Conformal Field Theory in Momentum space

Kostas Skenderis

Southampton Theory Astrophysics and Gravity research centre

Southanumpton

Oxford University 3 March 2015

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators
5 Conclusions

Introduction

> Conformal invariance imposes strong constraints on correlation functions.
$>$ It determines two- and three-point functions of scalars, conserved vectors and the stress-energy tensor [Polyakov (1970)] ... [Osborn, Petkou (1993)]. For example,

$$
=\frac{\left\langle\mathcal{O}_{1}\left(\boldsymbol{x}_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{x}_{2}\right) \mathcal{O}_{3}\left(\boldsymbol{x}_{3}\right)\right\rangle}{\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{3}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}\left|\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right|^{\Delta_{3}+\Delta_{1}-\Delta_{2}}} .
$$

$>$ It determines the form of higher point functions up to functions of cross-ratios.

Introduction

- These results (and many others) were obtained in position space.
- This is in stark contrast with general QFT were Feymnan diagrams are typically computed in momentum space.
■ While position space methods are powerful, typically they
■ provide results that hold only at separated points ("bare" correlators).
- are hard to extend beyond CFTs
- The purpose of this work is to provide a first principles analysis of CFTs in momentum space.

Introduction

■ Momentum space results were needed in several recent applications:
$>$ Holographic cosmology [McFadden, KS](2010)(2011) [Bzowski, McFadden, KS (2011)(2012)] [Pimentel, Maldacena (2011)][Mata, Raju,Trivedi (2012)] [Kundu, Shukla,Trivedi (2014)].
> Studies of 3d critical phenomena [Sachdev et al (2012)(2013)]

References

■ Adam Bzowski, Paul McFadden, KS Implications of conformal invariance in momentum space 1304.7760

■ Adam Bzowski, Paul McFadden, KS Renormalized scalar 3-point functions
15xx.xxxx
■ Adam Bzowski, Paul McFadden, KS Renormalized tensor 3-point functions 15xx.xxxx

Conformal invariance

■ Conformal transformations consist of dilatations and special conformal transformations.
■ Dilatations $\delta x^{\mu}=\lambda x^{\mu}$, are linear transformations, so their implications are easy to work out.

- Special conformal transforms, $\delta x^{\mu}=b^{\mu} x^{2}-2 x^{\mu} b \cdot x$, are non-linear, which makes them difficult to analyse (and also more powerful).
- The corresponding Ward identities are partial differential equations which are difficult to solve.

Conformal invariance

■ In position space one overcomes the problem by using the fact that special conformal transformations can be obtained by combining inversions with translations and then analyzing the implications of inversions.
■ In momentum space we will see that one can actually directly solve the special conformal Ward identities.

Conformal Ward identities

- These are derived using the conformal transformation properties of conformal operators. For scalar operators:

$$
\left\langle\mathcal{O}_{1}\left(\boldsymbol{x}_{1}\right) \cdots \mathcal{O}_{n}\left(\boldsymbol{x}_{n}\right)\right\rangle=\left|\frac{\partial x^{\prime}}{\partial x}\right|_{x=x_{1}}^{\Delta_{1} / d} \cdots\left|\frac{\partial x^{\prime}}{\partial x}\right|_{x=x_{n}}^{\Delta_{n} / d}\left\langle\mathcal{O}_{1}\left(\boldsymbol{x}_{1}^{\prime}\right) \cdots \mathcal{O}_{n}\left(\boldsymbol{x}_{n}^{\prime}\right)\right\rangle
$$

■ For (infinitesimal) dilatations this yields

$$
0=\left[\sum_{j=1}^{n} \Delta_{j}+\sum_{j=1}^{n} x_{j}^{\alpha} \frac{\partial}{\partial x_{j}^{\alpha}}\right]\left\langle\mathcal{O}_{1}\left(\boldsymbol{x}_{1}\right) \ldots \mathcal{O}_{n}\left(\boldsymbol{x}_{n}\right)\right\rangle .
$$

- In momentum space this becomes

$$
0=\left[\sum_{j=1}^{n} \Delta_{j}-(n-1) d-\sum_{j=1}^{n-1} p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}}\right]\left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \ldots \mathcal{O}_{n}\left(\boldsymbol{p}_{n}\right)\right\rangle,
$$

Special conformal Ward identity

■ For (infinitesimal) special conformal transformations this yields

$$
0=\left[\sum_{j=1}^{n}\left(2 \Delta_{j} x_{j}^{\kappa}+2 x_{j}^{\kappa} x_{j}^{\alpha} \frac{\partial}{\partial x_{j}^{\alpha}}-x_{j}^{2} \frac{\partial}{\partial x_{j \kappa}}\right)\right]\left\langle\mathcal{O}_{1}\left(\boldsymbol{x}_{1}\right) \ldots \mathcal{O}_{n}\left(\boldsymbol{x}_{n}\right)\right\rangle
$$

