Conformal anomaly, entanglement entropy and

 boundariesSergey N. Solodukhin
University of Tours

Talk at Oxford Holography Seminar
February 9, 2016

Plan of the talk:

1. Brief review: Iocal Weyl anomaly, entanglement entropy
2. Integral Weyl anomaly in presence of boundaries

$$
\text { a) } d=4 \quad \text { b) } d=6
$$

3. Integral Weyl anomaly in odd dimensions
4. Entanglement entropy and boundaries
5. Some open questions

Based on

1. S.S., "Boundary terms of conformal anomaly," Phys. Lett. B 752, 131 (2016) [arXiv:1510.04566 [hep-th]].
2. Dima Fursaev and S.S. "Anomalies, entropy and boundaries," arXiv:1601.06418 [hep-th].
3. work in progress with Amin Astaneh, Clement Berthiere

Other recent relevant works:

1. D. Fursaev, "Conformal anomalies of CFT's with boundaries," arXiv:1510.01427 [hep-th]
2. C. P. Herzog, K. W. Huang and K. Jensen, "Universal Entanglement and Boundary Geometry in Conformal Field Theory," arXiv:1510.00021 [hep-th].

Earlier relevant works:

1. J. S. Dowker and J. P. Schofield, "Conformal Transformations and the Effective Action in the Presence of Boundaries," J. Math. Phys. 31, 808 (1990).
2. J. Melmed, "Conformal Invariance and the Regularized One Loop Effective Action," J. Phys. A 21, L1131 (1988).
3. I. G. Moss, "Boundary Terms in the Heat Kernel Expansion," Class. Quant. Grav. 6, 759 (1989).
4. T. P. Branson, P. B. Gilkey and D. V. Vassilevich, "The Asymptotics of the Laplacian on a manifold with boundary. 2," Boll. Union. Mat. Ital. 11B, 39 (1997)

Let me first remind you

briefly the standard story

Local Weyl anomaly

$$
g^{\mu \nu}\left\langle T_{\mu \nu}\right\rangle=\frac{c}{24 \pi} R, \quad d=2
$$

$$
g^{\mu \nu}\left\langle T_{\mu \nu}\right\rangle=-\frac{a}{5760 \pi^{2}} E_{4}+\frac{b}{1920 \pi^{2}} \operatorname{Tr} W^{2}, \quad d=4
$$

$$
\begin{aligned}
\operatorname{Tr} W^{2} & =R_{\alpha \beta \mu \nu} R^{\alpha \beta \mu \nu}-2 R_{\mu \nu} R^{\mu \nu}+\frac{1}{3} R^{2} \\
E_{4} & =R_{\alpha \beta \mu \nu} R^{\alpha \beta \mu \nu}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}
\end{aligned}
$$

(For scalar field $a=b=1$)

$$
g^{\mu \nu}\left\langle T_{\mu \nu}\right\rangle=0, \quad d=2 n+1
$$

Entanglement entropy and Weyl anomaly

Σ is compact 2 d entangling surface

$$
\begin{gathered}
S_{d=4}=\frac{A(\Sigma)}{4 \pi \epsilon^{2}}+s_{0} \ln \epsilon \\
s_{0}=\frac{a}{180} \chi[\Sigma]-\frac{b}{240 \pi} \int_{\Sigma}\left[W_{a b a b}-\operatorname{Tr} \hat{k}^{2}\right]
\end{gathered}
$$

$\chi[\Sigma]$ is Euler number of Σ
$W_{a b a b}$ is projection of Weyl tensor on subspace orthogonal to $\Sigma, n^{a}, a=1,2$ is a pair of normal vectors
$\hat{k}_{\mu \nu}^{a}=k_{\mu \nu}^{a}-\frac{1}{d-2} \gamma_{\mu \nu} k^{a}, a=1,2$ is trace-free extrinsic curvature of Σ

EE in d dimensions

In d dimensions compact entangling surface Σ is $(d-2)$-dimensional

Logarithmic term s_{0} in entanglement entropy is given by integral over Σ of a polynomial invariant constructed from Weyl tensor $W_{\mu \alpha \nu \beta}$, even number of covariant derivatives of Weyl tensor, extrinsic curvature $\widehat{k}_{\mu \nu}^{a}$ and projections on normal vectors n_{μ}^{a}.

