$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Jonas Probst
Rudolf Peierls Centre for Theoretical Physics
University of Oxford

1610.01081

with P. Kleinert

UNIVERSITY OF
 OXFORD

$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Why relativistic hydrodynamics?

- ubiquitous low-energy effective theory: applies to slowly-varying fluctuations in any interacting field theory at finite temperature
- only theory-dependent constants: transport coefficients
- successful description of early-stage QGP

$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Why relativistic hydrodynamics?

- ubiquitous low-energy effective theory: applies to slowly-varying fluctuations in any interacting field theory at finite temperature
- only theory-dependent constants: transport coefficients
- successful description of early-stage QGP

Why non-conformal?

- most physical systems, including the QGP, are non-conformal

$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Why holography?

- in order to compute transport coefficients: need to match effective hydro result for suitable real-time correlators with corresponding microscopic result
- for QGP however:
$>$ perturbative calculations impossible due to strong coupling
$>$ lattice calculations unsuitable for real-time correlators
- only currently available tool for real-time correlators at strong coupling: gauge/gravity duality or holography

$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Why universality?

- gravity dual of realistic theories such as QCD unknown
$>$ best one can hope for: identify and investigate universal properties that hold for a large class of holographic theories
> being insensitive to microscopic details, such universal properties may be common to all strongly-coupled field theories, including the ones realised in nature
- example: $\eta / s=1 / 4 \pi$ for all strongly-coupled theories with a two-derivative gravity dual
$>$ experiment shows that for QGP indeed $\eta / s \approx 1 / 4 \pi$

$2^{\text {nd }}$-Order Hydrodynamics \& Universality in Non-Conformal Holographic Fluids

Why second order?

- hydrodynamics = effective theory for slowly-varying lowenergy fluctuations
$>$ systematic expansion in momenta/gradients ($0^{\text {th }}$ order: thermodynamic quantities, $1^{\text {st }}$ order: η and ζ)
- hydro simulations of QGP require $2^{\text {nd }}$-order gradients to remove unstable superluminal modes
- $2^{\text {nd }}-$ order coefficients can be measured in principle (dispersion relations, equation of state in curved space, ...)
$>$ theoretical advancement: what can holography teach us?
- within gravity: thermodynamics/black holes --> fluid/gravity

The Haak-Yarom Identity

The Haak-Yarom Identity

$$
H \equiv 2 \eta \tau_{\pi}-4 \lambda_{1}-\lambda_{2}=0
$$

has been shown to hold universally...

- ...for conformal holographic fluids with any number of $\mathrm{U}(1)$ charges at finite density [Haack,Yarom '08]
- ...when taking into account leading corrections to the infinite coupling limit in N=4 [Grozdanov,Starinets '14] and in the dual of Gauss-Bonnet [Shaverin,Yarom '12 \& '15][Grozdanov,Starinets '15]
- ...for the non-conformal Chamblin-Reall background [Bigazzi,Cotrone '10] (however: this is a compactification of AdS!)
- ...for a non-conformal compactification of D4-branes [Wu,Chen,Huang '16]
> Is H=0 generally satisfied by non-conformal holographic fluids?
> Is $\mathrm{H}=0$ satisfied by non-conformal holographic fluids?

Summary of our results

we
 which are valid for any uncharged relativistic fluid in (3+1)-d

- ...applied these Kubo formulae to a large class of nonconformal holographic models: namely holographic RG flows triggered by any relevant scalar operator of dimension $\Delta=3$
- ...found that the following combination always vanishes:

$$
\tilde{H} \equiv 2 \eta \tau_{\pi}-2\left(\kappa-\kappa^{*}\right)-\lambda_{2}=0
$$

- ...proved analytically that $\mathrm{H}=0$ still holds when taking into account leading non-conformal corrections
- ...showed numerically that H vanishes along two specific families of RG flows beyond leading order

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography
6. A class of non-conformal holographic models
7. Solving Einstein's equations
8. Analytic results on second-order transport
9. Numerical results on second-order transport
10. Conclusion

Table of Contents

1. Motivation
2. Summary of our results

Kubo formulae are straightforward to derive \& easy to use

3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}$-order hydro
5. Applying Kubo in holography
6. A class of non-conformal holographic models
7. Solving Einstein's equations
8. Analytic results on second-order transport
9. Numerical results on second-order transport
10. Conclusion

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography

sketch of our holographic calculation

6. A class of non-conformal holographic models
7. Solving Einstein's equations
8. Analytic results on second-order transport
9. Numerical results on second-order transport
10. Conclusion