■ In momentum space this becomes

$$
\begin{aligned}
0 & =\mathcal{K}^{\mu}\left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \ldots \mathcal{O}_{n}\left(\boldsymbol{p}_{n}\right)\right\rangle, \\
\mathcal{K}^{\mu} & =\left[\sum_{j=1}^{n-1}\left(2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}-2 p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j}^{\kappa}}+\left(p_{j}\right)_{\kappa} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j \alpha}}\right)\right]
\end{aligned}
$$

Special conformal Ward identities

$>$ To extract the content of the special conformal Ward identity we expand \mathcal{K}^{μ} is a basis of linear independent vectors, the $(n-1)$ independent momenta,

$$
\mathcal{K}^{\kappa}=p_{1}^{\kappa} \mathcal{K}_{1}+\ldots+p_{n-1}^{\kappa} \mathcal{K}_{n-1}
$$

nint Special conformal Ward identities constitute $(n-1)$ differential equations.

Conformal Ward identities

$>$ Poincaré invariant n-point function in $d \geq n$ spacetime dimensions depends on $n(n-1) / 2$ kinematic variables.
$>$ Thus, after imposing $(n-1)+1$ conformal Ward identities we are left with

$$
\frac{n(n-1)}{2}-n=\frac{n(n-3)}{2}
$$

undetermined degrees of freedom.
$>$ This number equals the number of conformal ratios in n variables in $d \geq n$ dimensions.
Int It is not known however what do the cross ratios become in momentum space.

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators

5 Conclusions

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators

5 Conclusions

Scalar 2-point function

$>$ The dilatation Ward identity reads

$$
0=\left[d-\Delta_{1}-\Delta_{2}+p \frac{\partial}{\partial p}\right]\left\langle O_{1}(\boldsymbol{p}) O_{2}(-\boldsymbol{p})\right\rangle
$$

 $\left(\Delta_{1}+\Delta_{2}-d\right)$:

$$
\left\langle O_{1}(\boldsymbol{p}) O_{2}(-\boldsymbol{p})\right\rangle=c_{12} p^{\Delta_{1}+\Delta_{2}-d}
$$

where c_{12} is an integration constant.

Scalar 2-point function

> The special conformal Ward identity reads

$$
0=\mathcal{K}\left\langle O_{1}(\boldsymbol{p}) O_{2}(-\boldsymbol{p})\right\rangle, \quad \mathcal{K}=\frac{d^{2}}{d p^{2}}-\frac{2 \Delta_{1}-d-1}{p} \frac{d}{d p}
$$

$>$ Inserting the solution of the dilatation Ward identity we find that we need

$$
\Delta_{1}=\Delta_{2}
$$

Scalar 2-point function

The general solution of the conformal Ward identities is:

$$
\left\langle O_{\Delta}(\boldsymbol{p}) O_{\Delta}(-\boldsymbol{p})\right\rangle=c_{12} p^{2 \Delta-d}
$$

$>$ This solution is trivial when

$$
\Delta=\frac{d}{2}+k, \quad k=0,1,2, \ldots
$$

because then correlator is local,

$$
\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle=c p^{2 k} \rightarrow\left\langle O\left(\boldsymbol{x}_{1}\right) O\left(\boldsymbol{x}_{2}\right)\right\rangle \sim \square^{k} \delta\left(x_{1}-x_{2}\right)
$$

$>$ Let ϕ_{0} be the source of O. It has dimension $d-\Delta=d / 2-k$. The term

$$
\phi_{0} \square^{k} \phi_{0}
$$

has dimension d and can act as a local counterterm.

Position space [Petkou, KS (1999)]

■ In position space, it seems that none of these are an issue:

$$
\langle\mathcal{O}(\boldsymbol{x}) \mathcal{O}(0)\rangle=\frac{C}{x^{2 \Delta}}
$$

■ This expression however is valid only at separated points, $x^{2} \neq 0$.
■ Correlation functions should be well-defined distributions and they should have well-defined Fourier transform.
■ Fourier transforming we find:

$$
\int d^{d} \boldsymbol{x} e^{-i \boldsymbol{p} \cdot \boldsymbol{x}} \frac{1}{x^{2 \Delta}}=\frac{\pi^{d / 2} 2^{d-2 \Delta} \Gamma\left(\frac{d-2 \Delta}{2}\right)}{\Gamma(\Delta)} p^{2 \Delta-d}
$$

■ This is well-behaved, except when $\Delta=d / 2+k$, where k is a positive integer.

Strategy

$>$ Regularize the theory.
$>$ Solve the Ward identities in the regulated theory.
> Renormalize by adding appropriate counterterms.
me* The renormalised theory may be anomalous.

