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Lovelock’s theorem (1971)

Gab + Λgab = 8πTab

LHS is most general symmetric tensor that is

I a function of g , ∂g , ∂2g

I divergence-free

This assumes d = 4 dimensions. For d > 4, extra terms can
appear on LHS. These were classified by Lovelock.



Lovelock theories

Assume Tab = 0

Simplest Lovelock theory is Einstein-Gauss-Bonnet:

G a
b + Λgab + α δac1c2c3c4bd1d2d3d4

Rc1c2
d1d2Rc3c4

d3d4 = 0

I α has dimensions of length2: sets a scale for the theory.

I Nonlinear in ∂2g : rather exotic as PDEs.

Effective field theory perspective: α much larger than couplings for
other higher derivative terms. Lovelock terms are the only terms
for which this makes sense classically.



Motivation

I There has been interest in classical GR in d > 4 dimensions.
Classically, Lovelock theories are as well-motivated as GR.
They can be viewed as a deformation of GR.

I How do properties of such theories differ from GR? Is GR
special? Are Lovelock theories pathological in some way?

I A Gauss-Bonnet term is predicted by some string theories. Is
this inconsistent unless one includes the rest of string theory
e.g. infinitely many higher derivative terms with couplings of
order α? Camanho, Edelstein, Maldacena & Zhiboedov 2014



Characteristic surfaces

Causal properties of a PDE are determined by its characteristic
surfaces.

e.g. scalar fields uI , I = 1, . . . ,N, second order PDE

P I
J
µν∂µ∂νu

J = F I (u, ∂u)

Hypersurface Σ is characteristic iff this eq does not determine ∂2u
uniquely in terms of u, ∂u on Σ.

1-form ξ normal to Σ: define characteristic polynomial

Q(x , ξ) = detP I
J
µνξµξν

Σ is characteristic iff Q = 0 everywhere on Σ.

Klein-Gordon: P I
J
µν = δIJg

µν so Σ characteristic iff gµνξµξν = 0:
null hypersurface.



Characteristic surfaces and causality

1. Consider a solution with continuous u, ∂u but ∂2u
discontinuous across a surface Σ. Then Σ must be characteristic.
Similarly discontinuities in ∂100u also propagate along
characteristic surfaces.

2. High-frequency wave Ansatz: ω � 1

u(x) = ū(x) +
1

ω2
v(x , ωφ(x)) + . . .

Surfaces of constant phase φ are characteristic w.r.t. background
solution ū

3. Initial data prescribed on S . Region of spacetime in which
solution is determined by data on Ω ⊂ S is bounded by ingoing
characteristic surface from ∂Ω.



Causality in Lovelock theories

In Klein-Gordon, Yang-Mills, GR, a hypersurface is characteristic iff
it is null so causality is determined by the lightcone.

Characteristic hypersurfaces of Lovelock theories are generically
non-null (Aragone 1987, Choquet-Bruhat 1988) so gravity can propagate
faster or slower than light.

In AdS can have propagation that is superluminal w.r.t. boundary
metric (Brigante et al 2008): problem for an AdS/CFT interpretation
but is there anything wrong with the classical bulk theory?

We’ll focus on asymptotically flat boundary conditions.



Superluminal propagation vs causality violation

It is widely believed that superluminal propagation in a Lorentz
covariant theory implies that one can violate causality, i.e., build a
”time machine”.

For example, consider a scalar field with action (Adams et al 2006)

S = −1

2

∫
d4x

[
ηµν∂µπ∂νπ −

c

Λ4
(ηµν∂µπ∂νπ)2

]
where c is dimensionless and Λ has dimensions of mass.



Equation of motion is Gµν∂µ∂νπ = 0 where

Gµν =

[
1− 2c

Λ4
(∂π · ∂π)

]
ηµν − 4c

Λ4
∂µπ∂νπ.

A surface is characteristic iff it is null w.r.t. Gµν .

The ”effective metric” Gµν determines causality, not ηµν .

If c > 0 then causal cones of Gµν lie inside those of ηµν :
subluminal propagation. if c < 0 then it is the other way round:
possible superluminal propagation (e.g. of small fluctuations
around a background solution).



Adams et al argued that the c < 0 theory must be rejected
because one can build a solution with closed causal curves w.r.t.
Gµν (i.e. a ”time machine”) by considering two blobs of non-trivial
π-field that are highly boosted w.r.t. to each other.