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography
6. A class of non-conformal holographic models
7. Solving Einstein's equations

$\mathrm{H}=0$ in non-conformal holographic fluids

8. Analytic results on second-order transport
9. Numerical results on second-order transport
10. Conclusion

3. Quick recap of hydro

3. Quick recap of hydro

- Assumption: all relevant dynamics in the hydrodynamic regime is governed by microscopic conservation laws
$>$ only relevant d.o.f. are expectation values of global charge densities, averaged over small patches of local equilibrium
- uncharged relativistic fluid: only conserved charges are energy $\left\langle T^{00}(x)\right\rangle$ and momentum density $\left\langle T^{0 i}(x)\right\rangle$
$>$ microscopic conservation equations: $\nabla_{\mu}\left\langle T^{\mu \nu}(x)\right\rangle=0$
- need to be supplemented by constitutive relations that express the current densities $\left\langle T^{\mu \nu}(x)\right\rangle$ as functions of the charge densities $\left\langle T^{0 \mu}(x)\right\rangle$
$>$ in the form of an expansion in small momenta/gradients
- in the spirit of effective field theory, at every order all terms compatible with the underlying symmetries are written down
> each multiplied by a free parameter=transport coefficient

3. Quick recap of hydro

Uncharged relativistic fluid in (3+1) dimensions:

$\begin{array}{rl}\left\langle T^{\mu \nu}(x)\right\rangle= & \epsilon(x) u^{\mu}(x) u^{\nu}(x)\end{array}+p(\epsilon(x)) \overbrace{\left(u^{\mu}(x) u^{\nu}(x)+g_{(0)}^{\mu \nu}(x)\right)}^{\equiv \Delta^{\mu \nu}})$
+5 traceless $2^{\text {nd }}$-order tensor structures multiplied by $\eta \tau_{\pi}, \kappa, \lambda_{1}, \lambda_{2}, \lambda_{3}$
+10 non-traceless $2^{\text {nd }}$-order tensor structures multiplied by κ^{*} and 9 other transport coefficients
$+3^{\text {rd }}$-order gradients

4. New Kubo formulae

4. New Kubo formulae

- in order to compute transport coefficients:
need to match effective hydro result for suitable real-time correlators of $T^{\mu \nu}$ with the corresponding microscopic result
> Kubo formulae tell you which correlators exactly to look at for a specific transport coefficient
- correlators are encoded in the response of $\left\langle T^{\mu \nu}\right\rangle$ to external metric perturbations around flat space $g_{(0) \mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x)$ of a fluid in equilibrium:
$\epsilon(x)=\bar{\epsilon}+\delta \epsilon(x), \quad u^{\mu}(x)=(1, \underline{v})\left(-g_{(0) t t}-2 g_{(0) t i} v^{i}-g_{(0) i j} v^{i} v^{j}\right)$
- convenient to use $\delta \epsilon(x)$ and $\underline{v}(x)$ as fluid variables
$>$ equation of motion: $\nabla_{\mu}\left\langle T^{\mu \nu}\right\rangle\left[\delta \epsilon, \underline{v} ; h_{\rho \sigma}\right]=0$ with boundary condition $\delta \epsilon(x)=\underline{v}(x)=0$ for $h_{\mu \nu}(x)=0$

4. New Kubo formulae

Simple sources \& responses

- focus on external metric perturbations that preserve residual $\mathrm{SO}(2): \quad h_{\mu \nu}=h_{\mu \nu}(t, z)$
- the particular subset $\left\{h_{x y}(t, z), h_{t x}(z), h_{t y}(z), h_{x z}(t), h_{y z}(t)\right\}$ is found not to source any fluid fluctuations to linear order
$>$ no sound waves which excite theory-specific matter
$>$ on-shell $\delta \epsilon(h), \underline{v}(h)=\mathcal{O}\left(h^{2}\right)$
- focus on response of transverse tensor component $\left\langle T^{x y}\right\rangle$ whose constitutive relation (--> off-shell) is independent of $\left(\delta \epsilon, v^{z}\right)$ and $\left(v^{x}, v^{y}\right)$
$>$ on-shell:

$$
\left\langle T^{x y}\right\rangle[h]=\bar{T}^{x y}+\frac{\partial \bar{T}^{x y}}{\partial h} h+\frac{1}{2} \frac{\partial^{2} \bar{T}^{x y}}{\partial h^{2}} h^{2}+\mathcal{O}\left(h^{3}, \partial^{3}\right)
$$

4. New Kubo formulae

Explicitly: in the presence of $\left\{h_{x y}(t, z), h_{t x}(z), h_{t y}(z), h_{x z}(t), h_{y z}(t)\right\}$:

