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Black holes with a single Killing vector field

Seven Pillars of Black Hole Wisdom (sorry T. E. Lawrence):

1 Black holes have two Killing isometries: rigidity theorems.

2 Black holes have no hair: described by conserved charges.

3 The laws of black hole mechanics/thermodynamics:

a) 0th law: constant temperature - rigidity theorems.

b) 1st law: dE = TdS + ΩidJ
i.

c) 2nd law: ∆AH > 0 ⇔ ∆S > 0.

4 An in-falling observer crosses the horizon without drama.

5 Asymptotically flat black holes are stable.

6 Cosmic Censorship protect us from naked singularities.

7 If a gravitational system is linearly stable, it ought to be
nonlinearly stable.
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Black holes with a single Killing vector field

Outline

1 Motivation

2 Seemingly different instabilities in AdS

3 Geons as special solutions

4 One black hole to interpolate them all and in the darkness bind them

5 Outlook
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Black holes with a single Killing vector field

Motivation

Motivation

1 Spoiler alert:

a Construct novel black holes solutions in AdS4.
b Evade Hawking’s rigidity theorem - Hollands and Ishibashi

12’ - only have one KVF.

2 The AdS/CFT correspondence maps asymptotically AdS
solutions of the Einstein equation to states of a dual
conformal field theory.

Since these new solutions contain gravity only, they lie
in the universal sector of the correspondence:

In a longer talk, I would argue that all known SUSY black
holes in AdS5 are nonlinearly unstable.
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Superradiance
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Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance - 1/2

Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

The wave analog is coined Superradiance : |R| > |I|.
In AdS, or inside a closed Dirichlet-Wall, the waves bounce
back and the process repeats itself ad eternum.

Superradiance instability
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Superradiance - 1/2

Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles - Penrose Process -
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Seemingly different instabilities in AdS

Superradiance instability - 1/3

Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

The wave analog is coined Superradiance : |R| > |I|.
In AdS, or inside a closed Dirichlet-Wall, the waves bounce
back and the process repeats itself ad eternum.
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Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a)

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.

6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a).

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.

6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a)⇔ (R+,ΩH).

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.

6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a)⇔ (R+,ΩH):

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.

6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a)⇔ (R+,ΩH):

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.

6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 2/3:

The Kerr-AdS4 black hole (aka Carter solution - ’68):

ds2 = − ∆r

r2 + x2
[
dt− (1− x2)dφ

]2
+

∆x

r2 + x2
[
dt− (1 + r2)dφ

]2
+ a2(r2 + x2)

(
dr2

∆r
+

dx2

∆x

)
,

where

∆r = (1 + r2)

(
1 +

a2

L2
r2
)
− 2M

a
r , ∆x = (1− x2)

(
1− a2

L2
x2
)
.

2 parameters: (M,a)⇔ (R+,ΩH):

TH ≥ 0⇒ |ΩH L| ≤
√

L4+4L2R2
++3R4

+

2L2R2
++3R4

+
−→

R+→+∞
1.

∂t and ∂φ are commuting Killing fields; decompose
perturbations in Fourier modes: e−iωt+imφ.

Unstable if quasi-normal modes with Im(ω) > 0 exist.
6 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Superradiance Instability - 3/3:
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Phase Diagram for Kerr-AdS black holes
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Superradiance Instability - 3/3:
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Kerr-AdS with |ΩHL| ≤ 1:
likely to be stable - Hawking and Reall ’00.
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Seemingly different instabilities in AdS

Superradiance Instability - 3/3:
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Perturbations with m 6= 0 are unstable if Re(ω) ≤ mΩH :
onset saturates inequality - Cardoso et al. ’14.
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In the microcanonical ensemble:
natural variables are (J,E).
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Higher m modes appear closer to ΩHL = 1 :
ΩHL = 1 is reached m→ +∞ - Kunduri et. al. ’06.
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Seemingly different instabilities in AdS

The nonlinear stability of AdS

7 / 20



Black holes with a single Killing vector field

Seemingly different instabilities in AdS

The stability problem for spacetimes in general relativity

The question

Consider a spacetime (M, g), together with prescribed boundary
conditions B if timelike boundary exists.