Consider initial data (π, ∂0π) on the surface Σ = {x0 = 0}
describing such a configuration. Σ is everywhere spacelike w.r.t.
ηµν but not w.r.t. Gµν .

The initial value problem is not well-posed. One expects that
either no solution of the equation of motion exists or the solution
does not depend continuously on the initial data, i.e., it is infinitely
fine-tuned. So there is no reason to believe that one can build a
”time machine” when c < 0.



Conclusion: the argument that superluminal propagation in a
Lorentz covariant field theory implies causality violation is not
convincing. (cf Geroch 2010)

For small initial data (i.e. π, ∂π, . . . ∂Nπ all small) it is well known
that solutions simply disperse, for either sign of c (Christodoulou

1986, Klainerman 1986). Superluminal propagation is not a problem.



Characteristic surfaces

What do Lovelock characteristic surfaces look like?



Example 1: Ricci flat type N spacetime

Type N: ∃ null `a such that `aCabcd = 0 (e.g. pp-wave).
Solves Lovelock eq. of motion with Λ = 0.

A hypersurface is characteristic iff it is null w.r.t. one of
N = d(d − 3)/2 ”effective metrics” of form

G(I )ab = gab − αω(I )`a`b I = 1, . . . ,N

where ωI is homogeneous (degree 1) function of curvature.

I Different graviton polarizations propagate with different
speeds: multirefringence.

I Null cones of G(I )ab form a nested set, tangent along `a,
causality determined by outermost cone



Example 2: Killing horizon

Gravitational signals can travel faster than light. Can they escape
from inside a black hole?

Izumi (2014): a Killing horizon is characteristic for all graviton
polarizations in Einstein-Gauss-Bonnet theory. We generalized this
to any Lovelock theory.

If we deform the metric inside a Killing horizon, the deformation
cannot escape the horizon.

Event horizon of a static BH must be a Killing horizon. True also
for stationary BHs in GR - what about Lovelock?

Non-stationary BHs?



Example 3: static black hole spacetime

Consider black hole solution (Boulware & Deser 1985)

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2
d−2

Can determine characteristic surfaces from equations for linearized
perturbations: decompose into scalar, vector and tensor types.

For each type, there is an ”effective metric” G I
ab (I = S ,V ,T ). A

surface is characteristic iff it is null w.r.t. one of the G I
ab.

GI = −f (r)dt2 + f (r)−1dr2 +
r2

cI (r)
dΩ2

d−2

cI → 1 as r →∞.
(Reduction to effective metrics is a consequence of symmetry.)



Effective metrics

The null cones of G I
ab form a nested set, with causality determined

by the outermost null cone.

vr

vΦ

Cones coincide in radial direction (cf Brigante et al 2008).



Effective metrics

GI = −f (r)dt2 + f (r)−1dr2 +
r2

cI (r)
dΩ2

d−2

For some small black holes, cI (r) changes sign at r = r∗ outside
black hole.

In Einstein-Gauss-Bonnet, this happens for d = 5, 6

This means that the equation of motion is not hyperbolic for r ≤ r∗



Hyperbolicity

Pick some ”initial” hypersurface Σ (non-characteristic) and a
(d − 2)-dimensional surface S ⊂ Σ.

S 

N = d(d − 3)/2 independent graviton polarizations. Theory is
hyperbolic if there are N ”ingoing” and N ”outgoing”
characteristic hypersurfaces through S (allow for degeneracy).



Hyperbolicity

Lovelock equations of motion are not always hyperbolic. Initial
value problem not well-posed if not hyperbolic.

Expect hyperbolic equations when curvature is small.

Can hyperbolicity be violated dynamically? Yes - consider large
black hole: hyperbolicity violated in region near singularity. But
seems to be unstable: linear perturbations blow up there. Maybe
nonlinear theory prevents itself from becoming non-hyperbolic.
Reminiscent of strong cosmic censorship. (Work in progress.)



Initial value problem

Initial data in Lovelock theories, as in GR, consists of a
hypersurface Σ together with the induced metric and extrinsic
curvature of Σ. The following are necessary conditions for a
well-posed initial value problem:

I The constraint equations are satisfied.

I The equation of motion is hyperbolic on Σ

I Σ is spacelike w.r.t. the causal structure defined by the
equation of motion

A hyperbolic PDE defines a causal structure on spacetime (e.g.
division of vectors into timelike, spacelike, null).