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

Explicitly:

[Baier, Romatschke, Son, Starinets, Stephanov '08]

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

Explicitly: in the presence of $\left\{h_{x y}(t, z), h_{t x}(z), h_{t y}(z), h_{x z}(t), h_{y z}(t)\right\}$:
$\left\langle T^{x y}\right\rangle[h]=\quad$ for conformal fluids $\left(\kappa^{*}=0\right)$: [Moore, Sohrabi '10]

$$
\begin{aligned}
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

Explicitly: in the presence of $\left\{h_{x y}(t, z), h_{t x}(z), h_{t y}(z), h_{x z}(t), h_{y z}(t)\right\}$:

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
+ & {\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right.} \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
+ & {\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] } \\
+ & {\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right) }
\end{aligned}
$$

$>$ gives us access to 5 independent $2^{\text {nd }}$-order coefficients:

$$
\eta \tau_{\pi}+\kappa^{*}, \quad \kappa, \quad \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}
$$

$>$ combinations of 5 conformal coefficients plus κ^{*} (no other non-conformal coefficients appear!)
$>$ include $H=2\left(\eta \tau_{\pi}+\kappa^{*}\right)-4\left(\lambda_{1}+\kappa^{*} / 2\right)-\lambda_{2}$

4. New Kubo formulae

> one can read off Kubo formulae by comparing this with the expansion of $\left\langle T^{x y}\right\rangle[h]$ in terms of retarded correlators:

$$
\begin{aligned}
\left\langle T^{\mu \nu}(x=0)\right\rangle[h]= & G^{\mu \nu}(0)-\frac{1}{2} \int \frac{\mathrm{~d}^{4} p}{(2 \pi)^{4}} G^{\mu \nu, \rho \sigma}(p) h_{\rho \sigma}(p) \\
& +\frac{1}{8} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} p}{(2 \pi)^{4}} G^{\mu \nu, \rho \sigma, \kappa \lambda}(q, p) h_{\rho \sigma}(q) h_{\kappa \lambda}(p)+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

Example: only turn on the plane wave $h_{x y}(t, z)=\epsilon H_{x y}^{(b)} e^{-i \omega t+i q z}$

$$
\begin{aligned}
\Longrightarrow\left\langle T^{x y}(x=0)\right\rangle[h] & =\left[-\bar{p}+i \omega \eta+\frac{\kappa}{2} q^{2}-\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \omega^{2}\right] \epsilon H_{x y}^{(b)}+\mathcal{O}\left(\epsilon^{3}, \partial^{3}\right) \\
& \stackrel{!}{=}-G^{x y, x y}(\omega, q) \epsilon H_{x y}^{(b)}+\mathcal{O}\left(\epsilon^{3}\right) \\
\Longrightarrow \eta & =\left.i \partial_{\omega} G^{x y, x y}\right|_{(\omega, \underline{q})=0}
\end{aligned}
$$

4. New Kubo formulae

In fact, all 5 coefficients

$$
\eta \tau_{\pi}+\kappa^{*}, \quad \kappa, \quad \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}
$$

can be measured by turning on plane waves for $\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\}$, and $\left\{h_{t y}(z), h_{x z}(t)\right\}$, one after another.

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

In fact, all 5 coefficients

$$
\eta \tau_{\pi}+\kappa^{*}, \quad \kappa, \quad \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}
$$

can be measured by turning on plane waves for $\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\}$, and $\left\{h_{t y}(z), h_{x z}(t)\right\}$, one after another.

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

In fact, all 5 coefficients

$$
\eta \tau_{\pi}+\kappa^{*}, \quad \kappa, \quad \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}
$$

can be measured by turning on plane waves for $\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\}$, and $\left\{h_{t y}(z), h_{x z}(t)\right\}$, one after another.

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
& +\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right. \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
& +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

In fact, all 5 coefficients

$$
\eta \tau_{\pi}+\kappa^{*}, \quad \kappa, \quad \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}
$$

can be measured by turning on plane waves for $\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\}$, and $\left\{h_{t y}(z), h_{x z}(t)\right\}$, one after another.