Regularization

> We use dimensional regularisation to regulate the theory

$$
d \mapsto d+2 u \epsilon, \quad \Delta_{j} \mapsto \Delta_{j}+(u+v) \epsilon
$$

$>$ In the regulated theory, the solution of the Ward identities is the same as before but the integration constant may depend on the regulator,

$$
\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle_{\mathrm{reg}}=c(\epsilon, u, v) p^{2 \Delta-d+2 v \epsilon} .
$$

Regularization and Renormalization

$$
\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle_{\mathrm{reg}}=c(\epsilon, u, v) p^{2 \Delta-d+2 v \epsilon}
$$

$>$ Now, in local CFTs:

$$
c(\epsilon, u, v)=\frac{c^{(-1)}(u, v)}{\epsilon}+c^{(0)}(u, v)+O(\epsilon)
$$

$>$ This leads to

$$
\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle_{\mathrm{reg}}=p^{2 k}\left[\frac{c^{(-1)}}{\epsilon}+c^{(-1)} v \log p^{2}+c^{(0)}+O(\epsilon)\right]
$$

$>$ We need to renormalise

Renormalization

$>$ Let ϕ_{0} the source that couples to O,

$$
S\left[\phi_{0}\right]=S_{0}+\int d^{d+2 u \epsilon} \boldsymbol{x} \phi_{0} O
$$

$>$ The divergence in the 2-point function can be removed by the addition of the counterterm action

$$
S_{\mathrm{ct}}=a_{\mathrm{ct}}(\epsilon, u, v) \int d^{d+2 u \epsilon} \boldsymbol{x} \phi_{0} \square^{k} \phi_{0} \mu^{2 v \epsilon},
$$

$>$ Removing the cut-off we obtain the renormalised correlator:

$$
\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle_{r e n}=p^{2 k}\left[C \log \frac{p^{2}}{\mu^{2}}+C_{1}\right]
$$

Anomalies

$>$ The counter term breaks scale invariance and as result the theory has a conformal anomaly.
$>$ The 2-point function depends on a scale [Petkou, KS (1999)]

$$
\mathcal{A}_{2}=\mu \frac{\partial}{\partial \mu}\langle O(\boldsymbol{p}) O(-\boldsymbol{p})\rangle=c p^{2 \Delta-d}
$$

$>$ The integrated anomaly is Weyl invariant

$$
A=\int d^{d} \boldsymbol{x} \phi_{0} \square^{k} \phi_{0}
$$

On a curved background, \square^{k} is replaced by the "k-th power of the conformal Laplacian", P^{k}.

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators

5 Conclusions

Scalar 3-point functions

We would now like to understand 3-point functions at the same level:
$>$ What is the general solution of the conformal Ward identities?
$>$ What is the analogue of the condition

$$
\Delta=\frac{d}{2}+k, \quad k=0,1,2, \ldots
$$

$>$ Are there new conformal anomalies associated with 3-point functions and if yes what is their structure?

Conformal Ward identities

$>$ Dilatation Ward identity

$$
0=\left[2 d-\Delta_{t}+\sum_{j=1}^{3} p_{j} \frac{\partial}{\partial p_{j}}\right]\left\langle O_{1}\left(\boldsymbol{p}_{1}\right) O_{2}\left(\boldsymbol{p}_{2}\right) O_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle
$$

$$
\Delta_{t}=\Delta_{1}+\Delta_{2}+\Delta_{3}
$$

${ }^{\text {IIIN+ }}$ The correlation is a homogenous function of degree $\left(2 d-\Delta_{t}\right)$.
$>$ The special conformal Ward identities give rise to two scalar 2nd order PDEs.

Special conformal Ward identities

■ Special conformal WI
$0=\mathrm{K}_{12}\left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{p}_{2}\right) \mathcal{O}_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle=\mathrm{K}_{23}\left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{p}_{2}\right) \mathcal{O}_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle$,
where

$$
\begin{aligned}
\mathrm{K}_{i j} & =\mathrm{K}_{i}-\mathrm{K}_{j} \\
\mathrm{~K}_{j} & =\frac{\partial^{2}}{\partial p_{j}^{2}}+\frac{d+1-2 \Delta_{j}}{p_{j}} \frac{\partial}{\partial p_{j}},(i, j=1,2,3)
\end{aligned}
$$

■ This system of differential equations is precisely that defining Appell's F_{4} generalised hypergeometric function of two variables. [Coriano, Rose, Mottola, Serino][Bzowski, McFadden, KS] (2013).

Scalar 3-point functions

■ There are four linearly independent solutions of these equations.
■ Three of them have unphysical singularities at certain values of the momenta leaving one physically acceptable solution.

- We thus recover the well-known fact that scalar 3-point functions are determined up to a constant.

Scalar 3-pt functions and triple- K integrals

$>$ The physically acceptable solution has the following triple-K integral representation:

$$
\begin{aligned}
& \left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{p}_{2}\right) \mathcal{O}_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle=C_{123} p_{1}^{\Delta_{1}-\frac{d}{2}} p_{2}^{\Delta_{2}-\frac{d}{2}} p_{3}^{\Delta_{3}-\frac{d}{2}} \\
& \quad \int_{0}^{\infty} d x x^{\frac{d}{2}-1} K_{\Delta_{1}-\frac{d}{2}}\left(p_{1} x\right) K_{\Delta_{2}-\frac{d}{2}}\left(p_{2} x\right) K_{\Delta_{3}-\frac{d}{2}}\left(p_{3} x\right),
\end{aligned}
$$

where $K_{\nu}(p)$ is a Bessel function and C_{123} is an constant.
$>$ This is the general solution of the conformal Ward identities.

