

⇒ Why care? Color-superconductivity phases and transitions;
neutron stars...

⇒ Region of strong coupling suggests a holographic approach,
but no QCD dual, we take N = 4SYM as ballpark

⇒ Try to extract qualitative lessons of the effects of the chemical
potential in strongly coupled systems

I What is the equation of state?

I How to observe color superconductivity?



Strings ho!

I describe results from top-down models, where we extremize type
II SUGRA, DBI+WZ and NG actions.
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Take home message

⇒ Take the geometry sourced by a set of Dp-branes on (flat)
spacetime

⇒ Backreact Dq-branes with gauge field on the w.v. turned on

⇒ Then...

...the simplest(∗) supergravity solutions at T = 0
are described in the IR by a
Hyperscaling-Violating Lifshitz spacetime...

...and they seem to be unstable towards
Higgs-branch phases



In this talk I will have the gauge/gravity duality in mind

(non-)AdS spacetime ←→ (non-)conformal theory

Domain wall solution ←→ Renormalization group flow

Boundary ←→ UV (high energies)

Origin ←→ IR (low energies)



System action

S =
1

2κ2

∫
e−2φ

(
R ∗ 1− 1

2
H ∧ ∗H − 1

2
dφ ∧ ∗dφ

)
− 1

2κ2

∫
1

2
F1 ∧ ∗F1 +

1

2
F3 ∧ ∗F3 +

1

4
F5 ∧ ∗F5

− 1

2κ2

∫
1

2
C4 ∧ H ∧ F3

− Nf T7

∫
d8x e−φ

√
−|Ĝ + dA + B̂|+ Nf T7

∫
edA+B̂ Ĉq
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SYM theories from type II SUGRA
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SYM theories from type II SUGRA [Itzhaki et al ’98]

⇒ For D3-branes one has N = 4 SYM, conformal

⇒ For D2-branes λ is dimensionful and there is a running

UV IR

D2-brane
description

λ

perturbative
description

⇒ The holographic radius is related to the energy scale r = E `2
S .



SYM theories from type II SUGRA

r

M8−p

SYM with other gauge group
and less supercharges

ds2 = h−1/2 dx2
1,p + h1/2

(
dr2 + r2dΣ2

8−p

)
∫

M8−p

∗F8−p ∼ N



SYM theories from type II SUGRA

To preserve N = 1 supersymmetry the internal manifold must
admit one Killing spinor. This constrains the possible choices.
From now on

dim base cone

D3-branes 5 Sasaki-Einstein Calabi-Yau

D2-branes 6 nearly Kähler G2-cone
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Fundamental matter [Karch and Katz ’03]

xµ r θ1,2,3 θ4,··· ,8−p

Dp × − − −

D(p+4) × × × −

⇒ The action as sum of two parts: type II SUGRA and

Sflavor = −Tp+4

∫
dp+1x d4y e−φ

√
Ĝ + Tp+4

∫
Ĉ5+p



Backreaction of the flavor branes

⇒ Consider the RR form the flavor brane sources

SIIB+D7 ⊃
1

2

∫
dC8 ∧ ∗dC8 +

∫
C8 ∧ (δ(f1)δ(f2)df1 ∧ df2)︸ ︷︷ ︸

Ξ2

which implies the Bianchi identity for a sourced RR form

dF1 = −Ξ2

⇒ The number of flavor branes is given by Gauss law∫
F1 ∼ Nf



Backreaction with smearing (D3/D7) [Benini et al ’06]

⇒ Two things I have shown in previous slides

1. For D3-branes the compact manifold is a SE

2. SD7 = T7

∫ (
−d8x e−φ

√
−G + C8

)
∧ Ξ2 with Ξ2 exact

⇒ SE manifolds can be expressed as U(1) fibrations over KE
manifolds and are equiped with an SU(2)-structure

dηKE = 2JKE , vol(SE ) =
1

2
JKE ∧ JKE ∧ ηKE

⇒ Idea: to identify Ξ2 ∼ JKE and use the SU(2)-structure to
write a consistent radial ansatz for the IIB+sources action

F1 ∼ Nf ηKE ⇒ dF1 ∼ Nf JKE



A taste of the smeared solution (D3/D7) [Benini et al ’06]

⇒ With a simple ansatz

ds2 = g1(r)dx2
1,3 + g2(r) dr2 + g3(r)ds2

KE + g4(r) η2
KE ,

with dilaton and RR forms

F5 ∼ N (1 + ∗)JKE ∧ JKE ∧ ηKE , F1 ∼ Nf ηKE ,

⇒ A SUSY solution exists

φ′ = Nf e
φ ⇒ eφ =

1

Nf (rLP − r)



When is backreaction needed? (D3/D7)

⇒ When can we omit backreaction (probe approximation) and
when is it necessary?

⇒ Compare energies (effect on metric)

|F1|
|F5|
∼ λNf

N

and one concludes (wrongly) that for λNf
N � 1 probe approx.

is enough at all scales.



