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Black holes have no hair: described by conserved charges.
The laws of black hole mechanics/thermodynamics:

a) O Jaw: constant temperature - rigidity theorems.
b) 1% law: dE = T'dS + Q;dJ*.
c) 28 Jlaw: AAy >0 < AS > 0.

B

An in-falling observer crosses the horizon without drama.

]

Asymptotically flat black holes are stable.

Cosmic Censorship protect us from naked singularities.

If a gravitational system is linearly stable, it ought to be
nonlinearly stable.

]
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a Construct novel black holes solutions in AdS,.
b Evade Hawking's rigidity theorem - Hollands and Ishibashi
12" - only have one KVF.

The AdS/CFT correspondence maps asymptotically AdS
solutions of the Einstein equation to states of a dual
conformal field theory.

o Since these new solutions contain gravity only, they lie
in the universal sector of the correspondence:

3

Rab - 7ﬁgab .

In a longer talk, | would argue that all known SUSY black
holes in AdS5 are nonlinearly unstable.

- / 4/20




Black holes with a single Killing vector field

L—Seemingly different instabilities in AdS

Superradiance



Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance - 1/2

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

\ J 5/20




Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance - 1/2

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

\. J 5/20




Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance - 1/2

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles - Penrose Process -
FEs > E;.

\. J 5/20




Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance - 1/2

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

@ The wave analog is coined Superradiance : |R| > |I].

\. J 5/20




Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance instability - 1/3

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

@ The wave analog is coined Superradiance : |R| > |I].

@ In AdS, or inside a closed Dirichlet-Wall, the waves bounce
back and the process repeats itself ad eternum.

\. J 5/20




Black holes with a single Killing vector field

L Seemingly different instabilities in AdS

Superradiance instability - 1/3

@ Rotating black holes can have ergoregions, which can act as
negative energy reservoirs for particles.

@ The wave analog is coined Superradiance : |R| > |I].

@ In AdS, or inside a closed Dirichlet-Wall, the waves bounce
back and the process repeats itself ad eternum.

‘ Superradiance instability I
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Superradiance Instability - 2/3:

@ The Kerr-AdS, black hole (aka Carter solution - '68):

2 A’!‘ 2 2 Az 2 2
ds T2 g2 [dt — (1 — 2%)dg)] +r2—|—x2 [dt — (1 +r7)dg]
2 2
i (142).
where
A, = (1472 l—l—ﬁw2 —yr A, =(1—2z%) l—a—Qav2
T L2 a ) xTr L2
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L4+4+4L2R2 43R4
o Ty >0= QO L| <,/ —m=rtaprt — 1.
= | | < 2L2R3 +3R% Ry —too

@ 0; and 0, are commuting Killing fields; decompose
perturbations in Fourier modes:; e~ #witime,

@ Unstable if quasi-normal modes with Im(w) > 0 exist.
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Perturbations with m # 0 are unstable if Re(w) < mQy:
onset saturates inequality - Cardoso et al. '14.
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In the microcanonical ensemble:
natural variables are (J, E).
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Higher m modes appear closer to QyL =1 :
QL =1 is reached m — +00 - Kunduri et. al. '06.
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The stability problem for spacetimes in general relativity

Consider a spacetime (M, g), together with prescribed boundary
conditions B if timelike boundary exists.

@ Take small perturbations (in a suitable
sense) on a Cauchy surface S.

@ Does the solution spacetime (M, ¢) that
arises still has the same asymptotic causal
structure as (M, g)?

@ If so, can we bound the “difference”

between the asymptotic form of g and ¢’ in
terms of initial data defined on S?

In particular, if a geodesically complete spacetime is perturbed, does
it remain “complete”?
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Minkowski, dS and AdS spacetimes

@ At the linear level, Anti de-Sitter spacetime appears just as stable as
the Minkowski or de-Sitter spacetimes.

@ For the Minkowski and de-Sitter spacetimes, it has been shown that
small, but finite, perturbations remain small - D. Christodoulou and
S. Klainerman ‘93 and Friedrich ‘86.

@ Why has this not been shown for Anti de-Sitter?
e It is just not true!

Some generic small (but finite) perturbations of AdS become
large and eventually form black holes.

@ The energy cascades from low to high frequency modes in a manner
reminiscent of the onset of turbulence.
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Heuristics

@ AdS acts like a confining finite box. Any generic finite excitation
which is added to this box might be expected to explore all
configurations consistent with the conserved charges of AdS -
including small black holes.

@ Special (fine tuned) solutions need not lead to the formation of
black holes.

o Some linearized gravitational modes will have corresponding
nonlinear solutions - Geons - Dias, Horowitz and JES.

o These solutions are special since they are exactly periodic in
time and invariant under a single continuous symmetry.

o Geons are analogous to nonlinear gravitational plane waves.

@ This Heuristic argument has been observed numerically for certain
types of initial data, but fails for other types.
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@ Black holes form: At o< e~#, matches naive KAM intuition
and 3'9 order calculation - Dias, Horowitz and JES.

@ Certain types of initial data do not do this: do not seem to
form black holes at late times! - Balasubramanian et. al.

@ Understand why special fine tuned solutions - Geons - exist.
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L Geons as special solutions

Geons - Horowitz and JES '14

@ Geons are time-periodic regular horizonless solutions of the Einstein
equation, which do not seem to thermalize.