$$
\begin{aligned}
\left\langle T^{x y}\right\rangle[h]= & {\left[-\bar{p}-\eta \partial_{t}-\frac{\kappa}{2} \partial_{z}^{2}+\left(\eta \tau_{\pi}-\frac{\kappa}{2}+\kappa^{*}\right) \partial_{t}^{2}\right] h_{x y}(t, z) } \\
+ & {\left[\bar{p} h_{x z} h_{y z}+\eta\left(h_{x z} \partial_{t} h_{y z}+\partial_{t} h_{x z} h_{y z}\right)+\left(\lambda_{1}-\eta \tau_{\pi}-\frac{\kappa^{*}}{2}\right) \partial_{t} h_{x z} \partial_{t} h_{y z}\right.} \\
& \left.+\left(\frac{\kappa}{2}-\eta \tau_{\pi}-\kappa^{*}\right)\left(h_{x z} \partial_{t}^{2} h_{y z}+\partial_{t}^{2} h_{x z} h_{y z}\right)\right] \\
& +\left[-\bar{p} h_{t x} h_{t y}+\left(\frac{\lambda_{3}}{4}-\frac{\kappa^{*}}{2}\right) \partial_{z} h_{t x} \partial_{z} h_{t y}-\frac{\kappa}{2}\left(h_{t x} \partial_{z}^{2} h_{t y}+\partial_{z}^{2} h_{t x} h_{t y}\right)\right] \\
+ & +\left[\frac{1}{2} \eta \tau_{\pi}-\frac{\lambda_{2}}{4}+\frac{\kappa^{*}}{2}\right]\left(\partial_{z} h_{t x} \partial_{t} h_{y z}+\partial_{z} h_{t y} \partial_{t} h_{x z}\right)+\mathcal{O}\left(h^{3}, \partial^{3}\right)
\end{aligned}
$$

4. New Kubo formulae

We obtained the following new Kubo formulae:

$$
\begin{aligned}
\kappa & =\left.\partial_{q_{z}}^{2} G^{x y, t x, t y}(q, p)\right|_{q=p=0} \\
\eta \tau_{\pi}+\kappa^{*} & =\frac{\kappa}{2}+\left.\frac{1}{2} \partial_{q_{0}}^{2} G^{x y, x z, y z}(q, p)\right|_{q=p=0} \\
\lambda_{1}+\frac{\kappa^{*}}{2} & =\left(\eta \tau_{\pi}+\kappa^{*}\right)-\left.\partial_{q_{0}} \partial_{p_{0}} G^{x y, x z, y z}(q, p)\right|_{q=p=0} \\
\lambda_{2} & =2\left(\eta \tau_{\pi}+\kappa^{*}\right)-\left.4 \partial_{q_{0}} \partial_{p_{z}} G^{x y, t x, x z}(q, p)\right|_{q=p=0} \\
\lambda_{3}-2 \kappa^{*} & =-\left.4 \partial_{q_{z}} \partial_{p_{z}} G^{x y, t x, t y}(q, p)\right|_{q=p=0}
\end{aligned}
$$

5. Applying Kubo in holography

5. Applying Kubo in holography

> want to compute transport coefficients of strongly coupled field theories with holographic gravity duals

Strategy

- perturb external field-theory metric $g_{(0) \mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x)$
> presribe corresponding AdS-boundary value of dual dynamical bulk metric $g_{m n}$
- solve Einstein's equations perturbatively in
$>$...momenta (hydro gradient expansion)
$>$...sources $\quad\left(\mathcal{O}\left(h^{2}\right)\right.$ sufficient for 3-point functions)
- extract field-theory stress tensor $\left\langle T^{x y}\right\rangle[h]$ from dual gravity solution according to holographic dictionary
- compare with effective hydro result for $\left\langle T^{x y}\right\rangle[h]$ to read off transport coefficients

5. Applying Kubo in holography

Compuation of $\left\langle T^{\mu \nu}\right\rangle$ from gravity dual

$>$ global charges agree in dual theories
> in particular

$$
\underbrace{\mathcal{T}^{\mu \nu}}=\frac{2}{\sqrt{-\gamma}} \frac{\delta S_{\text {gravity }}^{\text {on-shell }}}{\delta \gamma_{\mu \nu}} \propto \underbrace{\left\langle T^{\mu \nu}\right\rangle}
$$

quasi-local gravity stress tensor \uparrow field-theory stress tensor

> induced AdS-boundary metric
off-shell:
$\delta S_{\text {gravity }}^{\text {off-shell }}=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{5} x \sqrt{-g} \operatorname{EOM}^{m n} \delta g_{m n}+\frac{1}{2} \int_{\partial A d S_{5}} \mathrm{~d}^{4} x \sqrt{-\gamma} \mathcal{T}^{\mu \nu} \delta \gamma_{\mu \nu}$
$>$ to obtain $\mathcal{T}^{x y}$ up to $\mathcal{O}\left(h^{2}\right)$ in the boundary perturbation we only need to solve $\mathrm{EOM}^{x y}$ up to $\mathcal{O}\left(h^{2}\right)$ included

