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Plan of the talk:

1. Brief review: local Weyl anomaly, entangle-

ment entropy

2. Integral Weyl anomaly in presence of bound-

aries

a) d=4 b) d=6

3. Integral Weyl anomaly in odd dimensions

4. Entanglement entropy and boundaries

5. Some open questions
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Let me first remind you

briefly the standard story
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Local Weyl anomaly

gµν 〈Tµν〉 =
c

24π
R , d = 2

gµν 〈Tµν〉 = − a

5760π2
E4+

b

1920π2
TrW2 , d = 4

TrW2 = RαβµνR
αβµν − 2RµνR

µν +
1

3
R2

E4 = RαβµνR
αβµν − 4RµνR

µν +R2 .

(For scalar field a = b = 1)

gµν 〈Tµν〉 = 0 , d = 2n+1
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Entanglement entropy and
Weyl anomaly

Σ is compact 2d entangling surface

Sd=4 =
A(Σ)

4πǫ2
+ s0 ln ǫ

s0 =
a

180
χ[Σ]− b

240π

∫

Σ
[Wabab −Tr k̂2]

χ[Σ] is Euler number of Σ

Wabab is projection of Weyl tensor on subspace

orthogonal to Σ, na, a = 1,2 is a pair of normal

vectors

k̂aµν = kaµν − 1
d−2γµνk

a, a = 1,2 is trace-free

extrinsic curvature of Σ
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EE in d dimensions

In d dimensions compact entangling surface Σ

is (d− 2)-dimensional

Logarithmic term s0 in entanglement entropy

is given by integral over Σ of a polynomial in-

variant constructed from Weyl tensor Wµανβ,

even number of covariant derivatives of Weyl

tensor, extrinsic curvature k̂aµν and projections

on normal vectors naµ.

If d is odd no such invariant exists so that

s0 = 0 if d = 2n+1
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In this talk:

What changes if manifold has
boundaries?
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Conformal boundary conditions

General (mixed) boundary condition is a com-

bination of Robin and Dirichlet b.c.

(∇n+S)Π+ϕ|∂M = 0 , Π−ϕ|∂M = 0 , Π++Π− = 1
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Conformal scalar field in d di-
mensions

Dirichlet b.c. (Π+ = 0)

φ|∂M = 0

Conformal Robin b.c. (Π− = 0)

(∇n+
(d− 2)

2(d− 1)
K)φ|∂M = 0

Remark: in d = 4 exists one more (complex)

Robin b.c.

S =
1

3
K ± i

10

√

10Tr K̂2 , K̂µν = Kµν −
1

3
γµνK

for which (classical and quantum) theory is

conformal

11



Dirac field in d = 4 dimensions

Π−ψ|∂M = 0 , (∇n+K/2)Π+ψ|∂M = 0

Π± = 1
2(1 ± iγ∗nµγµ), γ∗ is chirality gamma

function
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Integral Weyl anomaly

Variation of effective action under constant

rescaling of metric

A ≡ ∂σW [e2σgµν] =
∫

Md

〈

Tµµ
〉

For free fields integral Weyl anomaly reduces

to computation of heat kernel coefficient Ad.
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General structure

∫

Md

√
g 〈Tµν〉 gµν = a χ(Md) + bk

∫

Md

√
γIk(W )

+b′k
∫

∂Md

√
γJk(W, K̂) + cn

∫

∂Md

√
γKn(K̂) ,

χ[Md] is Euler number of manifold Md, Ik(W )

are conformal invariants constructed from the

Weyl tensor, Kn(K̂) are polynomial of degree

(d − 1) of the trace-free extrinsic curvature,

Kµν = Kµν − 1
d−2γK is trace free extrinsic cur-

vature of boundary; K̂µν → eσK̂µν if gµν →
eσgµν.
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Q: Does it mean that there are new conformal

charges b′n, cn?