Take small perturbations (in a suitable
sense) on a Cauchy surface S.

Does the solution spacetime (M, g′) that
arises still has the same asymptotic causal
structure as (M, g)?

If so, can we bound the “difference”
between the asymptotic form of g and g′ in
terms of initial data defined on S?

S

BB

???
??????

In particular, if a geodesically complete spacetime is perturbed, does
it remain “complete”?
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Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Minkowski, dS and AdS spacetimes

At the linear level, Anti de-Sitter spacetime appears just as stable as
the Minkowski or de-Sitter spacetimes.

For the Minkowski and de-Sitter spacetimes, it has been shown that
small, but finite, perturbations remain small - D. Christodoulou and
S. Klainerman ‘93 and Friedrich ‘86.

Why has this not been shown for Anti de-Sitter?

It is just not true!

Claim:

Some generic small (but finite) perturbations of AdS become
large and eventually form black holes.

The energy cascades from low to high frequency modes in a manner
reminiscent of the onset of turbulence.
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Black holes with a single Killing vector field

Seemingly different instabilities in AdS

Heuristics

AdS acts like a confining finite box. Any generic finite excitation
which is added to this box might be expected to explore all
configurations consistent with the conserved charges of AdS -
including small black holes.

Special (fine tuned) solutions need not lead to the formation of
black holes.

Some linearized gravitational modes will have corresponding
nonlinear solutions - Geons - Dias, Horowitz and JES.

These solutions are special since they are exactly periodic in
time and invariant under a single continuous symmetry.

Geons are analogous to nonlinear gravitational plane waves.

This Heuristic argument has been observed numerically for certain
types of initial data, but fails for other types.
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Black holes with a single Killing vector field

Seemingly different instabilities in AdS

What has been observed:

Spherical scalar field collapse in AdS - Bizon and Rostworowski.

No matter how small the initial energy, the curvature at the
origin grows and eventually forms a black hole.2

Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

(
−4 tan2x

π2σ2

)
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-
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FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =

∞∑

j=0

φ2j+1ε
2j+1, A = 1 −

∞∑

j=1

A2jε
2j , δ =

∞∑

j=1

δ2jε
2j ,

(10)

Black holes form: ∆t ∝ ε−2, matches näıve KAM intuition
and 3rd order calculation - Dias, Horowitz and JES.

Certain types of initial data do not do this: do not seem to
form black holes at late times! - Balasubramanian et. al.

Understand why special fine tuned solutions - Geons - exist.
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cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

(
−4 tan2x

π2σ2

)
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-
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FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =

∞∑

j=0

φ2j+1ε
2j+1, A = 1 −

∞∑

j=1

A2jε
2j , δ =

∞∑

j=1

δ2jε
2j ,

(10)

Black holes form: ∆t ∝ ε−2, matches näıve KAM intuition
and 3rd order calculation - Dias, Horowitz and JES.

Certain types of initial data do not do this: do not seem to
form black holes at late times! - Balasubramanian et. al.

Understand why special fine tuned solutions - Geons - exist.
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Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

(
−4 tan2x

π2σ2

)
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 20  25  30  35  40  45

x H

ε

FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =

∞∑

j=0

φ2j+1ε
2j+1, A = 1 −

∞∑

j=1

A2jε
2j , δ =

∞∑

j=1

δ2jε
2j ,

(10)

Black holes form: ∆t ∝ ε−2, matches näıve KAM intuition
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Black holes with a single Killing vector field

Geons as special solutions

Geons - Horowitz and JES ’14

Geons are time-periodic regular horizonless solutions of the Einstein
equation, which do not seem to thermalize.