Backreaction and smearing (D2/D6) [Faedo et al ’15]

For the D2/D6 case a similar situation holds

⇒ Start with a NK (6d) manifold and
SD6 = T6

∫ (
−d7x e−φ

√
−G + C7

)
∧ Ξ3 with Ξ3 exact

⇒ There is a SU(3)-structure

dJ = 3ImΩ , dReΩ = 2J ∧ J , vol(NK ) =
1

6
J 3

⇒ In this case

F2 ∼ Nf J ⇒ F2 ∼ Nf ImΩ ∼ Ξ3



When is backreaction needed? (D2/D6)

⇒ Backreaction matters in the IR

|F2|
|F6|
∼
λNf

N

E
≡ Eflavor

E

and there is a change in the dynamics of the theory with a
crossover at E ∼ Eflavor .

⇒ UV boundary conditions



A taste of the smeared solution (D2/D6) [Faedo et al ’15]

The D2/D6 solution
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Including charge in the setup

⇒ My motivation was to add a ‘quark’ density to these setups,
but keeping vanishing temperature.

⇒ Dissolved strings in the flavor branes

U(1) global current
dual←→ U(1) gauge field

⇒ In particular a charge density corresponds to A = At(r)dt

SD7 = −T7

∫
d8x e−φ

√
−|G + F + B|+T7

∫
C8−C6∧(F+B)+· · ·



When does the charge density matter [Chen et al ’09] [Bigazzi et al ’11]

⇒ Take the e.o.m. for the NS form (and set B = 0)

d(e−2φ ∗ H) = 0 = F3 ∧ F5 + F1 ∧ ∗F3 + (DBI ) ∗ dt ∧ dr

⇒ From the second term in RHS we deduce a component

F3 ⊃ C′(r)dt ∧ dr ∧ ηKE + · · ·

⇒ From the first term in RHS we deduce a constant (density)
term

F3 ⊃ Nq dx
1 ∧ dx2 ∧ dx3



When does the charge density matter [Faedo et al ’14]

⇒ Same game as before: When is the effect of charge
comparable to the effect of color physics?

|F3|
|F5|

=

(
λ2/3(Nq/N

2)1/3

E

)3

≡
(
Echarge

E

)3

so charge becomes important in IR for E < Echarge .

⇒ Similarly, we can show from |F1|/|F3| that the charge
dominates always in the IR.



When does the charge density matter [Faedo et al ’14]

⇒ The same argument also works for the D2/D6 system

|F2|
|F6|

=

(
λ1/2(Nq/N

2)1/4

E

)4

≡
(
Echarge

E

)4

so charge becomes important in IR for E < Echarge .

⇒ Similarly, we can show from |F flavor
2 |/|F charge

2 | that the charge
dominates always in the IR.



How does the charge density affect dynamics [Kumar ’12] [Faedo et

al ’14]

⇒ To see charge effects we can take a limit in which we discard
distracting flavor effects.

⇒ The IR turns out to be a non-relativistic theory (Lifshitz HV
metric)

t → ξz t , ~x → ξ~x

with hyperscaling-violation

ds2 → ξ
θ

d−1ds2 ⇒ F ∼ T
d+z−1−θ

z

⇒ For p = 3 one gets z = 7 , θ = 0

⇒ For p = 2 instead z = 5 , θ = 1



3d SYM theory with quark density [Faedo et al ’15]

A glimpse of the D2/D6 solution
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3d SYM theory with quark density [Faedo et al ’15]

SYM theory

CSM theory

NR theory

Eflavor

Echarge



4d SYM theory with quark density work in progress

⇒ In 4d SYM there is only one classical scale

⇒ Presence of the Landau pole complicates numerical analysis

⇒ However the IR analysis showing the existence of a Lifshitz
solution in the IR still holds
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Potential instabilities

If the IR we have proposed is realized one has to wonder about its
stability

⇒ Thermodynamically it is stable

lim
T→0

S = 0 and T ∂S
∂T > 0

⇒ One possible instability would be towards striped (or other
inhomogenous) phase

⇒ Or maybe there is a dynamic instability of some field that
wants to condense. The BF bound in Lifshitz is

m2 ≥ −(p + z − θ)2

4
= −25



An instability of the solution

⇒ In particular, take the U(1) BI vector field with one
component in the internal directions

Aµdx
µ ⊃ Ψ(r) ηKE

⇒ In N = 4 SYM the scalar is dual to

OI ∼ Q† σI Q

with mass squared on the BF bound

⇒ In Lifshitz spacetime this scalar has mass below the BF bound,
so we expect it to condense if the Lifshitz region is large



An instability of the solution

⇒ Backreaction of the mode in the supergravity fields affects the
Gauss law for the D3-branes∫

S5

F5 ∼ N +
1

2
Nf Ψ(r)2

the color branes are separated: U(N). Since color symmetry is
broken we have superconductivity

⇒ In fact this is the only field in the smeared setup with this
property: any color superconductor in our setup must have
non vanishing Ψ
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Conclusions

⇒ We have identified a IR phase of cold YM theories with charge
density, given in the gravity side by a HV-Lifshitz metric

⇒ We have worked out the numerical solution for 3d SYM, and
this is work in progress for the 4d version.

⇒ The IR appears to be unstable towards condensation of
OI ∼ Q† σI Q.

⇒ Condensation of the dual scalar field gives rise to a color
superconductor phase with order parameter given by 〈OI 〉.



Thank you
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