If d is odd no such invariant exists so that

$$
s_{0}=0 \quad \text { if } \quad d=2 n+1
$$

In this talk:

What changes if manifold has boundaries?

Conformal boundary conditions

General (mixed) boundary condition is a combination of Robin and Dirichlet b.c.
$\left.\left(\nabla_{n}+S\right) \Pi_{+} \varphi\right|_{\partial \mathcal{M}}=0,\left.\quad \Pi_{-} \varphi\right|_{\partial \mathcal{M}}=0, \quad \Pi_{+}+\Pi_{-}=1$

Conformal scalar field in d dimensions

Dirichlet b.c. $\left(\Pi_{+}=0\right)$

$$
\left.\phi\right|_{\partial \mathcal{M}}=0
$$

Conformal Robin b.c. $\left(\Pi_{-}=0\right)$

$$
\left.\left(\nabla_{n}+\frac{(d-2)}{2(d-1)} K\right) \phi\right|_{\partial \mathcal{M}}=0
$$

Remark: in $d=4$ exists one more (complex) Robin b.c.
$S=\frac{1}{3} K \pm \frac{i}{10} \sqrt{10 \operatorname{Tr} \widehat{K}^{2}}, \quad \widehat{K}_{\mu \nu}=K_{\mu \nu}-\frac{1}{3} \gamma_{\mu \nu} K$
for which (classical and quantum) theory is conformal

Dirac field in $d=4$ dimensions

$$
\left.\Pi_{-} \psi\right|_{\partial \mathcal{M}}=0,\left.\quad\left(\nabla_{n}+K / 2\right) \Pi_{+} \psi\right|_{\partial \mathcal{M}}=0
$$

$\Pi_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{*} n^{\mu} \gamma_{\mu}\right), \quad \gamma_{*}$ is chirality gamma function

Integral Weyl anomaly

Variation of effective action under constant rescaling of metric

$$
\mathcal{A} \equiv \partial_{\sigma} W\left[e^{2 \sigma} g_{\mu \nu}\right]=\int_{\mathcal{M}_{d}}\left\langle T_{\mu}^{\mu}\right\rangle
$$

For free fields integral Weyl anomaly reduces to computation of heat kernel coefficient A_{d}.

General structure

$$
\begin{gathered}
\int_{\mathcal{M}_{d}} \sqrt{g}\left\langle T_{\mu \nu}\right\rangle g^{\mu \nu}=a \chi\left(\mathcal{M}_{d}\right)+b_{k} \int_{\mathcal{M}_{d}} \sqrt{\gamma} I_{k}(W) \\
+b_{k}^{\prime} \int_{\partial \mathcal{M}_{d}} \sqrt{\gamma} J_{k}(W, \widehat{K})+c_{n} \int_{\partial \mathcal{M}_{d}} \sqrt{\gamma} \mathcal{K}_{n}(\hat{K}),
\end{gathered}
$$

$\chi\left[\mathcal{M}_{d}\right]$ is Euler number of manifold $\mathcal{M}_{d}, I_{k}(W)$ are conformal invariants constructed from the Weyl tensor, $\mathcal{K}_{n}(\widehat{K})$ are polynomial of degree ($d-1$) of the trace-free extrinsic curvature, $K_{\mu \nu}=K_{\mu \nu}-\frac{1}{d-2} \gamma K$ is trace free extrinsic curvature of boundary; $\widehat{K}_{\mu \nu} \rightarrow e^{\sigma} \widehat{K}_{\mu \nu}$ if $g_{\mu \nu} \rightarrow$ $e^{\sigma} g_{\mu \nu}$.

Q: Does it mean that there are new conformal charges b_{n}^{\prime}, c_{n} ?