@ The boundary stress-tensor contains regions of negative and positive
energy density around the equator:

@ It is invariant under

0 w 0

which is timelike near the poles but
spacelike near the equator.

o It satisfies the first law mdFE = wdJ.

Unclear if they can have the same energy, i.e. coexist, with large
AdS black holes!

12 /20
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@ This is possible if the black hole rotates rigidly with angular
velocity Q7 = w/m, ensuring zero flux across the horizon.
@ If such solutions exist, we have a black hole with a single
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@ Since Geons rotate rigidly, one can ask whether small black
holes can surf the Geon!

@ This is possible if the black hole rotates rigidly with angular
velocity Q7 = w/m, ensuring zero flux across the horizon.
@ If such solutions exist, we have a black hole with a single

Killing vector field - black resonator - conjectured by Reall
03!

Evades rigidity theorem because the only Killing field
is the horizon generator!

@ We have constructed these solutions: ten coupled 3D
nonlinear partial differential equations of Elliptic type.
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Black resonators 1/3:

@ One helical Killing field: 9r = 0; + Q0.
@ Their line element can be adapted to 07:
LQ
=P
4y1 5,

2 _

443 Bdy?

2_
ds® = A,

—y?AA, (AT + y x1dy)® +

(dx—l—ym 2 — 22ysdy + yiz 2—x2X2dT)

o 2
+ (1 —2%)2y3 S (d\I/ +4%QdT TR Al - X4dm +yx dy) ]

@ 2D moduli space:

1+ 3y3
Ay

T = and £E/Wd¢x4(0,l,¢)sin(m¢).
0

e Bifurcating Killing sphere - Killing horizon generated by 07.
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@ Black resonators extend from the onset of superradiance
instability to the Geons (‘onset of turbulent instability").

@ Black resonators exist in regions where the Kerr-AdS solution
is beyond extremality.
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@ When black resonators coexist with Kerr-AdS solutions, they
have higher entropy - 2°¢ order phase transition.
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Black resonators 3/3:

@ When black resonators coexist with Kerr-AdS solutions, they
have higher entropy - 2™ order phase transition.

@ Their horizon is deformed along the ¢ direction along which
they rotate - embedding in 3D spacetime - 6Z = Z — Z.
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Possible Endpoint of the Superradiance Instability - 1/3 ?

o If the dynamics was restricted to specific values of m, say
m = 2, then this would be likely. ..

@ However, recall that m = 2 becomes stable in a region where
Kerr-AdS is unstable to perturbations with m > 2!

@ In addition, the cloud of gravitons - hair - never backreacts
very strongly on the geometry - central black hole really
looks like Kerr-AdS.

@ Finally, higher m black resonators seem to have increasing
entropy with increasing m.

@ From Green et al., it is clear that these solutions are all
unstable given that K is spacelike in certain regions!

Conjecture: there is no endpoint -
Dias, Horowitz and JES '11
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Possible Endpoint of the Superradiance Instability - 2/3 ?

@ Surprisingly, SUSY can help us ruling out other candidate
endpoints.

@ Possible endpoint is a black resonator with QL = 1, so that
the arguments of Green et al. do not apply.

o If the central black hole is small, the system has two
components:

o Black resonator ~ Kerr-AdS + Geon.

Search first for a Geon with Qy L = 1.

e From the first law this means dE = d.J/L.

o Search for purely gravitational solutions with E = J/L!

18 /20



Black holes with a single Killing vector field

L One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 3/3 ?

@ Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

19/20




Black holes with a single Killing vector field

L One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 3/3 ?

@ Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

[ E—|J|/L=2[;(VFe)l(V,e)dEe > 0

19/20




Black holes with a single Killing vector field

L One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 3/3 ?

@ Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

[ E—|J|/L=2[;(VFe)l(V,e)dEe > 0 ]

@ Since X is arbitrary, we can only have E = J/L if and only if
V€ =0, ie. if the solution admits nontrivial Killing spinors
- if the solution is SUSY.

19/20




Black holes with a single Killing vector field

L One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 3/3 ?

@ Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

[ E—|J|/L=2[;(VFe)l(V,e)dEe > 0 ]

@ Since X is arbitrary, we can only have E = J/L if and only if
V€ =0, ie. if the solution admits nontrivial Killing spinors
- if the solution is SUSY.

@ We have investigated whether purely gravitational SUSY
solutions exist:

19/20




Black holes with a single Killing vector field

L One black hole to interpolate them all and in the darkness bind them

Possible Endpoint of the Superradiance Instability - 3/3 ?

@ Recall a central result of four-dimensional gauged SUGRA
due to Gary Gibbons and Chris Hull - Positivity of Energy

[ E—|J|/L=2[;(VFe)l(V,e)dEe > 0

@ Since X is arbitrary, we can only have E = J/L if and only if
V€ =0, ie. if the solution admits nontrivial Killing spinors
- if the solution is SUSY.

@ We have investigated whether purely gravitational SUSY
solutions exist:

Short answer:
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@ We have constructed black holes with a single Killing field.
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@ New phase dominates microcanonical ensemble.
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@ New phase dominates microcanonical ensemble.

What to ask me after the talk:

@ Infinite non-uniqueness for Kerr-AdS?

o How large is it?

@ What is the story in the canonical and grand-canonical
ensembles?

7
\.

Outlook:

@ What is the field theory interpretation of this phenomenon?
@ Can we make a connection with glassy physics?
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