The boundary stress-tensor contains regions of negative and positive
energy density around the equator:

It is invariant under

K =
∂

∂t
+
ω

m

∂

∂φ
,

which is timelike near the poles but
spacelike near the equator.

It satisfies the first law mdE = ω dJ .

Unclear if they can have the same energy, i.e. coexist, with large
AdS black holes!
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Black holes with a single Killing vector field

One black hole to interpolate them all and in the darkness bind them

Surfing the Geon:

Since Geons rotate rigidly, one can ask whether small black
holes can surf the Geon!

This is possible if the black hole rotates rigidly with angular
velocity ΩH = ω/m, ensuring zero flux across the horizon.

If such solutions exist, we have a black hole with a single
Killing vector field - black resonator - conjectured by Reall

’03!

Evades rigidity theorem because the only Killing field
is the horizon generator!

We have constructed these solutions: ten coupled 3D
nonlinear partial differential equations of Elliptic type.
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Black holes with a single Killing vector field

One black hole to interpolate them all and in the darkness bind them

Black resonators 1/3:

One helical Killing field: ∂T = ∂t + ΩH∂φ.

Their line element can be adapted to ∂T :

2D moduli space:

T ≡ 1 + 3y2
+

4πy+
and ε ≡

∫ π

0

dφχ4(0, 1, φ) sin(mφ) .

Bifurcating Killing sphere - Killing horizon generated by ∂T .
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Black resonators extend from the onset of superradiance
instability to the Geons (‘onset of turbulent instability’).

Black resonators exist in regions where the Kerr-AdS solution
is beyond extremality.
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Black resonators 3/3:
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When black resonators coexist with Kerr-AdS solutions, they
have higher entropy - 2nd order phase transition.

Their horizon is deformed along the φ direction along which
they rotate - embedding in 3D spacetime - δZ ≡ Z − Z̄.
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Possible Endpoint of the Superradiance Instability - 1/3 ?

If the dynamics was restricted to specific values of m, say
m = 2, then this would be likely. . .

However, recall that m = 2 becomes stable in a region where
Kerr-AdS is unstable to perturbations with m > 2!

In addition, the cloud of gravitons - hair - never backreacts
very strongly on the geometry - central black hole really
looks like Kerr-AdS.

Finally, higher m black resonators seem to have increasing
entropy with increasing m.

From Green et al., it is clear that these solutions are all
unstable given that K is spacelike in certain regions!

Conjecture: there is no endpoint -
Dias, Horowitz and JES ’11
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One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 2/3 ?

Surprisingly, SUSY can help us ruling out other candidate
endpoints.

Possible endpoint is a black resonator with ΩHL = 1, so that
the arguments of Green et al. do not apply.

If the central black hole is small, the system has two
components:

Black resonator ≈ Kerr-AdS + Geon.

Search first for a Geon with ΩHL = 1.

From the first law this means dE = dJ/L.

Search for purely gravitational solutions with E = J/L!
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Possible Endpoint of the Superradiance Instability - 3/3 ?

Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

E − |J |/L = 2
∫

Σ
(∇̂µε)†(∇µε)dΣ0 ≥ 0

Since Σ is arbitrary, we can only have E = J/L if and only if
∇aε = 0, i.e. if the solution admits nontrivial Killing spinors
- if the solution is SUSY.

We have investigated whether purely gravitational SUSY
solutions exist:

Short answer:

No!
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Black holes with a single Killing vector field

Outlook

Conclusions:

We have constructed black holes with a single Killing field.

They interpolate between superradiance onset and geons.

New phase dominates microcanonical ensemble.

What to ask me after the talk:

Infinite non-uniqueness for Kerr-AdS?

How large is it?

What is the story in the canonical and grand-canonical
ensembles?

Outlook:

What is the field theory interpretation of this phenomenon?

Can we make a connection with glassy physics?

. . .
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Thank You!
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