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography

sketch of our holographic calculation

6. A class of non-conformal holographic models
7. Solving Einstein's equations
8. Analytic results on second-order transport
9. Numerical results on second-order transport
10. Conclusion

6. A class of non-conformal holographic models

6. A class of non-conformal holographic models

> holographic RG flows triggered by a scalar operator of dimension $\Delta=3$

- field theory: relevant deformation of UV fixed point by $\int \mathrm{d}^{4} x \sqrt{-g_{(0)}} \Lambda O$
- dual gravity bulk:

$$
S_{\text {gravity }}=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{5} x \sqrt{-g}\left(R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right)
$$

with potentials of the form

and bulk scalar field $\phi \xrightarrow{\zeta \rightarrow 0} \Lambda \zeta+\ldots$

6. A class of non-conformal holographic models

Remark: restriction to ($\Delta=3$)-operators because counterterms required for holographic renormalisation are known.

Black-brane backgrounds

$>$ solutions depend on single parameter Λ / T
$>$ common UV fixed point $\Lambda / T=\phi=0$: pure AdS black brane

$$
e^{2 A} \longrightarrow \frac{(\pi T L)^{2}}{u}, \quad f \longrightarrow 1-u^{2}
$$

7. Solving Einstein's equations

7. Solving Einstein's equations

Goal

Compute response of $\left\langle T^{x y}\right\rangle$ (encoded in on-shell bulk metric) to field-theory metric perturbations and compare with hydro result
$>$ find solutions of bulk metric fluctuations sourced by fieldtheory metric perturbations
...around arbitrary black-brane background solutions
s. t. expressions for $\left\langle T^{x y}\right\rangle$ are valid for

- any operator with $\Delta=3$ (dual $V(\phi)$ arbitrary beyond mass)
- any temperature T / \wedge

7. Solving Einstein's equations

Solving the xy-component of Einstein's equations, sourced by the three dual field-theory metric perturbations
$\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\}$, and $\left\{h_{t y}(z), h_{x z}(t)\right\}$,

- ...to $2^{\text {nd }}-$ order in sources $\mathcal{O}\left(h^{2}\right)$
- ...to $2^{\text {nd }}$-order in momenta $\mathcal{O}\left(\partial^{2}\right)$
involves 24 functions in the bulk metric.
$>$ we found analytic solutions for 19 and explicit integral expressions for another 4
(given in terms of arbitrary black-brane background solutions)
>1 unknown function
...which however (as it turns out) does not enter $\left\langle T^{\mu \nu}\right\rangle$!
Note: the shear-perturbations we turn on don't source fluctuations of the bulk scalar ϕ :
$>$ they only excite universal gravity sector

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography
6. A class of non-conformal holographic models
7. Solving Einstein's equations
H=0 in non-conformal holographic fluids
8. Analytic results on second-order transport
9. Numerical results on second-order transport

10. Conclusion

8. Analytic results on $2^{\text {nd }}-$ order transport

8. Analytic results on $2^{\text {nd }}$-order transport

response of holographic stress tensor $\left\langle T^{\mu \nu}\right\rangle \propto \frac{2}{\sqrt{-\gamma}} \frac{\delta S_{\text {gravivy }}^{\text {on-shell }}}{\delta \gamma_{\mu \nu}}$
\checkmark...satisfies Ward identity $\left\langle T^{\mu}{ }_{\mu}\right\rangle=\langle O\rangle \Lambda+$ anomaly
\checkmark...takes expected hydro from (non-trivial check on global solutions!)
\checkmark reproduces $\eta / s=1 / 4 \pi$
$>$ yields explicit expressions for the five $2^{\text {nd }}$-order coefficients!

8. Analytic results on $2^{\text {nd }}$-order transport

$$
\begin{aligned}
& \kappa=-\frac{2}{f_{b}} Y_{(1,1)}^{(2 t z)} s T, \\
& \eta \tau_{\pi}+\kappa^{*}=\frac{1}{f_{b}}\left(\frac{1}{32 \pi^{2} T^{2}}+Y_{2}^{(1 t)}-Y_{(1,1)}^{(2 t z)}\right) s T, \\
& \lambda_{1}+\frac{\kappa^{*}}{2}=\frac{1}{f_{b}}\left(\frac{1}{32 \pi^{2} T^{2}}+Y_{2}^{(1 t)}-Y_{(1,1)}^{(2 t z)}+Y_{(1,1)}^{(2 t t)}\right) s T, \\
& \lambda_{2}=\frac{2}{f_{b}}\left(\frac{1}{32 \pi^{2} T^{2}}+Y_{2}^{(1 t)}+Y_{(1,1)}^{(2 t z)}\right) s T, \\
& \lambda_{3}-2 \kappa^{*}=\frac{4}{f_{b}} Y_{(1,1)}^{(2 z z)} s T \cdot \\
& \text { normalisable modes of } \\
& \text { bulk metric fluctuations }
\end{aligned}
$$

