Cold holographic matter and a color group-breaking instability

Javier Tarrío Université Libre de Bruxelles

in collaboration with A. Faedo, A. Kundu, D. Mateos, C. Pantelidou arXiv:1410.4466 arXiv:1505.00210 arXiv:1511.05484 work in progress

Oxford, May 3rd 2016

- \Rightarrow Take (super)Yang–Mills theories at strong coupling and large N
- \Rightarrow Add fundamental matter (quarks) at finite charge density
- \Rightarrow Then...

...the simplest^(*) ground states are described in the IR by a non-relativistic field theory with specific scaling properties...

- \Rightarrow Take (super)Yang–Mills theories at strong coupling and large N
- \Rightarrow Add fundamental matter (quarks) at finite charge density
- \Rightarrow Then...

...the simplest^(*) ground states are described in the IR by a non-relativistic field theory with specific scaling properties...

Table of Contents

Motivation

A quick review of strongly coupled SYM theories

Adding fundamental matter and baryon density

Looking for an instability

Conclusions

A cartoon of the QCD phase diagram

A cartoon of the QCD phase diagram

Interest and use of holography

- ⇒ Why care? Color-superconductivity phases and transitions; neutron stars...
- $\Rightarrow\,$ Region of strong coupling suggests a holographic approach, but no QCD dual, we take $\mathcal{N}=4SYM$ as ballpark
- ⇒ Try to extract qualitative lessons of the effects of the chemical potential in strongly coupled systems
 - What is the equation of state?
 - How to observe color superconductivity?

Strings ho!

I describe results from top-down models, where we extremize type II SUGRA, DBI+WZ and NG actions.

- \Rightarrow Take (super)Yang–Mills theories at strong coupling and large N
- \Rightarrow Add fundamental matter (quarks) at finite charge density
- \Rightarrow Then...

...the simplest^(*) ground states are described in the IR by a non-relativistic field theory with specific scaling properties...

- ⇒ Take the geometry sourced by a set of Dp-branes on (flat) spacetime
- \Rightarrow Add fundamental matter (quarks) at finite charge density
- \Rightarrow Then...

...the simplest^(*) ground states are described in the IR by a non-relativistic field theory with specific scaling properties...

- ⇒ Take the geometry sourced by a set of Dp-branes on (flat) spacetime
- \Rightarrow Backreact Dq-branes with gauge field on the w.v. turned on
- \Rightarrow Then...

...the simplest^(*) ground states are described in the IR by a non-relativistic field theory with specific scaling properties...

- ⇒ Take the geometry sourced by a set of Dp-branes on (flat) spacetime
- \Rightarrow Backreact Dq-branes with gauge field on the w.v. turned on
- \Rightarrow Then...

...the simplest^(*) supergravity solutions at T = 0 are described in the IR by a Hyperscaling-Violating Lifshitz spacetime...

...and they seem to be unstable towards Higgs-branch phases

In this talk I will have the gauge/gravity duality in mind

(non-)AdS spacetime \iff (non-)conformal theory

 $\mathsf{Domain} \ \mathsf{wall} \ \mathsf{solution} \ \ \longleftrightarrow \ \ \mathsf{Renormalization} \ \mathsf{group} \ \mathsf{flow}$

Boundary $\leftrightarrow \to UV$ (high energies)

Origin \leftrightarrow IR (low energies)

System action

$$S = \frac{1}{2\kappa^2} \int e^{-2\phi} \left(R * 1 - \frac{1}{2}H \wedge *H - \frac{1}{2}d\phi \wedge *d\phi \right) - \frac{1}{2\kappa^2} \int \frac{1}{2}F_1 \wedge *F_1 + \frac{1}{2}F_3 \wedge *F_3 + \frac{1}{4}F_5 \wedge *F_5 - \frac{1}{2\kappa^2} \int \frac{1}{2}C_4 \wedge H \wedge F_3 - N_f T_7 \int d^8x \, e^{-\phi} \sqrt{-|\hat{G} + dA + \hat{B}|} + N_f T_7 \int e^{dA + \hat{B}} \hat{C}_q$$