Triple K-integrals

$>$ Triple- K integrals,

$$
I_{\alpha\left\{\beta_{1} \beta_{2} \beta_{3}\right\}}\left(p_{1}, p_{2}, p_{3}\right)=\int_{0}^{\infty} d x x^{\alpha} \prod_{j=1}^{3} p_{j}^{\beta_{j}} K_{\beta_{j}}\left(p_{j} x\right),
$$

are the building blocks of all 3-point functions.
> The integral converges provided

$$
\alpha>\sum_{j=1}^{3}\left|\beta_{j}\right|-1
$$

$>$ The integral can be defined by analytic continuation when

$$
\alpha+1 \pm \beta_{1} \pm \beta_{2} \pm \beta_{3} \neq-2 k
$$

where k is any non-negative integer.

Renormalization and anomalies

$>$ If the equality holds,

$$
\alpha+1 \pm \beta_{1} \pm \beta_{2} \pm \beta_{3}=-2 k
$$

the integral cannot be defined by analytic continuation.
$>$ Non-trivial subtractions and renormalization may be required and this may result in conformal anomalies.
$>$ Physically when this equality holds, there are new terms of dimension d that one can add to the action (counterterms) and/or new terms that can appear in T_{μ}^{μ} (conformal anomalies).

Scalar 3-pt function

$>$ For the triple- K integral that appears in the 3-pt function of scalar operators the condition becomes

$$
\frac{d}{2} \pm\left(\Delta_{1}-\frac{d}{2}\right) \pm\left(\Delta_{2}-\frac{d}{2}\right) \pm\left(\Delta_{3}-\frac{d}{2}\right)=-2 k
$$

$>$ There are four cases to consider, according to the signs needed to satisfy this equation. We will refer to the 4 cases as the $(---),(--+),(-++)$ and $(+++)$ cases.
$>$ Given Δ_{1}, Δ_{2} and Δ_{3} these relations may be satisfied with more than one choice of signs and k.

Procedure

$>$ To analyse the problem we will proceed by using dimensional regularisation

$$
d \mapsto d+2 u \epsilon, \quad \Delta_{j} \mapsto \Delta_{j}+(u+v) \epsilon
$$

$>$ In the regulated theory the solution of the conformal Ward identity is given in terms of the triple-K integral but now the integration constant C_{123} in general will depend on the regulator ϵ, u, v.
$>$ We need to understand the singularity structure of the triple-K integrals and then renormalise the correlators.
$>$ We will discuss each case in turn.

The (- - -) case

$$
\Delta_{1}+\Delta_{2}+\Delta_{3}=2 d+2 k
$$

$>$ This the analogue of the $\Delta=d / 2+k$ case in 2-point functions.
> There are possible counterterms

$$
S_{\mathrm{ct}}=a_{\mathrm{ct}}(\epsilon, u, v) \int d^{d} \boldsymbol{x} \square^{k_{1}} \phi_{1} \square^{k_{2}} \phi_{2} \square^{k_{3}} \phi_{3}
$$

where $k_{1}+k_{2}+k_{3}=k$. The same terms may appear in T_{μ}^{μ} as new conformal anomalies.
$>$ After adding the contribution of the countertrems one may remove the regulator to obtain the renormalised correlator.

Example: $\Delta_{1}=\Delta_{2}=\Delta_{3}=2, d=3$

$>$ The source ϕ for an operator of dimension 2 has dimension 1, so ϕ^{3} has dimension 3.
$>$ Regularizing:

$$
\begin{gathered}
\left\langle\mathcal{O}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=C_{123}\left(\frac{\pi}{2}\right)^{3 / 2} \int_{0}^{\infty} d x x^{-1+\epsilon} e^{-x\left(p_{1}+p_{2}+p_{3}\right)} \\
=C_{123}\left(\frac{\pi}{2}\right)^{3 / 2}\left[\frac{1}{\epsilon}-\left(\gamma_{E}+\log \left(p_{1}+p_{2}+p_{3}\right)\right)+O(\epsilon)\right]
\end{gathered}
$$

Renormalization and anomalies

$>$ We add the counterterm

$$
S_{c t}=-\frac{C_{123}}{3!\epsilon}\left(\frac{\pi}{2}\right)^{3 / 2} \int d^{3+2 \epsilon} \boldsymbol{x} \phi^{3} \mu^{-\epsilon}
$$

$>$ This leads to the renormalized correlator,

$$
\left\langle\mathcal{O}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=-C_{123}\left(\frac{\pi}{2}\right)^{3 / 2} \log \frac{p_{1}+p_{2}+p_{3}}{\mu}
$$

$>$ The renormalized correlator is not scale invariant

$$
\mu \frac{\partial}{\partial \mu}\left\langle\mathcal{O}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=C_{123}\left(\frac{\pi}{2}\right)^{3 / 2}
$$