> natural units: s / T (prop. to d.o.f., mass dim. 2)
$>\left\{Y_{2}^{(1 t)}, Y_{(1,1)}^{(2 t)}, Y_{(1,1)}^{(2 z z)}, Y_{(1,1)}^{(2 t z)}\right\}$ given by integrals over background
$>$ depend on operator details (dual potential) and T / Λ
>5 transport coefficients depend on $4\left\{Y_{2}^{(1 t)}, Y_{(1,1)}^{(2 t t)}, Y_{(1,1)}^{(2 z z)}, Y_{(1,1)}^{(2 z z)}\right\}$
> 1 independent combination!

8. Analytic results on $2^{\text {nd }}$-order transport

1 independent combination: $\tilde{H} \equiv 2 \eta \tau_{\pi}-2\left(\kappa-\kappa^{*}\right)-\lambda_{2}=0$
$>$ obeyed by all holographic RG flows triggered by ($\Delta=3$)operator at infinite coupling, at any value of T / Λ (provided they admit black-brane solutions)
coefficients entering \tilde{H} previously computed for

$$
\tilde{H}=0
$$

- $\mathrm{N}=4$ at infinite coupling [Baier et al. '08][Bhattacharyya et al. '08]
- non-conformal dual of Chamblin-Reall [Bigazzi,Cotrone '08]

$$
\tilde{H} \neq 0
$$

- finite coupling corrections for $\mathrm{N}=4$ [Penincasa, Buchel '05][Buchel '08][Buchel,Paulos '08][Grozdanov,Starinets. '14]

8. Analytic results on $2^{\text {nd }}$-order transport

Proof that $\mathrm{H}=0 \mathrm{incl}$. leading non-conformal corrections

$$
H=2 \eta \tau_{\pi}-4 \lambda_{1}-\lambda_{2}=(\underbrace{Y_{2}^{(1 t)}+Y_{(1,1)}^{(2 t t)}}+\frac{1}{32 \pi^{2} T^{2}}) \frac{4}{f_{b}}
$$

$>$ integral over background fields A and f (dependence on ϕ cancels!)
background EOMs: solve A in terms of f
integral over f and its derivatives only

linearise $\left\lvert\,$| around fixed point (pure AdS black brane) |
| :--- |
| simplifies to |
| simple functions of u | $\int_{0}^{1} \mathrm{~d} w\left[P(u) \overleftarrow{\left.\delta f^{\prime \prime}(u)+Q(u) \delta f^{\prime}(u)+\left(Q^{\prime}(u)-P^{\prime \prime}(u)\right) \delta f(u)\right]}\right.\right.$

> integration by parts yields $\mathrm{H}=0$

9. Numerical results

9. Numerical results

Does H vanish beyond leading non-conformal corrections?
$>$ consider two specific families of ($\Delta=3$)-operators (bulk potentials)
$>$ construct numerical black-brane backgrounds (method developed in [Gubser,Nellore '08])
$>$ compute the $4 Y_{j}^{(a)}$ (numerical integrals over background)
$>$ plug result into expressions for transport coefficients
$>$ Check of results:
leading non-conformal correction to background \& transport only depends on mass term in bulk potential (close to UV fixed point: scalar ϕ small)
$>$ leading correction common to all flows
> we could determine the leading backreaction analytically

9. Numerical results

9. Numerical results

9. Numerical results

Main results

(we looked at around 20 parameter values for ϕ_{m} and γ, and around 40 temperatures for each flow)

1) method works
2) UV (high T / Λ) well described by leading backreaction of ϕ
3) within numerical accuracy ($\lesssim 10^{-5}$):

$$
H=2 \eta \tau_{\pi}-4 \lambda_{1}-\lambda_{2}=0
$$

...even when individual coefficients deviate from their conformal values by factors of two and more
$>$ suggests that H vanishes in holographic fluids irrespective of conformal symmetry
$>$ further evidence that the Haack-Yarom identity $\mathrm{H}=0$ may be universally satisfied by strongly coupled fluids