In Lovelock theories, this is not the same as the causal structure
defined by the metric (it is defined by the effective metrics in our
type N and static black hole examples but in general it is more
complicated).



Shapiro time delay for gravitons
(Camanho, Edelstein, Maldacena & Zhiboedov 2014)

GR time delay: gravitons/photons travel between two points in
curved spacetime slower than between ”same” two points in flat
spacetime.

Camanho et al argued that gravitons can experience a negative
time delay, i.e, time advance in theories with exotic graviton
3-point coupling e.g. Einstein-Gauss-Bonnet theory.

They argued that the time advance can be eliminated by including
contributions from infinite tower of massive higher spin particles,
as in string theory.

In an Appendix, they argued that time advance is a pathology
because it could be exploited to build a ”time machine”. We will
explain why this argument is incorrect.



Aichelburg-Sexl solutions

The ”time machine” construction involves superposing two
Aichelburg-Sexl ”shock-wave” solutions. These are solutions of any
Lovelock theory (Λ = 0)

They are flat except for delta-function curvature localised on a null
hypersurface, with amplitude of delta function diverging along null
line within this surface (worldline of high energy particle)

Are these singular solutions physical? Can construct as a limit:
boost a black hole solution, take boost to infinity, scale mass to
zero, keeping energy fixed. So can ”regulate” an AS solution by
replacing it with a small, highly boosted, black hole.

This is fine in GR (no scale). But in Einstein-Gauss-Bonnet we will
argue that it is not possible to boost a small (compared to

√
α)

black hole arbitrarily close to the speed of light.



Speed limit for small black holes in EGB theory

Isotropic coordinates:

ds2 = −f (R)dt2 + H(R)dxidxi R =
√
xixi

Perform boost t = γ (t ′ − vx ′1), x1 = γ (x ′1 − vt ′) and consider the
initial data induced on the surface t ′ = 0. This describes a black
hole with speed v .

This is the same as considering the data induced on the surface
t = −vx1 in the original coordinates.

This surface is spacelike w.r.t. the metric provided |v | < 1. But for
this to be legitimate initial data, this surface needs to be spacelike
w.r.t. all of the effective metrics.



In EGB theory, for the surface to be spacelike w.r.t. the tensor
effective metric we need |v | < vmax.

For a large black hole (compared to
√
α) we have vmax = 1.

But for a small black hole

vmax =
1

3− 2
√

1− 1
(d−4)2

< 1

A hypersurface with a small black hole moving with speed
|v | > vmax isn’t spacelike w.r.t. the effective metrics: it does not
describe an ”instant of time”. Such a black hole cannot arise from
Cauchy evolution of any initial data.

This means that the time machine construction won’t work.



Time advance/delay

To define time delay, need to identify points in a curved spacetime
with points in flat spacetime. No gauge invariant way of doing this
in general (Gao & Wald 2000).

Time delay can be defined unambiguously in static, spherically
symmetric, spacetimes: consider proper time to propagate across
spherical cavity (Cabrera-Palmer & Marolf 2002).

Seems worthwhile calculating time delay/advance for gravitons this
way. (Camanho et al derivation used scattering amplitudes and AS
spacetime.)



Graviton trajectories in EGB

Characteristic surfaces are ruled by bicharacteristic curves. For GR
(or Yang-Mills), characteristic surfaces are null and bicharacteristic
curves are null geodesics.

Geometric optics: high frequency gravitons follow bicharacteristic
curves.

For a spherically symmetric Lovelock black hole, the
bicharacteristic curves are the null geodesics of the effective
metrics.

High frequency tensor-polarized gravitons follow null geodesics of
the effective metric for the tensor modes etc.



Consider null geodesics of

GI = −f (r)dt2 + f (r)−1dr2 +
r2

cI (r)
dΩ2

d−2

Reduces to motion in effective potential:

1

2

(
dr

dλ

)2

+ VI (r) =
1

2b2

where b is impact parameter of graviton trajectory and

VI (r) =
f (r)cI (r)

r2



cI (r) varies over length scale L ≡ (αµ)1/(d−1) where µ is mass
parameter.

For r � L we find

VI (r) =
1

2r2
− µ

2rd−1
+ βI

αµ

rd+1
+ . . .

where βI < 0 for scalar/vector polarizations, βI > 0 for tensor
polarisation (βI = 0 for geodesics of physical metric).