Table of Contents

Motivation

A quick review of strongly coupled SYM theories

Adding fundamental matter and baryon density

Looking for an instability

Conclusions

SYM theories from type II SUGRA

SU(N) SYM with 16 supercharges

$$ds^{2} = h^{-1/2} dx_{1,p}^{2} + h^{1/2} \left(dr^{2} + r^{2} d\Omega_{8-p}^{2} \right)$$
$$\int_{S^{8-p}} *F_{8-p} \sim N$$

SYM theories from type II SUGRA [Itzhaki et al '98]

 \Rightarrow For D3-branes one has $\mathcal{N}=4$ SYM, conformal

 \Rightarrow For D2-branes λ is dimensionful and there is a running

 \Rightarrow The holographic radius is related to the energy scale $r = E \ell_S^2$.

SYM theories from type II SUGRA

SYM with other gauge group and less supercharges

$$ds^{2} = h^{-1/2} dx_{1,p}^{2} + h^{1/2} \left(dr^{2} + r^{2} d\Sigma_{8-p}^{2} \right)$$
$$\int_{M_{8-p}} *F_{8-p} \sim N$$

SYM theories from type II SUGRA

To preserve $\mathcal{N}=1$ supersymmetry the internal manifold must admit one Killing spinor. This constrains the possible choices. From now on

	dim	base	cone
D3-branes	5	Sasaki-Einstein	Calabi-Yau
D2-branes	6	nearly Kähler	G ₂ -cone

Table of Contents

Motivation

A quick review of strongly coupled SYM theories

Adding fundamental matter and baryon density

Looking for an instability

Conclusions

Fundamental matter [Karch and Katz '03]

	x^{μ}	r	$\theta^{1,2,3}$	$\theta^{4,\cdots,8-p}$
Dp	×	_	_	_
D(p+4)	×	×	×	_

 \Rightarrow The action as sum of two parts: type II SUGRA and

$$S_{flavor} = -T_{p+4} \int d^{p+1} x \, d^4 y \, e^{-\phi} \, \sqrt{\hat{G}} + T_{p+4} \int \hat{C}_{5+p}$$

Backreaction of the flavor branes

 \Rightarrow Consider the RR form the flavor brane sources

$$S_{IIB+D7} \supset \frac{1}{2} \int \mathrm{d}C_8 \wedge * \mathrm{d}C_8 + \int C_8 \wedge \underbrace{(\delta(f_1)\delta(f_2)\mathrm{d}f_1 \wedge \mathrm{d}f_2)}_{\Xi_2}$$

which implies the Bianchi identity for a sourced RR form

$$\mathrm{d}F_1 = -\Xi_2$$

 $\Rightarrow\,$ The number of flavor branes is given by Gauss law

$$\int F_1 \sim N_f$$

Backreaction with smearing (D3/D7) [Benini et al '06]

- \Rightarrow Two things I have shown in previous slides
 - 1. For D3-branes the compact manifold is a SE
 - 2. $S_{D7} = T_7 \int \left(-d^8 x \, e^{-\phi} \sqrt{-G} + C_8 \right) \wedge \Xi_2$ with Ξ_2 exact
- \Rightarrow SE manifolds can be expressed as U(1) fibrations over KE manifolds and are equiped with an SU(2)-structure

$$\mathrm{d}\eta_{\mathsf{K}\mathsf{E}} = 2J_{\mathsf{K}\mathsf{E}} \;, \qquad \mathsf{vol}(\mathsf{S}\mathsf{E}) = \frac{1}{2}J_{\mathsf{K}\mathsf{E}} \wedge J_{\mathsf{K}\mathsf{E}} \wedge \eta_{\mathsf{K}\mathsf{E}}$$

⇒ Idea: to identify $\Xi_2 \sim J_{KE}$ and use the SU(2)-structure to write a *consistent radial ansatz* for the IIB+sources action

$$F_1 \sim N_f \eta_{KE} \quad \Rightarrow \quad \mathrm{d}F_1 \sim N_f J_{KE}$$

A taste of the smeared solution (D3/D7) [Benini et al '06]