Table of Contents

1. Motivation
2. Summary of our results
3. Quick recap of hydro
4. New Kubo formulae for non-conformal $2^{\text {nd }}-$ order hydro
5. Applying Kubo in holography
6. A class of non-conformal holographic models
7. Solving Einstein's equations
8. Analytic results on second-order transport
9. Numerical results on second-order transport

10. Conclusion

Summary

- new Kubo formulae for $\eta \tau_{\pi}+\kappa^{*}, \kappa, \lambda_{1}+\kappa^{*} / 2, \quad \lambda_{2}, \quad \lambda_{3}-2 \kappa^{*}$
- focusing on holographic RG flows triggered by a ($\Delta=3$)operator we found:
$>\tilde{H}=2 \eta \tau_{\pi}-2\left(\kappa-\kappa^{*}\right)-\lambda_{2}=0$
$>\quad H=2 \eta \tau_{\pi}-4 \lambda_{1}-\lambda_{2}=0$ when taking into account leading non-conformal corrections
$>$ numerical evidence that $H=0$ beyond leading corrections

10. Conclusion

Outlook

1) include sound perturbations of metric
$>$ possible to compute all $152^{\text {nd }}-$ order transport coefficients

- caveat: sound waves excite theory-specific matter content
> universal behaviour unlikely
- but: can check constraints from entropy current!

2) try to generalise proof that $\mathrm{H}=0$
3) investigate consequences of results for entropy current

- NB:

$$
\begin{gathered}
H=2 \eta \tau_{\pi}-4 \lambda_{1}-\lambda_{2}=0 \quad \& \quad \tilde{H}=2 \eta \tau_{\pi}-2\left(\kappa-\kappa^{*}\right)-\lambda_{2}=0 \\
\Longleftrightarrow H=0 \quad \& \quad 2 \lambda_{1}=\kappa-\kappa^{*}
\end{gathered}
$$

$>$ perfect, conformal fluids satisfy $H=0 \quad \& \quad 2 \lambda_{1}=\kappa$
$>$ entropy production in quantum fluids generally suppressed at strong coupling?

Thank you!

Backup Slides

5. Applying Kubo in holography

Gravity/Gauge Duality

5d Einstein gravity
...in asymptotically AdS

+ higher derivative corrections
+ quantum corrections
black-brane solutions

\Longleftrightarrow strongly coupled 4d QFT ... with UV fixed point
+ finite coupling corrections
+ finite central charge corrections
thermal equilibrium in flat space

5. Applying Kubo in holography

"Lagrangian" Holographic Dictionary

5d Einstein gravity
\Longleftrightarrow strongly coupled 4d QFT
near the AdS boundary $\zeta \longrightarrow 0$:

- dynamical bulk metric
$\frac{L^{2}}{\zeta^{2}}\left(\mathrm{~d} \zeta^{2}+g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\ldots\right)$

- external field-theory metric

$$
g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

scalar field ϕ
with mass $m^{2} L^{2}=\Delta(\Delta-4)$
$\left.\phi(\zeta, x)=(\Lambda(x) \zeta)^{4-\Delta}+\ldots\right)$ "boundary value" $\frac{\text { prescribed by... }}{\int \underbrace{\int \mathrm{d}^{4} x \sqrt{-g_{(0)}} \Lambda(x) O(x)}_{\text {deformation of UV }}}$

5. Applying Kubo in holography

"Hamiltonian" Holographic Dictionary

$>$ global charges agree in dual theories
> in particular

$$
\underbrace{\mathcal{T}^{\mu \nu}}=\frac{2}{\sqrt{-\gamma}} \frac{\delta S_{\text {gravity }}^{\text {ondell }}}{\delta \gamma_{\mu \nu}} \propto \underbrace{\left\langle T^{\mu \nu}\right\rangle}
$$

quasi-local gravity stress tensor \uparrow field-theory stress tensor

> induced AdS-boundary metric
off-shell:
$\delta S_{\text {gravity }}^{\text {off-shell }}=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{5} x \sqrt{-g} \operatorname{EOM}^{m n} \delta g_{m n}+\frac{1}{2} \int_{\partial A d S_{5}} \mathrm{~d}^{4} x \sqrt{-\gamma} \mathcal{T}^{\mu \nu} \delta \gamma_{\mu \nu}$
$>$ to obtain $\mathcal{T}^{x y}$ up to $\mathcal{O}\left(h^{2}\right)$ in the boundary perturbation we only need to solve $\mathrm{EOM}^{x y}$ up to $\mathcal{O}\left(h^{2}\right)$ included

