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Let me first remind you

briefly the standard story



Local Weyl anomaly
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Entanglement entropy and
Weyl anomaly

2 is compact 2d entangling surface
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x[X] is Euler number of X

W.pap 1S Projection of Weyl tensor on subspace
orthogonal to >, n%, a = 1,2 is a pair of normal
vectors

ki, = k&, — ﬁwyk“, a = 1,2 is trace-free
extrinsic curvature of >



EE in d dimensions

In d dimensions compact entangling surface >
is (d — 2)-dimensional

Logarithmic term sg in entanglement entropy
IS given by integral over > of a polynomial in-
variant constructed from Weyl tensor Wwyﬁ,
even number of covariant derivatives of Weyl
tensor, extrinsic curvature Eﬁy and projections
on normal vectors ng

If d is odd no such invariant exists so that

so=0 f d=2n+41



In this talk:

What changes if manifold has
boundaries?



Conformal boundary conditions

General (mixed) boundary condition is a com-
bination of Robin and Dirichlet b.c.

(Va+S)Npplopm =0, Noplgpy =0, Ny+MN_=1
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Conformal scalar field in d di-
mensions

Dirichlet b.c. (M4 =0)

dlopm =0

Conformal Robin b.c. (M- =0)

(d—2)

(Vn+2(d_1)

K)olom =0

Remark: in d = 4 exists one more (complex)
Robin b.c.

1 ; — 1
S= K+ VI0TrR2, R = Ku — —vuK
3 10\/ py = Bpy — 3uy

for which (classical and quantum) theory is
conformal
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Dirac field in d = 4 dimensions

N_lgpm =0, (Va+ K/2)MN4ihlgpy =0

Ny = %(1 + iv«nty,), vx IS chirality gamma
function

12



Integral Weyl anomaly

Variation of effective action under constant
rescaling of metric

A= 0, W2 gu] = /Md (T}

For free fields integral Weyl anomaly reduces
to computation of heat kernel coefficient Ay.
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General structure

My VI (L) " = a x(Mg) + by, /Md VI (W)

’ R T mn R 9
+b, /Wdﬁfk(w, ) en [ VAKR(R)

x[My] is Euler number of manifold M, I . (W)
are conformal invariants constructed from the
Weyl! tensor, K,(K) are polynomial of degree
(d — 1) of the trace-free extrinsic curvature,
Kuw = Ku — 727K is trace free extrinsic cur-
vature of boundary; Ky — e’Kuw if gy —
e’ guv.
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Q: Does it mean that there are new conformal
charges b/, cn?

A: we suggest that in appropriate normaliza-
tion béz — b, and the corresponding boundary
term J,(W, K) is in fact the Hawking-Gibbons
type term for the bulk action I.(W)

cn, are indeed new boundary conformal charges

15



Gibbons-Hawking type terms

Re-writing functional of curvature in a form
linear in Riemann tensor

Tyt = /./\/ld (UQBMVROzﬁ,UJ/ — Uaﬁﬂyvaﬁluy + F(V))

In order to cancel normal derivatives of the
metric variation on the boundary one should
add a boundary term,
_ (0)
Iboundary - /59/\/1(1 Uaﬁluypaﬁ,ul/

By = nany Kg,—ngny Kap—nanuKg,+ngnuKav

nt is normal vector and K, is extrinsic curva-
ture of oM,

Barvinsky-SS (95)
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For a bulk invariant expressed in terms of Weyl
tensor only,

I[W] = /M (UQBMVWQB/U/ . UQ‘BMVVQBMV _I_ F(V))
d

_ [oBuy P,

OMy Puv

_ p(0) (0) (0) (0)
PaB,LW — Pamw q_ Q(QauP gozvpgu —9putav

p(0)
(d—1)(d—2)

+961/PO(4,2)) + (gOé,LLgBV - gOéI/gﬁz/)

/u(uc/)) = n,LL/n’ O{/B _I_ nlunaKay — K,Ll,l/ — ’n,ILL'rLI/K

pO) — ok

Poguy has same symmetries as the Weyl tensor.

In particular, P¢ Loy = = 0.

Popuwy Can be expressed in terms of K
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Examples

n n—1
1. /MdTr(W )—/8MdnTr(PW )

2. / Tr(WVQW)—Q/ Tr (PV2W)
My oMy
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Integral Weyl anomaly in d = 4:
anomaly of type A

First of all, bulk integral of E,4 is supplemented

by some boundary terms to form a topological
invariant, the Euler number,

1
My] = E
x [My] 3272 o,
b / (K™ Ry — KM Ry — K Rym + ~ K R
an2 Jor, nunv LV nn T S

1 2
—§K3 + KTr K2+ 3T K3)

Rynvn = Ruayﬁno‘nﬁ and Rpn = Rypntn”
Dowker-Schofield (90)

Herzog-Huang-Jensen (2015)
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Integral Weyl anomaly in d = 4:
anomaly of type B

Gibbons-Hawking type boundary term:

Triw? —2 Tr (W P)
My M.