 \Rightarrow With a simple ansatz

$$\mathrm{d}s^2 = g_1(r)\,\mathrm{d}x_{1,3}^2 + g_2(r)\,\mathrm{d}r^2 + g_3(r)\,\mathrm{d}s_{KE}^2 + g_4(r)\,\eta_{KE}^2 \ ,$$

with dilaton and RR forms

$$F_5 \sim N (1+*) J_{KE} \wedge J_{KE} \wedge \eta_{KE} , \qquad F_1 \sim N_f \eta_{KE} ,$$

 \Rightarrow A SUSY solution exists

$$\phi' = N_f e^{\phi} \quad \Rightarrow \quad e^{\phi} = \frac{1}{N_f (r_{LP} - r)}$$

When is backreaction needed? (D3/D7)

- ⇒ When can we omit backreaction (probe approximation) and when is it necessary?
- \Rightarrow Compare energies (effect on metric)

$$\frac{|F_1|}{|F_5|} \sim \lambda \frac{N_f}{N}$$

and one concludes (wrongly) that for $\lambda \frac{N_f}{N} \ll 1$ probe approx. is enough at all scales.

Backreaction and smearing (D2/D6) [Faedo et al '15]

For the D2/D6 case a similar situation holds

- ⇒ Start with a NK (6d) manifold and $S_{D6} = T_6 \int (-d^7 x e^{-\phi} \sqrt{-G} + C_7) \wedge \Xi_3$ with Ξ_3 exact
- \Rightarrow There is a SU(3)-structure

$$\mathrm{d}\mathcal{J} = 3\mathrm{Im}\Omega \;, \quad \mathrm{d}\mathsf{Re}\Omega = 2\mathcal{J}\wedge\mathcal{J} \;, \quad \textit{vol}(\mathit{NK}) = \frac{1}{6}\mathcal{J}^3$$

 \Rightarrow In this case

$$F_2 \sim N_f \mathcal{J} \quad \Rightarrow \quad F_2 \sim N_f \operatorname{Im} \Omega \sim \Xi_3$$

When is backreaction needed? (D2/D6)

 \Rightarrow Backreaction matters in the IR

$$\frac{|F_2|}{|F_6|} \sim \frac{\lambda \frac{N_f}{N}}{E} \equiv \frac{E_{flavor}}{E}$$

and there is a change in the dynamics of the theory with a crossover at $E \sim E_{\it flavor}.$

 \Rightarrow UV boundary conditions

A taste of the smeared solution (D2/D6) [Faedo et al '15] The D2/D6 solution

Including charge in the setup

⇒ My motivation was to add a 'quark' density to these setups, but keeping vanishing temperature.

 \Rightarrow Dissolved strings in the flavor branes

U(1) global current $\stackrel{\text{dual}}{\longleftrightarrow}$ U(1) gauge field

 \Rightarrow In particular a charge density corresponds to $A = A_t(r) dt$

$$S_{D7} = -T_7 \int d^8 x \, e^{-\phi} \sqrt{-|G+F+B|} + T_7 \int C_8 - C_6 \wedge (F+B) + \cdots$$

When does the charge density matter [Chen et al '09] [Bigazzi et al '11]

 \Rightarrow Take the e.o.m. for the NS form (and set B = 0)

$$\mathrm{d}(e^{-2\phi}*H) = 0 = F_3 \wedge F_5 + F_1 \wedge *F_3 + (DBI) * \mathrm{d}t \wedge \mathrm{d}r$$

 \Rightarrow From the second term in RHS we deduce a component

$$F_3 \supset \mathcal{C}'(r) \mathrm{d}t \wedge \mathrm{d}r \wedge \eta_{KE} + \cdots$$

⇒ From the first term in RHS we deduce a constant (density) term

$$F_3 \supset N_q \,\mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \mathrm{d} x^3$$

When does the charge density matter [Faedo et al '14]

⇒ Same game as before: When is the effect of charge comparable to the effect of color physics?

$$\frac{|F_3|}{|F_5|} = \left(\frac{\lambda^{2/3} (N_q/N^2)^{1/3}}{E}\right)^3 \equiv \left(\frac{E_{charge}}{E}\right)^3$$

so charge becomes important in IR for $E < E_{charge}$.