First two terms are usual GR terms. Final term is GB effect: this
term is repulsive for tensor polarisation. For a small black hole this
term dominates in range L� r �

√
α: tensor-polarized gravitons

with small b will experience repulsive gravitational interaction.



Results: perturbative

For small EGB black holes a perturbative calculation reveals that

graviton trajectories with (αµ)1/(d−1) � b
<∼
√
α exhibit

I a deflection angle less than π, characteristic of repulsive
central force

I a time advance scaling same way as found by Camanho et al.

Size of time advance increases as b decreases. How large can it
get?



Results: numerical
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Largest possible time advance scales as (αµ)1/(d−1) for small µ.



Nonlinear stability of Minkowski spacetime

Highly non-trivial in 4d GR (Christodoulou & Klainerman 1993). Much
easier in d > 4 dimensions because linear perturbations disperse
faster.

What about Lovelock?

Lovelock eqs of motion in harmonic coordinates, gµν = ηµν + hµν :

�hµν = Fµν(h, ∂h, ∂2h)

where RHS is second order in hµν .

Toy model: replace hµν with scalar field h. The h = 0 solution is
stable for d ≥ 5 (Hörmander 1997).

This suggests that Minkowski spacetime is nonlinearly stable in
Lovelock theories (J. Keir, work in progress.)



Shock formation in Lovelock theories

Can we make a wavepacket so that back of wavepacket travels
faster than front?

cf compressible perfect fluid: speed of sound depends on pressure
⇒ wave steepening ⇒ shock!

Compressible perfect fluid in 3 + 1 dimensions. Initial data: fluid at
rest outside a ball. Shock formation occurs for generic small initial
data (Sideris 1985, Christodoulou 2007) because nearby outgoing
characteristic surfaces intersect.



Lovelock: ”speed of gravity” can vary in spacetime: does shock
formation occur?

Shock formation won’t occur for small (almost flat) initial data if
Minkowski stable.



Transport equations

Consider a solution with curvature discontinuous across
hypersurface Σ. Then Σ must be characteristic.

Characteristic surfaces are ruled by bicharacteristic curves (e.g.
null geodesics in GR).

Can derive a transport equation for amplitude of discontinuity: an
ODE along a bicharacteristic curve.

GR is exceptional because transport equation is linear.



Shocks

For Lovelock theories (as for compressible perfect fluid), transport
equation is nonlinear. Discontinuity can blow up in finite time.
Blow up occurs because nearby outgoing characteristic surfaces
intersect: shock!

Blow-up occurs whenever amplitude of initial curvature
discontinuity is large enough.

Similar results for high frequency, small amplitude gravitational
waves in a background spacetime (nonlinear geometrical optics).

What about smooth initial data? (Numerics?)



Weak cosmic censorship

Shocks are curvature singularities. Are these naked or hidden
inside black holes?

Reduce amplitude of initial outgoing disturbance: takes longer for
shock to form ⇒ requires bigger black hole, but initial energy
smaller...suggests shock won’t be hidden by black hole.



Evolution of shocks

In fluid dynamics, shock formation is not the end of time evolution:
can extend as a weak solution by allowing fields to be
discontinuous. Rankine-Hugoniot junction conditions from
conservation of energy-momentum and particle number. Shocks
propagate along noncharacteristic hypersurfaces.

Analogous situation in Lovelock theories: once shock forms, allow
∂g to be discontinuous across hypersurface Σ. Weak solution:
extremize action ⇒ canonical momentum πij should be continuous
across Σ. Possible because πij is a polynomial in ∂g . Does such a
surface describes a dynamical shock?



Conclusions

I Naive argument relating superluminal propagation to causality
violation is unconvincing.

I Small black holes cannot be boosted arbitrarily close to the
speed of light in Einstein-Gauss-Bonnet theory.

I This theory exhibits a repulsive short-distance interaction
leading to time advance of Camanho et al.

I Heuristic argument suggests that Minkowski spacetime is
stable: if so, Lovelock theories ”make sense” for small
curvature initial data.

I Unlike GR, these theories probably form shocks for large
curvature initial data. It may be possible to develop a theory
of shock evolution.



Open questions

I Well-posedness of initial value problem (cf Willison 2014)

I Positive energy theorem (or counterexample)

I Definition of a black hole in Lovelock theories. Use
”bicharacteristic cone” to define causal structure. The
”gravity horizon” would be an outermost outgoing
characteristic surface. Is there a second law for this surface?