A: we suggest that in appropriate normalization $b_{n}^{\prime}=b_{n}$ and the corresponding boundary term $J_{k}(W, \widehat{K})$ is in fact the Hawking-Gibbons type term for the bulk action $I_{k}(W)$
c_{n} are indeed new boundary conformal charges

Gibbons-Hawking type terms

Re-writing functional of curvature in a form linear in Riemann tensor

$$
I_{b u l k}=\int_{\mathcal{M}_{d}}\left(U^{\alpha \beta \mu \nu} R_{\alpha \beta \mu \nu}-U^{\alpha \beta \mu \nu} V_{\alpha \beta \mu \nu}+F(V)\right)
$$

In order to cancel normal derivatives of the metric variation on the boundary one should add a boundary term,

$$
\begin{gathered}
I_{\text {boundary }}=-\int_{\partial \mathcal{M}_{d}} U^{\alpha \beta \mu \nu} P_{\alpha \beta \mu \nu}^{(0)} \\
P_{\alpha \beta \mu \nu}^{(0)}=n_{\alpha} n_{\nu} K_{\beta \mu}-n_{\beta} n_{\nu} K_{\alpha \mu}-n_{\alpha} n_{\mu} K_{\beta \nu}+n_{\beta} n_{\mu} K_{\alpha \nu}
\end{gathered}
$$

n^{μ} is normal vector and $K_{\mu \nu}$ is extrinsic curvature of $\partial \mathcal{M}_{d}$

Barvinsky-SS (95)

For a bulk invariant expressed in terms of Weyl tensor only,

$$
\begin{gathered}
I[W]=\int_{\mathcal{M}_{d}}\left(U^{\alpha \beta \mu \nu} W_{\alpha \beta \mu \nu}-U^{\alpha \beta \mu \nu} V_{\alpha \beta \mu \nu}+F(V)\right) \\
-\int_{\partial \mathcal{M}_{d}} U^{\alpha \beta \mu \nu} P_{\alpha \beta \mu \nu} \\
P_{\alpha \beta \mu \nu}=P_{\alpha \beta \mu \nu}^{(0)}-\frac{1}{d-2}\left(g_{\alpha \mu} P_{\beta \nu}^{(0)}-g_{\alpha \nu} P_{\beta \mu}^{(0)}-g_{\beta \mu} P_{\alpha \nu}^{(0)}\right. \\
\left.+g_{\beta \nu} P_{\alpha \mu}^{(0)}\right)+\frac{P^{(0)}}{(d-1)(d-2)}\left(g_{\alpha \mu} g_{\beta \nu}-g_{\alpha \nu} g_{\beta \nu}\right) \\
P_{\mu \nu}^{(0)}=n_{\mu} n^{\alpha} K_{\alpha \beta}+n_{\mu} n^{\alpha} K_{\alpha \nu}-K_{\mu \nu}-n_{\mu} n_{\nu} K \\
P^{(0)}=-2 K
\end{gathered}
$$

$P_{\alpha \beta \mu \nu}$ has same symmetries as the Weyl tensor. In particular, $P_{\mu \alpha \nu}^{\alpha}=0$.
$P_{\alpha \beta \mu \nu}$ can be expressed in terms of $\widehat{K}_{\mu \nu}$

Examples

1. $\int_{\mathcal{M}_{d}} \operatorname{Tr}\left(W^{n}\right)-\int_{\partial \mathcal{M}_{d}} n \operatorname{Tr}\left(P W^{n-1}\right)$
2. $\int_{\mathcal{M}_{d}} \operatorname{Tr}\left(W \nabla^{2} W\right)-2 \int_{\partial \mathcal{M}_{d}} \operatorname{Tr}\left(P \nabla^{2} W\right)$