A: we suggest that in appropriate normaliza-

tion b′n = bn and the corresponding boundary

term Jk(W, K̂) is in fact the Hawking-Gibbons

type term for the bulk action Ik(W )

cn are indeed new boundary conformal charges
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Gibbons-Hawking type terms

Re-writing functional of curvature in a form

linear in Riemann tensor

Ibulk =
∫

Md

(

UαβµνRαβµν − UαβµνVαβµν + F (V )
)

In order to cancel normal derivatives of the

metric variation on the boundary one should

add a boundary term,

Iboundary = −
∫

∂Md

UαβµνP
(0)
αβµν

P
(0)
αβµν = nαnνKβµ−nβnνKαµ−nαnµKβν+nβnµKαν

nµ is normal vector and Kµν is extrinsic curva-

ture of ∂Md

Barvinsky-SS (95)
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For a bulk invariant expressed in terms of Weyl

tensor only,

I[W ] =
∫

Md

(

UαβµνWαβµν − UαβµνVαβµν + F (V )
)

−
∫

∂Md

UαβµνPαβµν

Pαβµν = P
(0)
αβµν−

1

d− 2
(gαµP

(0)
βν −gανP (0)

βµ −gβµP
(0)
αν

+gβνP
(0)
αµ ) +

P (0)

(d− 1)(d− 2)
(gαµgβν − gανgβν)

P
(0)
µν = nµn

αKαβ + nµn
αKαν −Kµν − nµnνK

P (0) = −2K

Pαβµν has same symmetries as the Weyl tensor.

In particular, Pαµαν = 0.

Pαβµν can be expressed in terms of K̂µν
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Examples

1.
∫

Md

Tr (Wn)−
∫

∂Md

nTr (PWn−1)

2.
∫

Md

Tr (W∇2W )− 2
∫

∂Md

Tr (P∇2W )
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Integral Weyl anomaly in d = 4:
anomaly of type A

First of all, bulk integral of E4 is supplemented

by some boundary terms to form a topological

invariant, the Euler number,

χ[M4] =
1

32π2

∫

M4

E4

− 1

4π2

∫

∂M4

(KµνRnµnν−KµνRµν−KRnn+
1

2
KR

−1

3
K3 +KTrK2 +

2

3
TrK3)

Rµnνn = Rµανβn
αnβ and Rnn = Rµνnµnν

Dowker-Schofield (90)

Herzog-Huang-Jensen (2015)
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Integral Weyl anomaly in d = 4:
anomaly of type B

Gibbons-Hawking type boundary term:

∫

M4

TrW2 − 2
∫

∂M4

Tr (WP )

Due to properties of Weyl tensor:

Tr (WP ) = Tr (WP (0)) = 4WµναβnµnβK̂να
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Integral Weyl anomaly in d = 4

∫

M4

〈T 〉 = − a

180
χ[M4]

+
b

1920π2

(

∫

M4

TrW2 − 8
∫

∂M4

WµναβnµnβK̂να

)

+
c

280π2

∫

∂M4

Tr K̂3

For B-anomaly balance between bulk and bound-

ary terms agrees with calculation for free fields

of spin s=0,1/2, 1

Fursaev (2015)

also Herzog-Huang-Jensen (2015)
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Values of boundary charge c:

(Malmed (88), Dowker-Schofield (95), Fursaev

(2015))

c = 1 for s = 0 (Dirichlet b.c.)

c = 7/9 for s = 0 (Robin b.c.)

c = 5 for s = 1/2 (mixed b.c.)

c = 8 for s = 1 (absolute or relative b.c)
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Local Weyl anomaly in d = 6

〈T 〉 = A = aE6 + b1I1 + b2I2 + b3I3 + TD

where E6 is the Euler density in d = 6 and we

defined

I1 = Tr 1(W
3) =WαµνβW

µσρνW αβ
σ ρ

I2 = Tr 2(W
3) =W

µν
αβ W σρ

µν W αβ
σρ

I3 = Tr (W∇2W ) +Tr 2(WXW )

X
µν

αβ = X
[µ
[α
δ
ν]
β]
, Xµ

ν = 4Rµν − 6

5
Rδµν
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Integral Weyl anomaly in d = 6

∫

M6

〈T 〉 = a′χ[M6]

+b1

(

∫

M6

Tr 1W
3 − 3

∫

∂M6

Tr 1(PW
2)

)

+b2

(

∫

M6

Tr 2W
3 − 3

∫

∂M6

Tr 2(PW
2)

)

+b3[
∫

M6

Tr (W∇2W )− 2
∫

∂M6

Tr (P∇2W )

+
∫

M6

Tr 2(WXW )−
∫

∂M6

Tr 2(WQW )]

+
∫

∂M6

(

c1Tr K̂2Tr K̂3 + c2Tr K̂5
)

two new boundary charges c1 and c2

there may exist additional invariant with deriva-

tives of extrinsic curvature
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Integral Weyl anomaly in odd di-
mensions

Euler number of Md vanishes if d is odd

Euler number of boundary ∂Md may appear in

integral anomaly

d = 3 :

∫

M3

〈T 〉 = c1
96
χ[∂M3] +

c2
256π

∫

∂M3

Tr K̂2

(c1, c2):

(−1,1) for scalar filed (Dirichlet b.c.)