Int There is a new conformal anomaly:

$$
\langle T\rangle=-\phi\langle\mathcal{O}\rangle+\frac{1}{3!} C_{123}\left(\frac{\pi}{2}\right)^{3 / 2} \phi^{3} .
$$

The (--+) case

$$
\Delta_{1}+\Delta_{2}-\Delta_{3}=d+2 k
$$

$>$ In this case the new local term one can add to the action is

$$
S_{\mathrm{ct}}=a_{\mathrm{ct}} \int d^{d} x \square^{k_{1}} \phi_{1} \square^{k_{2}} \phi_{2} O_{3}
$$

where $k_{1}+k_{2}=k$.
$>$ In this case we have renormalization of sources,

$$
\phi_{3} \rightarrow \phi_{3}+a_{\mathrm{ct}} \square^{k_{1}} \phi_{1} \square^{k_{2}} \phi_{2}
$$

$>$ The renormalised correlator will satisfy a Callan-Symanzik equation with beta function terms.

Callan-Symanzik equation

$>$ The quantum effective action \mathcal{W} (the generating functional of renormalised connected correlators) obeys the equation

$$
\left(\mu \frac{\partial}{\partial \mu}+\sum_{i} \int d^{d} \vec{x} \beta_{i} \frac{\delta}{\delta \phi_{i}(\vec{x})}\right) \mathcal{W}=\int d^{d} \vec{x} \mathcal{A},
$$

$>$ This implies that for 3-point functions we have

$$
\begin{aligned}
& \mu \frac{\partial}{\partial \mu}\left\langle O_{i}\left(p_{1}\right) O_{j}\left(p_{2}\right) O_{j}\left(p_{3}\right)\right\rangle= \\
& \beta_{j, j i}\left(\left\langle O_{j}\left(p_{2}\right) O_{j}\left(-p_{2}\right)\right\rangle+\left\langle O_{j}\left(p_{3}\right) O_{j}\left(-p_{3}\right)\right\rangle\right)+\mathcal{A}_{i j j}^{(3)}, \\
& \beta_{i, j k}=\left.\frac{\delta^{2} \beta_{i}}{\delta \phi_{j} \delta \phi_{k}}\right|_{\left\{\phi_{l}\right\}=0}, \quad \mathcal{A}_{i j k}^{(3)}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right)=-\frac{\delta^{3}}{\delta \phi_{i}\left(\vec{x}_{1}\right) \delta \phi_{j}\left(\vec{x}_{2}\right) \delta \phi_{k}\left(\vec{x}_{3}\right)} \int d^{d} \vec{x} \mathcal{A}\left(\left\{\phi_{l}(\vec{x})\right\}\right)
\end{aligned}
$$

Example: $\Delta_{1}=4, \Delta_{2}=\Delta_{3}=3$ in $d=4$

$>\Delta_{1}+\Delta_{2}+\Delta_{3}=10=2 d+2 k$, which satisfies the (---)-condition with $k=1$.
Intr There is an anomaly

$$
\int d^{d} x \phi_{0} \phi_{1} \square \phi_{1}
$$

$>\Delta_{1}+\Delta_{2}-\Delta_{3}=4=d+2 k$, which satisfies the $(--+)$ condition with $k=0$. The following counterterm is needed,

$$
\int d^{4} x \phi_{0} \phi_{1} O_{3}
$$

|um There is a beta function for ϕ_{1}.

$\left\langle\mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{3}\right\rangle$

$$
\begin{aligned}
& \left\langle O_{4}\left(\boldsymbol{p}_{1}\right) O_{3}\left(\boldsymbol{p}_{2}\right) O_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle=\alpha\left(2-p_{1} \frac{\partial}{\partial p_{1}}\right) I^{\text {(non-local) }} \\
& +\frac{\alpha}{8}\left[\left(p_{2}^{2}-p_{3}^{2}\right) \log \frac{p_{1}^{2}}{\mu^{2}}\left(\log \frac{p_{3}^{2}}{\mu^{2}}-\log \frac{p_{2}^{2}}{\mu^{2}}\right)\right. \\
& -\left(p_{2}^{2}+p_{3}^{2}\right) \log \frac{p_{2}^{2}}{\mu^{2}} \log \frac{p_{3}^{2}}{\mu^{2}} \\
& \left.\left(p_{1}^{2}-p_{2}^{2}\right) \log \frac{p_{3}^{2}}{\mu^{2}}+\left(p_{1}^{2}-p_{3}^{2}\right) \log \frac{p_{2}^{2}}{\mu^{2}}+p_{1}^{2}\right]
\end{aligned}
$$