Integral Weyl anomaly in $d=4$: anomaly of type A

First of all, bulk integral of E_{4} is supplemented by some boundary terms to form a topological invariant, the Euler number,

$$
\begin{gathered}
\chi\left[\mathcal{M}_{4}\right]=\frac{1}{32 \pi^{2}} \int_{\mathcal{M}_{4}} E_{4} \\
-\frac{1}{4 \pi^{2}} \int_{\partial \mathcal{M}_{4}}\left(K^{\mu \nu} R_{n \mu n \nu}-K^{\mu \nu} R_{\mu \nu}-K R_{n n}+\frac{1}{2} K R\right. \\
\left.-\frac{1}{3} K^{3}+K \operatorname{Tr} K^{2}+\frac{2}{3} \operatorname{Tr} K^{3}\right) \\
R_{\mu n \nu n}=R_{\mu \alpha \nu \beta} n^{\alpha} n^{\beta} \text { and } R_{n n}=R_{\mu \nu} n^{\mu} n^{\nu} \\
\text { Dowker-Schofield (90) }
\end{gathered}
$$

Herzog-Huang-Jensen (2015)

Integral Weyl anomaly in $d=4$: anomaly of type B

Gibbons-Hawking type boundary term:

$$
\int_{\mathcal{M}_{4}} \operatorname{Tr} W^{2}-2 \int_{\partial \mathcal{M}_{4}} \operatorname{Tr}(W P)
$$

Due to properties of Weyl tensor:

$$
\operatorname{Tr}(W P)=\operatorname{Tr}\left(W P^{(0)}\right)=4 W^{\mu \nu \alpha \beta} n_{\mu} n_{\beta} \widehat{K}_{\nu \alpha}
$$

Integral Weyl anomaly in $d=4$

$$
\begin{gathered}
\int_{\mathcal{M}_{4}}\langle T\rangle=-\frac{a}{180} \chi\left[\mathcal{M}_{4}\right] \\
+\frac{b}{1920 \pi^{2}}\left(\int_{\mathcal{M}_{4}} \operatorname{Tr} W^{2}-8 \int_{\partial \mathcal{M}_{4}} W^{\mu \nu \alpha \beta} n_{\mu} n_{\beta} \hat{K}_{\nu \alpha}\right) \\
+\frac{c}{280 \pi^{2}} \int_{\partial \mathcal{M}_{4}} \operatorname{Tr} \hat{K}^{3}
\end{gathered}
$$

For B-anomaly balance between bulk and boundary terms agrees with calculation for free fields of spin $s=0,1 / 2,1$

Fursaev (2015)
also Herzog-Huang-Jensen (2015)

Values of boundary charge c :
(Malmed (88), Dowker-Schofield (95), Fursaev (2015))
$c=1$ for $s=0$ (Dirichlet b.c.)
$c=7 / 9$ for $s=0$ (Robin b.c.)
$c=5$ for $s=1 / 2$ (mixed b.c.)
$c=8$ for $s=1$ (absolute or relative b.c)

Local Weyl anomaly in $d=6$

$$
\langle T\rangle=\mathcal{A}=a E_{6}+b_{1} I_{1}+b_{2} I_{2}+b_{3} I_{3}+T D
$$

where E_{6} is the Euler density in $d=6$ and we defined

$$
\begin{gathered}
I_{1}=\operatorname{Tr}_{1}\left(W^{3}\right)=W_{\alpha \mu \nu \beta} W^{\mu \sigma \rho \nu} W_{\sigma}{ }^{\alpha \beta} \rho \\
I_{2}=\operatorname{Tr}_{2}\left(W^{3}\right)=W_{\alpha \beta}^{\mu \nu} W_{\mu \nu}^{\sigma \rho} W_{\sigma \rho}{ }^{\alpha \beta} \\
I_{3}=\operatorname{Tr}\left(W \nabla^{2} W\right)+\operatorname{Tr}_{2}(W X W) \\
X_{\alpha \beta}^{\mu \nu}=X_{[\alpha}^{[\mu} \delta_{\beta]}^{\nu]}, \quad X_{\nu}^{\mu}=4 R_{\nu}^{\mu}-\frac{6}{5} R \delta_{\nu}^{\mu}
\end{gathered}
$$