Due to properties of Weyl tensor:

Tr(WP) = Tr (WP = awrobn, ns K,
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Integral Weyl anomaly in d =4

Jo, (T = ~ggxIMal

b
192072

4

OMy

C

Tr K3
+2807T2 /6M4

For B-anomaly balance between bulk and bound-
ary terms agrees with calculation for free fields
of spin s=0,1/2, 1

Fursaev (2015)

also Herzog-Huang-Jensen (2015)
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Values of boundary charge c:

(Malmed (88), Dowker-Schofield (95), Fursaev
(2015))

c =1 for s =0 (Dirichlet b.c.)
c=7/9 for s =0 (Robin b.c.)
c=05 for s=1/2 (mixed b.c.)

c = 8 for s = 1 (absolute or relative b.c)
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Local Weyl anomaly in d =6

<T> = A= aE6 + 51[1 + bQIQ + b3[3 + 1D

where Eg is the Euler density in d = 6 and we
defined

Iy = Tr1(W3) = Wy, sWHPW,*

IQ = Tr 2(W3) =W ’uVW

of uvapWapaB

Is=Tr(WV2W) + Tro(WXW)

6
e — xlesil - = aRpp - R}

Xap [2%8]

23



Integral Weyl anomaly in d = 6

Jp, (T = 'x[Mé]

+by (/M Tr 1W3—3/8M Trl(PW2)>
6 6

+bs (/M Trow3 — 3/(W TrQ(PW2)>
6 6

Fba| /M6 Tr (WV2W) — 2 /a W T (PV2W)

+/M6 Tro(WXW) — /aM6 Tr o (WQW)]

+ ey TrK2Tr K3 —|—c2TrR'5)

O0Meg (

two new boundary charges c1 and c»

there may exist additional invariant with deriva-
tives of extrinsic curvature
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Integral Weyl anomaly in odd di-
mensions

Euler number of M, vanishes if d is odd

Euler number of boundary oM,  may appear in
integral anomaly

d=3:

=+ 2
//\/l3 T = 96X[ Msl + 56 /8/\/13 Trk

(c1,c2):

(—1,1) for scalar filed (Dirichlet b.c.)
(1,1) for scalar field (conformal Robin b.c)
(0,2) for Dirac field (mixed b.c.)

Remark: similar anomaly for defects Jensen-
O’'Bannon (2015)
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Integral Weyl anomaly ind =5

T) = oM
Jop, (T = exxoMs)
+ /8./\/(5 [CQTr W2+C3Wanﬁnwafn 571+C4Wna6uwna5'u

_I_CSWQMBVRO(BKMV _I_ C6Wan B,',LK@O-KUB

+cr(TrB2)? + cgTr R4 + ¢ Tr (KDK)]

D is conformal operator acting on trace free
symmetric tensor in 4 dimensions

values of ¢, for conformal scalar field: work in
progress with Clement Berthiere

26



Entanglement entropy:. d = 3

(recent work with Fursaev)

Renyi entropy

S ~ c(n)L/e — In(e)s™

(n) _ nAz(1) — Az(n)
) — T

n—1

A3z(n) is heat kernel coefficient on replica man-
ifold My,
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Consider M = R? x L, L is an interval with 2
end points P; and P»

Entangling surface > = L, replica space M,, =
Cn X L

Az(n) = A2(Cn) x A1(L),

Ao (Ca) = (1~ n?)

IS the heat kernel coefficient on two-dimensional
cone, and

1
Aq1(L) ZZZU’ X, x=MNg—-T_
Py,
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for scalar field

(n)y _ can+1 (n=1) _ €1
© T a8 n ;’ ’ 24;

for Dirac field

s{n) =0 : s(n=1) — ¢



INTERESTING PREDICTION:

dependence on angle between entangling sur-
face > and boundary oM

cosa = (n,t),
nt* normal vector to OMs,
t* tangent vector to .

Assume that the bulk M, contains a conical
singularity then:

scalar curvature of the boundary

/ R~4rcosa (1—n), n—1
oMy,

and extrinsic curvature of the boundary

K? ~ Tr K2 ~ 8 (1 — ,
/Wn - 7(1—n)f(a)

1 sin?
fla) = — (1 +2cos2a + 5cos*a)
32 COS «
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OTHER DIMENSIONS
P=>NnoMy; dim(P)=d—3

P4 ,a = 1,2 normal vectors to P in OMg
Tcﬁy IS respective extrinsic curvature of P

.

Koy = pgpgffaﬁ

d=3:dm(P)=0 sg(P)~Xp
d=4:dim(P)=1 so(P)~ [pKaa
d=5:dim(P)=2

possible terms in sg(P): x(P), Wnana, Weabab s
(Kaa)?, KK, , trk? and terms with two
derivatives of extrinsic curvature
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RESUME

in presence of boundaries integral Weyl anomaly
iIs modified by boundary terms

boundary terms for B-anomaly are of Gibbons-
Hawking type

additional new boundary charges

in odd dimensions integral Weyl anomaly is
non-vanishing (!) and is entirely due to bound-
ary terms

if intersection of entangling surface and bound-
ary is P then there appear new contributions
to EE (and RE) due to P

in odd dimensions log term in EE (and RE) is
non-vanishing (!) and is entirely due to P
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SOME OPEN QUESTIONS

1. how derive boundary charges from n-point
correlation functions in CFT7

2. what is holographic description of boundary
terms in anomaly and in EE?
(work in progress with Amin Astaneh)
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THANK YOU!
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