$\left\langle\mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{3}\right\rangle$

$$
\begin{aligned}
& I^{(\text {non-local })}=-\frac{1}{8} \sqrt{-J^{2}}\left[\frac{\pi^{2}}{6}-2 \log \frac{p_{1}}{p_{3}} \log \frac{p_{2}}{p_{3}}\right. \\
& \quad+\log \left(-X \frac{p_{2}}{p_{3}}\right) \log \left(-Y \frac{p_{1}}{p_{3}}\right) \\
& \left.\quad-L i_{2}\left(-X \frac{p_{2}}{p_{3}}\right)-L i_{2}\left(-Y \frac{p_{1}}{p_{3}}\right)\right], \\
& J^{2}=\left(p_{1}+p_{2}-p_{3}\right)\left(p_{1}-p_{2}+p_{3}\right)\left(-p_{1}+p_{2}+p_{3}\right)\left(p_{1}+p_{2}+p_{3}\right), \\
& X=\frac{p_{1}^{2}-p_{2}^{2}-p_{3}^{2}+\sqrt{-J^{2}}}{2 p_{2} p_{3}}, \quad Y=\frac{p_{2}^{2}-p_{1}^{2}-p_{3}^{2}+\sqrt{-J^{2}}}{2 p_{1} p_{3}} .
\end{aligned}
$$

Callan-Symanzik equation

$>$ It satisfies

$$
\begin{aligned}
& \mu \frac{\partial}{\partial \mu}\left\langle O_{4}\left(\boldsymbol{p}_{1}\right) O_{3}\left(\boldsymbol{p}_{2}\right) O_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle= \\
& \frac{\alpha}{2}\left(p_{2}^{2} \log \frac{p_{2}^{2}}{\mu^{2}}+p_{3}^{2} \log \frac{p_{3}^{2}}{\mu^{2}}-p_{1}^{2}+\frac{1}{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)
\end{aligned}
$$

$>$ This is indeed the correct Callan-Symanzik equation.
(Recall that $\left\langle O_{3}(\boldsymbol{p}) O_{3}(\boldsymbol{p})\right\rangle=p^{2} \log \frac{p^{2}}{\mu^{2}}$)

The $(+++)$ and $(-++)$ cases

$>$ In these cases it is the representation of the correlator in terms of the triple- K integral that is singular, not the correlator itself,

$$
\begin{aligned}
\left\langle\mathcal{O}_{1}\left(\boldsymbol{p}_{1}\right) \mathcal{O}_{2}\left(\boldsymbol{p}_{2}\right) \mathcal{O}_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle= & C_{123} p_{1}^{\Delta_{1}-\frac{d}{2}} p_{2}^{\Delta_{2}-\frac{d}{2}} p_{3}^{\Delta_{3}-\frac{d}{2}} \\
& \times I_{d / 2-1,\left\{\Delta_{1}-d / 2, \Delta_{3}-d / 2, \Delta_{3}-d / 2\right\}}
\end{aligned}
$$

Taking the integration constant $C_{123} \sim \epsilon^{m}$ for appropriate m and sending $\epsilon \rightarrow 0$ results in an expression that satisfies the original (non-anomalous) Ward identity.
$>$ In other words, the Ward identities admit a solution that is finite.

The $(+++)$ case

$$
\Delta_{1}+\Delta_{2}+\Delta_{3}=d-2 k
$$

$>$ For example, for $k=0$ the finite solution to the Ward identities is

$$
\left\langle O_{1}\left(\boldsymbol{p}_{1}\right) O_{2}\left(\boldsymbol{p}_{2}\right) O_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle=c p_{1}^{\left(\Delta_{1}-\Delta_{2}-\Delta_{3}\right)} p_{2}^{\left(\Delta_{2}-\Delta_{1}-\Delta_{3}\right)} p_{3}^{\left(\Delta_{3}-\Delta_{1}-\Delta_{2}\right)}
$$

$>$ When the operators have these dimensions there are "multi-trace" operators which are classically marginal

$$
\mathcal{O}=\square^{k_{1}} O_{1} \square^{k_{2}} O_{2} \square^{k_{3}} O_{3}
$$

where $k_{1}+k_{2}+k_{3}=k$.

The $(-++)$ case

$$
\Delta_{1}-\Delta_{2}-\Delta_{3}=2 k
$$

$>$ For $k=0$, there are "extremal correlators" . In position, the 3 -point function is a product of 2-point functions

$$
\left\langle O_{1}\left(\boldsymbol{x}_{1}\right) O_{2}\left(\boldsymbol{x}_{2}\right) O_{3}\left(\boldsymbol{x}_{3}\right)\right\rangle=\frac{c_{123}}{\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right|^{2 \Delta_{2}}\left|\boldsymbol{x}_{3}-\boldsymbol{x}_{1}\right|^{2 \Delta_{3}}}
$$

$>$ In momentum space, the finite solution to the Ward identities is

$$
\left\langle O_{1}\left(\boldsymbol{p}_{1}\right) O_{2}\left(\boldsymbol{p}_{2}\right) O_{3}\left(\boldsymbol{p}_{3}\right)\right\rangle=c p_{2}^{\left(2 \Delta_{2}-d\right)} p_{3}^{\left(2 \Delta_{3}-d\right)}
$$

$>$ When the operators have these dimensions there are "multi-trace" operators of dimension Δ_{1}

$$
\mathcal{O}=\square^{k_{2}} O_{2} \square^{k_{3}} O_{3}
$$

where $k_{2}+k_{3}=k$.