Integral Weyl anomaly in $d=6$

$$
\begin{gathered}
\int_{\mathcal{M}_{6}}\langle T\rangle=a^{\prime} \chi\left[\mathcal{M}_{6}\right] \\
+b_{1}\left(\int_{\mathcal{M}_{6}} \operatorname{Tr}_{1} W^{3}-3 \int_{\partial \mathcal{M}_{6}} \operatorname{Tr}_{1}\left(P W^{2}\right)\right) \\
+b_{2}\left(\int_{\mathcal{M}_{6}} \operatorname{Tr}_{2} W^{3}-3 \int_{\partial \mathcal{M}_{6}} \operatorname{Tr}_{2}\left(P W^{2}\right)\right) \\
+b_{3}\left[\int_{\mathcal{M}_{6}} \operatorname{Tr}\left(W \nabla^{2} W\right)-2 \int_{\partial \mathcal{M}_{6}} \operatorname{Tr}\left(P \nabla^{2} W\right)\right. \\
\left.+\int_{\mathcal{M}_{6}} \operatorname{Tr}_{2}(W X W)-\int_{\partial \mathcal{M}_{6}} \operatorname{Tr}_{2}(W Q W)\right] \\
+\int_{\partial \mathcal{M}_{6}}\left(c_{1} \operatorname{Tr} \widehat{K}^{2} \operatorname{Tr} \hat{K}^{3}+c_{2} \operatorname{Tr} \hat{K}^{5}\right)
\end{gathered}
$$

two new boundary charges c_{1} and c_{2}
there may exist additional invariant with derivatives of extrinsic curvature

Integral Weyl anomaly in odd dimensions

Euler number of \mathcal{M}_{d} vanishes if d is odd
Euler number of boundary $\partial \mathcal{M}_{d}$ may appear in integral anomaly
$\mathrm{d}=3:$

$$
\int_{\mathcal{M}_{3}}\langle T\rangle=\frac{c_{1}}{96} \chi\left[\partial \mathcal{M}_{3}\right]+\frac{c_{2}}{256 \pi} \int_{\partial \mathcal{M}_{3}} \operatorname{Tr} \widehat{K}^{2}
$$

$\left(c_{1}, c_{2}\right):$
$(-1,1)$ for scalar filed (Dirichlet b.c.)
$(1,1)$ for scalar field (conformal Robin b.c) $(0,2)$ for Dirac field (mixed b.c.)

Remark: similar anomaly for defects JensenO'Bannon (2015)

Integral Weyl anomaly in $\mathbf{d}=\mathbf{5}$

$$
\begin{gathered}
\int_{\mathcal{M}_{5}}\langle T\rangle=c_{1} \chi\left[\partial \mathcal{M}_{5}\right] \\
+\int_{\partial \mathcal{M}_{5}}\left[c_{2} \operatorname{Tr} W^{2}+c_{3} W_{\alpha n \beta n} W_{n}^{\alpha}{ }_{n}{ }_{n}+c_{4} W_{n \alpha \beta \mu} W_{n}{ }^{\alpha \beta \mu}\right. \\
+c_{5} W^{\alpha \mu \beta \nu} \widehat{K}_{\alpha \beta} \widehat{K}_{\mu \nu}+c_{6} W^{\alpha}{ }_{n}{ }_{n}^{\beta} \widehat{K}_{\alpha \sigma} \widehat{K}_{\beta}^{\sigma} \\
\left.+c_{7}\left(\operatorname{Tr} \widehat{K}^{2}\right)^{2}+c_{8} \operatorname{Tr} \widehat{K}^{4}+c_{9} \operatorname{Tr}(\widehat{K} \mathcal{D} \widehat{K})\right]
\end{gathered}
$$

\mathcal{D} is conformal operator acting on trace free symmetric tensor in 4 dimensions
values of c_{k} for conformal scalar field: work in progress with Clement Berthiere

Entanglement entropy: $d=3$ (recent work with Fursaev)

Renyi entropy

$$
\begin{aligned}
S^{(n)} & \simeq c(n) L / \epsilon-\ln (\epsilon) s^{(n)} \\
s^{(n)} & =\eta \frac{n A_{3}(1)-A_{3}(n)}{n-1}
\end{aligned}
$$

