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Motivation, Goals & Strategy

Quark gluon plasma

e Produced in heavy collisions at RHIC and LHC
e Behaves as a strongly coupled liquid

e Thermalization process not well understood: 7 < 1fm/c

Goals

e Gain insight into the thermalization process
e Modification of production rates of photons

e Modification of energy momentum tensor correlators

e Which modes thermalize first: top-down or bottom-up ?

e Dependence on coupling strength

Strategy

e SYM where strong and weak coupling regimes are accessible



Outline

@ Early dynamics of a heavy ion collision
@ Holographic Thermalization

@® Results



QGP i1n heavy 10n experiments

Creating Quark-Gluon Plasma in ultrarelativistic heavy ion collisions: Window
into deconfined phase of QCD

e Allows to study fundamental properties of the theory: deconfinement transition
and phase structure of the theory

e Theoretical and phenomenological description extremely challenging
e Physical processes probe a vast range of scales

e Strongly time dependent system: Heavy nuclei = (thermal) QGP = hadrons,
photons, leptons




Stages of a heavy 1on collision

hadronic phase

QGP and and freeze-out

initial state hydrodynamic expansion

pre-equilibriurri
T=0 ~05fm/c
local thermal equilibrium

CGC/Glauber hydrc_> With_ Recombinat_ion/ hadron gas \nfith
small viscosity Fragmentaion large viscosity

Nontrivial observation: hydro description of fireball evolution works extremely
well

e Relatively easy: equation of state and freeze out
e Hard: Transport coefficients of the plasma
@ Very hard: Initial conditions and dynamics of far from equilibrium situation

Surprise from RHIC/LHC: Extremely fast equilibration into almost ideal
fluid behaviour — hard to explain via weakly coupled quasiparticle
picture




Thermalization puzzle

QGP and
| state hydrodynamic expansion

pre-equilibriurr!

T=0 ~05fm/c
local thermal equilibrium

Major challenge: Understand the fast dynamics that take the system from
complicated far-from-equilibrium initial state to near-thermal “hydrodynamized”
plasma

Problem: Characteristic energy scales and nature of the plasma evolve fast
(running coupling) = Need to combine perturbative and nonperturbative
machinery




Early dynamics of a heavy 1on collision
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Initial state: Color Glass condensate characterized by

@ One hard scale: Saturation momentum Qs > Agep
e Overoccupation of gluons: f ~ 1/«

e High anisotropy: ¢qr < qr




Early dynamics of a heavy 1on collision

Describing early dynamics one needs to take into account
e Longitudinal expansion
e Elastic and inelastic scatterings

e Plasma instabilities

Traditional field theory tools

e Classical (bosonic) lattice simulations — work as long occupation
number 1s large (Berges et al.)

e Effective kinetic theory — works for smaller occupancies but breaks
down 1n the IR (Kurkela & Moore)

e Parametric weak coupling estimates (Baier et al., Kurkela & Moore)



Thermalization at weak coupling

Questions one wants to answer

e Parametric weak coupling estimate: How does the therm time depend on the

coupling constant .
Q

tequ N
Qs
e what are the dominant processes?

Bottom-up thermalization (Baier et al (2001))

@ Scattering processes
e In the early stages many soft gluons are emitted which then thermalize the
system (Baier et al (2001)): ngmss ~ -13/5
e Driven by instabilities

e Instabilities 1sotropize the momentum distributions more rapidly than
scattering processes (Kurkela, Moore (2011)): nkm ~ -35/2



Thermalization at weak coupling

Classical (bosonic) lattice simulation
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Thermalization beyond weak coupling

Impressive progress so far but problematic to apply to the full
thermalization process

e Dynamics assumed classical in lattice simulations — works only for the
earliest times

e System clearly not asymptotically weakly coupled = Parametric scaling of
the coupling constant of limited use

Need for additional tools to access the strongly coupled window of a
heavy ion collision

Use AdS/CFT to study strongly coupled thermalization



Holography

Approach: Take different expansion point

@ N=4 super Yang Mills theory
e Large ’t Hooft coupling
e N¢taken to infinity

Accessible via the AAS/CFT correspondence

e IIB string theory in AdSs x Ssdual to N=4 SYM theory living on the 4d
boundary of the AdS space
e strongly coupled SYM dual to classical supergravity

N=4 SYM very different from QCD at T=0 but similar at finite
temperature

e Finite T breaks supersymmetry and conformal invariance
@ describes deconfined plasma with Debey screening and finite static
screening length



Thermalization at strong

coupling

Thermalization process of strongly coupled N=4 SYM is mapped to

black hole formation 1in asymptotically AdS space

Lessons from gauge/gravity duality

e Thermalization time naturally short teq~1/T

e Hydrodynamization # thermalization, 1sotropization

e Thermalization always top down (causal argument)
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Bridging the gap