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators

5 Conclusions

Tensorial correlators

$>$ New issues arise for tensorial correlation functions, such as those involving stress-energy tensors and conserved currents.
$>$ Lorentz invariance implies that the tensor structure will be carried by tensors constructed from the momenta p^{μ} and the metric $\delta_{\mu \nu}$.
$>$ After an appropriate parametrisation, the analysis becomes very similar to the one we discussed here.
$>$ In particular, these correlator are also given in terms of triple- K integrals.

Diffeomorphism and Weyl Ward identities

$>$ The fact that classically a current and the stress-energy tensor are conserved implies that n-point functions involving insertions of $\partial_{\alpha} J^{\alpha}$ or $\partial_{\alpha} T^{\alpha \beta}$ can be expressed in terms of lower-point functions without such insertions.
$>$ The same holds for correlation functions with insertions of the trace of the stress-energy tensor.
$>$ The first step in our analysis is to implement these Ward identities. We do this by providing reconstruction formulae that yield the full 3-point functions involving stress-energy tensors/currents/scalar operators starting from expressions that are exactly conserved/traceless.

Example: $\left\langle T^{\mu \nu} \mathcal{O O}\right\rangle$

$>$ Ward identities

$$
\begin{aligned}
& p_{1}^{\nu}\left\langle T_{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=p_{3 \mu}\left\langle\mathcal{O}\left(\boldsymbol{p}_{3}\right) \mathcal{O}\left(-p_{3}\right)\right\rangle+\left(\boldsymbol{p}_{2} \leftrightarrow p_{3}\right) \\
& \left\langle T_{\mu}^{\mu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=-\Delta\left\langle\mathcal{O}\left(\boldsymbol{p}_{3}\right) \mathcal{O}\left(-\boldsymbol{p}_{3}\right)\right\rangle+\left(\boldsymbol{p}_{2} \leftrightarrow \boldsymbol{p}_{3}\right)
\end{aligned}
$$

$>$ Reconstruction formula

$$
\begin{aligned}
& \left\langle T^{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=\left\langle t^{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle \\
& \quad+\left[p_{2}^{\alpha} \mathscr{T}_{\alpha}^{\mu \nu}\left(\boldsymbol{p}_{1}\right)-\frac{\Delta}{d-1} \pi^{\mu \nu}\left(\boldsymbol{p}_{1}\right)\right]\left\langle\mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(-\boldsymbol{p}_{2}\right)\right\rangle+\left(\boldsymbol{p}_{2} \leftrightarrow \boldsymbol{p}_{3}\right),
\end{aligned}
$$

where $\left\langle t^{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle$ is transverse-traceless and

$$
\pi^{\mu \nu}(\boldsymbol{p})=\delta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}, \quad \mathscr{T}_{\alpha}^{\mu \nu}(\boldsymbol{p})=\frac{1}{p^{2}}\left[2 p^{(\mu} \delta_{\alpha}^{\nu)}-\frac{p_{\alpha}}{d-1}\left(\delta^{\mu \nu}+(d-2) \frac{p^{\mu} p^{\nu}}{p^{2}}\right)\right]
$$

Tensorial decomposition

> It remains to determine the transverse-traceless part of the correlator which is undetermined by the Weyl and diffeomorphism Ward identities.
$>$ We now use Lorentz invariance to express the transverse-traceless correlator in terms of scalar form factors.

Example: $\left\langle T^{\mu \nu} \mathcal{O} \mathcal{O}\right\rangle$

$>$ The tensorial decomposition of $\left\langle t^{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle$ involves one form factor:

$$
\left\langle t^{\mu \nu}\left(\boldsymbol{p}_{1}\right) \mathcal{O}\left(\boldsymbol{p}_{2}\right) \mathcal{O}\left(\boldsymbol{p}_{3}\right)\right\rangle=\Pi_{\alpha \beta}^{\mu \nu}\left(\boldsymbol{p}_{1}\right) A_{1}\left(p_{1}, p_{2}, p_{3}\right) p_{2}^{\alpha} p_{2}^{\beta}
$$

where $\Pi_{\alpha \beta}^{\mu \nu}\left(\boldsymbol{p}_{1}\right)$ is a projection operator into transverse traceless tensors.
num An inefficient parametrization can lead to proliferation of form factors. The state-of-the-art decomposition of $\left\langle T_{\mu_{1} \nu_{1}} T_{\mu_{2} \nu_{2}} T_{\mu_{3} \nu_{3}}\right\rangle$ [Cappelli et al (2001)] prior to this work involved 13 form factors, while the method described here requires only 5 .

Dilatation and special conformal Ward identities

It remains to impose the dilatation and special conformal Ward identities.
$>$ The dilatation Ward identity imply that the form factors are homogeneous functions of the momenta of specific degree.
$>$ The special conformal Ward identities (CWI) imply that that the form factors satisfy certain differential equations.
Int These split into two categories:
1 The primary CWIs. Solving these determines the form factors up to constants (primary constants).
2 The secondary CWIs. These impose relation among the primary constants.