$A_{3}(n)$ is heat kernel coefficient on replica manifold \mathcal{M}_{n}

Consider $\mathcal{M}=R^{2} \times L, L$ is an interval with 2 end points P_{1} and P_{2}

Entangling surface $\Sigma=L$, replica space $\mathcal{M}_{n}=$ $\mathcal{C}_{n} \times L$

$$
\begin{gathered}
A_{3}(n)=A_{2}\left(\mathcal{C}_{n}\right) \times A_{1}(L), \\
A_{2}\left(\mathcal{C}_{n}\right)=\frac{1}{12 n}\left(1-n^{2}\right)
\end{gathered}
$$

is the heat kernel coefficient on two-dimensional cone, and

$$
A_{1}(L)=\frac{1}{4} \sum_{P_{k}} \operatorname{tr} \chi, \quad \chi=\Pi_{+}-\Pi_{-}
$$

for scalar field

$$
s^{(n)}=\frac{c_{1}}{48} \frac{n+1}{n} \sum_{P}, \quad s^{(n=1)}=\frac{c_{1}}{24} \sum_{P}
$$

for Dirac field

$$
s^{(n)}=0, s^{(n=1)}=0
$$

INTERESTING PREDICTION:
dependence on angle between entangling surface Σ and boundary ∂M
$\cos \alpha=(n, t)$,
n^{μ} normal vector to $\partial \mathcal{M}_{3}$, t^{μ} tangent vector to Σ.

Assume that the bulk \mathcal{M}_{n} contains a conical singularity then:
scalar curvature of the boundary

$$
\int_{\partial \mathcal{M}_{n}} \hat{R} \simeq 4 \pi \cos \alpha(1-n), \quad n \rightarrow 1
$$

and extrinsic curvature of the boundary

$$
\begin{aligned}
& \int_{\partial \mathcal{M}_{n}} K^{2} \simeq \int_{\partial \mathcal{M}_{n}} \operatorname{Tr} K^{2} \simeq 8 \pi(1-n) f(\alpha) \\
& f(\alpha)=-\frac{1}{32} \frac{\sin ^{2} \alpha}{\cos \alpha}\left(1+2 \cos ^{2} \alpha+5 \cos ^{4} \alpha\right)
\end{aligned}
$$

OTHER DIMENSIONS

$P=\Sigma \cap \partial \mathcal{M}_{d} \quad \operatorname{dim}(P)=d-3$
$p_{a}^{\mu}, a=1,2$ normal vectors to P in $\partial \mathcal{M}_{d}$ $\widehat{k}_{\mu \nu}^{a}$ is respective extrinsic curvature of P
$\widehat{K}_{a b}=p_{a}^{\alpha} p_{b}^{\beta} \widehat{K}_{\alpha \beta}$
$\mathrm{d}=3: \operatorname{dim}(P)=0 \quad s_{0}(P) \sim \sum_{P}$
$\mathrm{d}=4: \operatorname{dim}(P)=1 \quad s_{0}(P) \sim \int_{P} \hat{K}_{a a}$
$\mathrm{d}=5: \operatorname{dim}(P)=2$
possible terms in $s_{0}(P): \chi(P), W_{n a n a}, W_{a b a b}$, $\left(\widehat{K}_{a a}\right)^{2}, \quad \widehat{K}_{a b} \widehat{K}_{a b}, \operatorname{tr} \widehat{k}^{2}$ and terms with two derivatives of extrinsic curvature

RESUME

in presence of boundaries integral Weyl anomaly is modified by boundary terms
boundary terms for B-anomaly are of GibbonsHawking type
additional new boundary charges
in odd dimensions integral Weyl anomaly is non-vanishing (!) and is entirely due to boundary terms
if intersection of entangling surface and boundary is P then there appear new contributions to EE (and RE) due to P
in odd dimensions log term in EE (and RE) is non-vanishing (!) and is entirely due to P

SOME OPEN QUESTIONS

1. how derive boundary charges from n-point correlation functions in CFT?
2. what is holographic description of boundary terms in anomaly and in EE?
(work in progress with Amin Astaneh)

THANK YOU!