(1,1) for scalar field (conformal Robin b.c)

(0,2) for Dirac field (mixed b.c.)

Remark: similar anomaly for defects Jensen-

O’Bannon (2015)
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Integral Weyl anomaly in d = 5

∫

M5

〈T 〉 = c1χ[∂M5]

+
∫

∂M5

[c2TrW2+c3WαnβnW
α β
n n+c4WnαβµW

αβµ
n

+c5W
αµβνK̂αβK̂µν + c6W

α β
n nK̂ασK̂

σ
β

+c7(Tr K̂2)2 + c8Tr K̂4 + c9Tr (K̂DK̂)]

D is conformal operator acting on trace free

symmetric tensor in 4 dimensions

values of ck for conformal scalar field: work in

progress with Clement Berthiere
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Entanglement entropy: d = 3
(recent work with Fursaev)

Renyi entropy

S(n) ≃ c(n)L/ǫ− ln(ǫ)s(n)

s(n) = η
nA3(1)−A3(n)

n− 1

A3(n) is heat kernel coefficient on replica man-

ifold Mn
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Consider M = R2 × L, L is an interval with 2

end points P1 and P2

Entangling surface Σ = L, replica space Mn =

Cn × L

A3(n) = A2(Cn)×A1(L) ,

A2(Cn) =
1

12n
(1− n2)

is the heat kernel coefficient on two-dimensional

cone, and

A1(L) =
1

4

∑

Pk

tr χ , χ = Π+ −Π−
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for scalar field

s(n) =
c1
48

n+1

n

∑

P

, s(n=1) =
c1
24

∑

P

for Dirac field

s(n) = 0 , s(n=1) = 0



INTERESTING PREDICTION:

dependence on angle between entangling sur-

face Σ and boundary ∂M

cosα = (n, t),

nµ normal vector to ∂M3,

tµ tangent vector to Σ.

Assume that the bulk Mn contains a conical

singularity then:

scalar curvature of the boundary
∫

∂Mn

R̂ ≃ 4π cosα (1− n) , n→ 1

and extrinsic curvature of the boundary
∫

∂Mn

K2 ≃
∫

∂Mn

Tr K2 ≃ 8π(1− n)f(α) ,

f(α) = − 1

32

sin2α

cosα
(1 + 2cos2α+5cos4α)
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OTHER DIMENSIONS

P = Σ ∩ ∂Md dim(P ) = d− 3

p
µ
a , a = 1,2 normal vectors to P in ∂Md

k̂aµν is respective extrinsic curvature of P

K̂ab = pαap
β
b K̂αβ

d = 3 : dim(P ) = 0 s0(P ) ∼ ∑

P

d = 4 : dim(P ) = 1 s0(P ) ∼ ∫

P K̂aa

d = 5 : dim(P ) = 2

possible terms in s0(P ): χ(P ) , Wnana , Wabab ,

(K̂aa)2 , K̂abK̂ab , tr k̂2 and terms with two

derivatives of extrinsic curvature
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RESUME

in presence of boundaries integral Weyl anomaly

is modified by boundary terms

boundary terms for B-anomaly are of Gibbons-

Hawking type

additional new boundary charges

in odd dimensions integral Weyl anomaly is

non-vanishing (!) and is entirely due to bound-

ary terms

if intersection of entangling surface and bound-

ary is P then there appear new contributions

to EE (and RE) due to P

in odd dimensions log term in EE (and RE) is

non-vanishing (!) and is entirely due to P
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SOME OPEN QUESTIONS

1. how derive boundary charges from n-point

correlation functions in CFT?

2. what is holographic description of boundary

terms in anomaly and in EE?

(work in progress with Amin Astaneh)
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THANK YOU!

33