Rest of the talk: try to relax the infinite coupling limit and bring the
two limiting cases closer together



Holographic thermalization

@ Collapsing shell model
@ Greens functions as probe of thermalization

@ Finite coupling corrections



The falling shell setup
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The falling shell setup
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Thermalization from geometric probes:

e Entanglement entropy and Wilson loop: always top down thermalization



The falling shell setup
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Thermalization from geometric probes:

e Entanglement entropy and Wilson loop: always top down thermalization



Falling shell set up

Dynamics of the shell:

e Israel matching conditions: [K;; — vi; K| = —87¢g595;

Quasistatic approximation:

e motion of the shell 1s slow compared to other scales of interest

e Huge advantage: Greens functions available with minor modification
to the standard holographic recipe

Field theory side

e Rapid, spatially homogenous injection of energy at all scales

@ Shell can be realized by briefly turning on a spatially homogenous
scalar source coupled to a marginal operator



Holographic Green’s function

In- and off-equilibrium correlators offer useful tool for studying
thermalization

e Poles of retarded thermal Green’s functions give dispersion relation of
field excitations: Quasiparticle / quasinormal mode spectrum

@ describe response of the system to infinitesimal perturbation

e Time dependent off-equilibrium Greens functions probe how fast
different energy (length) scales equilibrate



Two examples

Energy momentum tensor correlators

e linearized perturbations of 9w — Guv + hpw

@ construct gauge invariants from symmetry channels (Kovtun, Starinets)
e scalar channel: &gy
e shear channel: hiz, hay

e sound channel: Ay, hin, h.., h

EM current correlators — photon production

e Obtained by adding a U(1) vector field coupled to a conserved current
corresponding to a subgroup of the SU(4)r



Photon emission 1n heavy 1on collisions
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Photons are emitted at all stages of the collision

e Initial hard scattering processes: quark anti-quark annihilation:
e on-shell photon or virtual photon — dilepton pair
e Strongly coupled out of equilibrium phase: no quasiparticle picture

e Additional (uninteresting) emissions from charged hadron decays




Probing the plasma

Probing the plasma

@ Once produced photons stream through the plasma almost unaltered

e Provide observational window in the thermalization process of the plasma

Quantity of interest
o Spectral density : x4 = —2Im(II*")% (ko)

e Number of emitted photons

Fluctuation dissipation theorem
I, (w) = —2np(w)Im(IT7)f (W) = np(w)x(w)

Production rate
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Photon emission in equilibrium SYM plasma
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Perturbative result

e Increasing the coupling: slope at k=0 decreases, hydro peak
broadens and moves right

Strong coupling result

e Decreasing coupling from A = oo : peak sharpens and moves left




Recipe tor retarded correlators

AR AdS-bh Danielsson, Keski-Vakkuri,
\ ' / Kruczenski (1999)
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difference to equilibrium situation

e outside solution is a linear combination of ingoing and outgoing modes
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Holographic Green’s functions

Some computational details

@ Solve classical EoM for the relevant bulk field inside and outside the shell

@ Match solutions at the shell using Israel junction conditions

@ Quasistic limit: Ignore time derivatives

@ Use conventional methods to obtain retarded correlator

c_ E’
N2T2  F' N27?2 1+ =7
H(wv q) = —— lim (u, Q) = ——= cherm - EEM

N2T4 Z! . (u, Q)
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e Behaviour of c¢_/cy crucial for out of equilibrium dynamics



Finite coupling corrections

Key relation in AdS/CFT: (L/I,)* = L*/a/? = )

e Gobeyond A\ = 0 : add o' terms to SUGRA action, i.e. first non trivial
terms in a small curvature expansion

o Leading order corrections: O(a/?) = O(A73/?)

Gubser et al; Pawelczyk, Theisen (1998)
Improved type IIB SUGRA action:
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e Leadsto ~-corrected metric and EoMs for the different fields



Results

@ Quasinormal modes
@ Photon production
@ Thermalization of the spectral density

@ Analysis of results



Quasinormal modes infinite coupling

Structure of retarded thermal Greens functions = Dispersion relation of field
excitations

wn(q) = My(q) —il'n(q),

Reveal striking difference between weakly and strongly coupled systems
e At weak coupling long lived quasiparticles
@ At strong coupling infinity tower of modes
Wnlg=0 = n(£l —17)

Magnitude of I',, related to thermalization pattern: At strong coupling highest energy
modes decay fastest — top down thermalization



QNM at infinite coupling: Photons
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e Pole structure of EM current-current correlator displays usual quasinormal mode
spectrum at infinite coupling

e How does the QNM spectrum get modified at finite coupling?