 \Rightarrow Similarly, we can show from $|F_1|/|F_3|$ that the charge dominates *always* in the IR.

When does the charge density matter [Faedo et al '14]

 \Rightarrow The same argument also works for the D2/D6 system

$$\frac{|F_2|}{|F_6|} = \left(\frac{\lambda^{1/2} (N_q/N^2)^{1/4}}{E}\right)^4 \equiv \left(\frac{E_{charge}}{E}\right)^4$$

so charge becomes important in IR for $E < E_{charge}$.

⇒ Similarly, we can show from $|F_2^{flavor}|/|F_2^{charge}|$ that the charge dominates *always* in the IR.

How does the charge density affect dynamics [Kumar '12] [Faedo et al '14]

- ⇒ To see charge effects we can take a limit in which we discard distracting flavor effects.
- ⇒ The IR turns out to be a non-relativistic theory (Lifshitz HV metric)

$$t \to \xi^z t \;, \qquad \vec{x} \to \xi \vec{x}$$

with hyperscaling-violation

$$\mathrm{d}s^2 \to \xi^{\frac{\theta}{d-1}} \mathrm{d}s^2 \quad \Rightarrow \quad F \sim T^{\frac{d+z-1-\theta}{z}}$$

$$\Rightarrow$$
 For $p = 3$ one gets $z = 7$, $\theta = 0$

$$\Rightarrow$$
 For $p = 2$ instead $z = 5$, $\theta = 1$

3d SYM theory with quark density [Faedo et al '15]

3d SYM theory with quark density [Faedo et al '15]

4d SYM theory with quark density work in progress

- \Rightarrow In 4d SYM there is only one *classical* scale
- \Rightarrow Presence of the Landau pole complicates numerical analysis
- ⇒ However the IR analysis showing the existence of a Lifshitz solution in the IR still holds

Table of Contents

Motivation

A quick review of strongly coupled SYM theories

Adding fundamental matter and baryon density

Looking for an instability

Conclusions

Potential instabilities

If the IR we have proposed is realized one has to wonder about its stability

 \Rightarrow Thermodynamically it is stable

$$\lim_{T\to 0} S = 0 \text{ and } T \frac{\partial S}{\partial T} > 0$$

- ⇒ One possible instability would be towards striped (or other inhomogenous) phase
- \Rightarrow Or maybe there is a dynamic instability of some field that wants to condense. The BF bound in Lifshitz is

$$m^2 \ge -\frac{(p+z-\theta)^2}{4} = -25$$

An instability of the solution

 \Rightarrow In particular, take the U(1) BI vector field with one component in the internal directions

$$A_{\mu} \mathrm{d} x^{\mu} \supset \Psi(r) \eta_{KE}$$

 \Rightarrow In $\mathcal{N} = 4$ SYM the scalar is dual to

 ${\cal O}^{\prime} \sim {\cal Q}^{\dagger} \, \sigma^{\prime} \, {\cal Q}$

with mass squared on the BF bound

⇒ In Lifshitz spacetime this scalar has mass below the BF bound, so we expect it to condense if the Lifshitz region is large

An instability of the solution

⇒ Backreaction of the mode in the supergravity fields affects the Gauss law for the D3-branes

$$\int_{S^5} F_5 \sim N + \frac{1}{2} N_f \Psi(r)^2$$

the color branes are separated: U(N). Since color symmetry is broken we have superconductivity

 \Rightarrow In fact this is the only field in the smeared setup with this property: any color superconductor in our setup must have non vanishing Ψ

Table of Contents

Motivation

A quick review of strongly coupled SYM theories

Adding fundamental matter and baryon density

Looking for an instability

Conclusions

Conclusions

- \Rightarrow We have identified a IR phase of cold YM theories with charge density, given in the gravity side by a HV-Lifshitz metric
- \Rightarrow We have worked out the numerical solution for 3d SYM, and this is work in progress for the 4d version.
- ⇒ The IR appears to be unstable towards condensation of $\mathcal{O}^{\prime} \sim Q^{\dagger} \sigma^{\prime} Q$.
- ⇒ Condensation of the dual scalar field gives rise to a color superconductor phase with order parameter given by $\langle O^I \rangle$.

Thank you