Example: $\left\langle T^{\mu \nu} \mathcal{O O}\right\rangle$ - primary CWI

$>$ The primary CWI is

$$
\mathrm{K}_{i j} A_{1}=0, \quad i, j=1,2,3
$$

(men This is precisely the same equation we saw earlier in the analysis of $\langle\mathcal{O O O}\rangle$.
Int The general solution in given in terms of a triple- K integral

$$
A_{1}=\alpha_{1} I_{d / 2+1\{\Delta-d / 2, \Delta-d / 2, \Delta-d / 2\}}
$$

where α_{1} is constant (primary constant).

Example: $\left\langle T^{\mu \nu} \mathcal{O O}\right\rangle$ - secondary CWI

$>$ The secondary CWI is

$$
\left(c_{1}(p) \frac{\partial}{\partial p_{1}}+c_{2}(p) \frac{\partial}{\partial p_{2}}+c_{3}(p)\right) A_{1} \sim\langle\mathcal{O O}\rangle
$$

where $c_{1}(p), c_{2}(p), c_{3}(p)$ are specific polynomials of the momenta.
${ }^{1} \mathrm{~m}=$ This equation then determines the primary constant α_{1} in terms of the normalization of the 2-point function of \mathcal{O}.
${ }^{\text {Im}}\left\langle\left\langle T^{\mu \nu} \mathcal{O O}\right\rangle\right.$ is completely determined, including constants, by conformal invariance.

The general case

$>$ If we have n form factors then the structure of the primary CWI is

$$
\begin{array}{ll}
\mathrm{K}_{12} A_{1}=0, & \mathrm{~K}_{13} A_{1}=0, \\
\mathrm{~K}_{12} A_{2}=c_{21} A_{1}, & \mathrm{~K}_{13} A_{2}=d_{21} A_{1}, \\
\mathrm{~K}_{12} A_{3}=c_{31} A_{1}+c_{32} A_{2}, & \mathrm{~K}_{13} A_{3}=d_{31} A_{1}+d_{32} A_{2}, \\
\ldots & \ldots \\
\mathrm{~K}_{12} A_{n}=\sum_{j=1}^{n-1} c_{n j} A_{j} & \mathrm{~K}_{13} A_{n}=\sum_{j=1}^{n-1} d_{n j} A_{j}
\end{array}
$$

where $c_{i j}, d_{i j}$ are lower triangular matrices with constant matrix elements.
$>$ These equations can be solved in terms of triple- K integrals.
|nw The solution depends on n primary constants, one for each form factor.

Example: $\left\langle T_{\mu_{1} \nu_{1}} T_{\mu_{2} \nu_{2}} T_{\mu_{3} \nu_{3}}\right\rangle$

$>\ln d>3$ there are 5 form factors and thus 5 primary constants.
$>$ The secondary CWI impose additional constraints and we are left with the normalization c_{T} of the 2-point function of $T_{\mu \nu}$ and two additional constants.
$>\ln d=4$ the normalization of the 2-point function and one constant can be traded for the conformal anomaly coefficients, c and a.
"net Thus, in $d=4$ the conformal anomaly determines $\left\langle T_{\mu_{1} \nu_{1}} T_{\mu_{2} \nu_{2}} T_{\mu_{3} \nu_{3}}\right\rangle$ up to one constant.

Example: $\left\langle T_{\mu_{1} \nu_{1}} T_{\mu_{2} \nu_{2}} T_{\mu_{3} \nu_{3}}\right\rangle$ in $d=3$

$>\ln d=3$ there are only 2 form factors and thus 2 primary constants.
$>$ The secondary Ward identities relates one of them with the normalization of the 2-point function.

Remarks

$>$ In the same manner one can obtain all three-point functions involving the stress-energy tensor $T_{\mu \nu}$, conserved currents J_{μ}^{a} and scalar operators.
Iner In odd dimensions the triple- K integrals reduce to elementary integrals and can be computed by elementary means.
In In even dimensions the evaluation of the triple- K integrals is non-trivial.
$>$ In special cases, which include all 3-point functions of $T_{\mu \nu}$ and J_{μ}^{a} in even dimensions, non-trivial renormalization is needed.

Higher-point functions?

$>$ The complexity of the analysis increases because the number of possible tensor structure and thus form factors increases.
$>$ The form factors now depend also on the number of independent scalar products

$$
p_{i j}=\boldsymbol{p}_{i} \cdot \boldsymbol{p}_{j}, \quad i, j=1,2, \ldots, n, \quad i<j
$$

nill The number of independent such scalar products is $n(n-3) / 2$.
nn This is equal to the number of independent cross-ratios.

Outline

1 Introduction

2 Scalar 2-point functions

3 Scalar 3-point functions

4 Tensorial correlators

5 Conclusions

Conclusions/Outlook

$>$ We obtained the implications of conformal invariance for three-point functions working in momentum space.
$>$ We discussed renormalization and anomalies.
$>$ The presence of "beta function" terms in the Callan Symanzik equation for CFT correlators is new.
$>$ It would be interesting to understand how to extend the analysis to higher point functions. What is the momentum space analogue of cross-ratios?
$>$ Bootstrap in momentum space?