QNM at finite coupling: Photons
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Effect of decreasing coupling: Width of excitations consistently decrease = modes
become longer - lived

Larger impact on higher energetic modes

Convergence of strong coupling expansion not guaranteed when shift is of O(1)



QNM at finite coupling: Photons

Re @

2 3 4 5

NS
\\
NS
NS A
§~ _-
N
N ///
~
~ \\ //
-
S~ .
L -
N ~ — -
DR A=1000 __-
8. S< -~
DS ~ _-
Sa ~ -
S | S -
So ~< -
SO - -
NN e T ¢
S~~~ TTTm====
INION
Q%\\\ ~
SN
AN ~
N ~ ~
SN S
Saos o~
SNl S
SS N ~
NS ~
N N
RS S~
NN ~ <
SO e
NI ~ =<
N ~ =~ —_ -
NN S T ..o AmEUVMYE e
SO S TS~ T
E
\\\\ ~ So
S ’\\ S~
R e
N S S~
NS
NN ~ \\\
NN S S~
NN ~ -~ -
~ ~ -~
RN ~o A -
S e |
NN SS
S \\ \\
A=00 < ~.
= N
ATERES RN
NN l\\\
O -~ A=5000
N, A R
VRN T~
N ~ S~<
~ ~ ~ o
~ =~
~
\\
> ~._.A=10000
N =
~
\\
N ~
~
~ ~

e similar shift at nonzero three momentum: q=2nT
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QNM at finite coupling: 1,,, correlators
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Same effect for the shear (left) and sound (right) channel (here k=0)

Outside the infinite coupling, the response of a strongly coupled plasma appears to
change, with the QNM mode spectrum moving towards a quasiparticle one

What happens if we the take the system further away from equilibrium by using the

collapsing shell model?




Photon spectral density

natural quantity to study: spectral
density: x4 = —2Im(II*")% (ko)

e virtuality

w/T
spectral density for rs/rh =1.1 for different virtualities

@ Out of equilibrium effect: oscillations around thermal value

@ As the shell approaches the horizon equilibrium 1s reached



Relative deviation of spectral density

e Usetull measure of out-of
equilibriumness: Relative deviation of
spectral density from thermal limit
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e Top down thermalization: highly energetic modes are closer to equ. value

e Highly virtual field modes thermalize first




Photon production rate at infinite coupling
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photon production rate for r¢/rn=1.1, 1.01, 1.001

e Enhancement of production rate

e Hydro peak broadens and moves right

e Apparently no dramatic observable signature in off-equilibrium photon
production



Photon production rate at infinite coupling
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photon production rate for r¢/rn=1.1, 1.01, 1.001

e Enhancement of production rate

e Hydro peak broadens and moves right

e Apparently no dramatic observable signature in off-equilibrium photon
production

@ Combining the two allows to study thermalization at finite coupling!



Photon production rate at intermediate coupling
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e Behaviour qualitatively similar to equilibrium case: in particular the result is much less

sensitive to finite coupling corrections than QNM spectrum



Thermalization at finite coupling

Relative deviation from thermal limit for on shell photons
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e Behaviour of relative deviation changes at large frequency
e UV modes are no longer first to thermalize

e Decreasing the coupling: change happens at lower frequency



Thermalization at finite coupling

Virtuality dependence of the relatlve dev1at10n
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e For maximally virtual photons (¢c=0), R approaches a constant at w — oo
e For on-shell photons (c=1): amplitude of R rises linearly with w

e Indication that thermalization pattern changes from top-down towards bottom-up



Thermalization at finite coupling
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@ Dbehaviour of the fields near the horizon is crucial

e originates from the Schroedinger potential

WKB approximation




Ry

R at finite coupling: 1 },,, correlators

Scalar channel Shear channel
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@ Relative deviation for the scalar/shear channel for ry/rn=1.1, c=0, 6/9, 8/9 and \ = 100
@ All three channels show the same behaviour
e Again similar to photons with the same dependence on ¢

e shift from top-down towards bottom-up



Reliability of results

What to make of all this? Evidence for the holographic plasma starting to
behave like a system of weakly coupled quasiparticles, or simply

e Breakdown due to some approximation

e Quasistatic limit Ok as long w/7T > 1

e Strong coupling expansion applied with care (NLO-LO)/LO = O(1/10)
@ A peculiarity of the channels considered

e EM current and 1 uv correlators probe systems in different ways

e Purely geometric probes show different behaviour (Galante, Schvellinger)

@ A sign of the unphysical nature of the collapsing shell model

e Difficult to rule out, however QNM result universal



Conclusions

Holographic (thermalization) calculations at finite coupling are possible and
potentially a very fruitful exercise

Indications that a holographic systems obtains weakly coupled characteristic
within the realm of a strong coupling expansion

e QNM modes: flow towards quasiparticle picture, independent of the thermalization
model

e Top-down thermalization pattern weakens and moves towards bottom-up

As always: more work needed

e 1n particular go beyond the quasistatic approximation and study full dynamical
problem