5. Applying Kubo in holography

Strategy

...to compute transport coefficients in holographic theories:

- perturb external field-theory metric $g_{(0) \mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x)$
$>$ presribe corresponding AdS-boundary value of dual dynamical bulk metric $g_{m n}$
- solve Einstein's equations perturbatively in
$>$...momenta (hydro gradient expansion)
$>$...sources $\quad\left(\mathcal{O}\left(h^{2}\right)\right.$ sufficient for 3-point functions)
- extract field-theory stress tensor $\left\langle T^{x y}\right\rangle[h]$ from dual gravity solution according to holographic dictionary
- compare with effective hydro result for $\left\langle T^{x y}\right\rangle[h]$ to read off transport coefficients

7. Solving Einstein's equations

e.g. turn on field-theory metric perturbation

$$
g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+\mathrm{d} \underline{x}^{2}+\epsilon\left(H_{t y}^{(b)} e^{i p_{z} z} 2 \mathrm{~d} t \mathrm{~d} y+H_{x z}^{(b)} e^{-i q_{0} t} 2 \mathrm{~d} x \mathrm{~d} z\right)
$$

perturbative expansion in sources
> bulk metric:

$$
g_{m n} \mathrm{~d} x^{m} \mathrm{~d} x^{n}=\underbrace{g_{m n}^{(0)} \mathrm{d} x^{m} \mathrm{~d} x^{n}}+\underbrace{\leftarrow \epsilon g_{\mu \nu}^{(1)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}}+\underbrace{\epsilon_{2}^{g_{\mu \nu}^{(2)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathcal{O}\left(\epsilon^{3}\right)}}
$$

background sourced fluctuation dynamical backreaction

7. Solving Einstein's equations

e.g. turn on field-theory metric perturbation

$$
g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+\mathrm{d} \underline{x}^{2}+\epsilon\left(H_{t y}^{(b)} e^{i p_{z} z} 2 \mathrm{~d} t \mathrm{~d} y+H_{x z}^{(b)} e^{-i q_{0} t} 2 \mathrm{~d} x \mathrm{~d} z\right)
$$

> bulk metric:

$$
g_{m n} \mathrm{~d} x^{m} \mathrm{~d} x^{n}=\underbrace{g_{m n}^{(0)} \mathrm{d} x^{m} \mathrm{~d} x^{n}}+\underbrace{\epsilon g_{\mu \nu}^{(1)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}}+\underbrace{\stackrel{\epsilon_{2}}{g_{\mu \nu}^{(2)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathcal{O}\left(\epsilon^{3}\right)}}
$$

background sourced fluctuation dynamical backreaction

$$
\Longrightarrow g_{m n}^{(0)} \mathrm{d} x^{m} \mathrm{~d} x^{n}=e^{2 A}\left[-f \mathrm{~d} t^{2}+\mathrm{d} \underline{x}^{2}\right]+\frac{L^{2}}{4 u^{2} f} \mathrm{~d} u^{2}
$$

Note: the shear-perturbations we turn on do not source fluctuations of the bulk scalar ϕ
$>$ only excite universal gravity sector

7. Solving Einstein's equations

e.g. turn on field-theory metric perturbation

$$
g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+\mathrm{d} \underline{x}^{2}+\epsilon\left(H_{t y}^{(b)} e^{i p_{z} z} 2 \mathrm{~d} t \mathrm{~d} y+H_{x z}^{(b)} e^{-i q_{0} t} 2 \mathrm{~d} x \mathrm{~d} z\right)
$$

perturbative expansion in sources

> bulk metric:

$$
g_{m n} \mathrm{~d} x^{m} \mathrm{~d} x^{n}=\underbrace{g_{m n}^{(0)} \mathrm{d} x^{m} \mathrm{~d} x^{n}}+\underbrace{\epsilon g_{\mu \nu}^{(1)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}}+\underbrace{\iota_{2}^{2} g_{\mu \nu}^{(2)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathcal{O}\left(\epsilon^{3}\right)}
$$

background sourced fluctuation dynamical backreaction
$\Longrightarrow g_{m n}^{(1)} \mathrm{d} x^{m} \mathrm{~d} x^{n}=e^{2 A}\left[H^{(1 z)}\left(u, p_{z}\right) H_{t y}^{(b)} e^{i p_{z} z} 2 \mathrm{~d} t \mathrm{~d} y+H^{(1 t)}\left(u, q_{0}\right) H_{x z}^{(b)} e^{-i q_{0} t} 2 \mathrm{~d} x \mathrm{~d} z\right]$
$>$ Einstein's eqs. at $\mathcal{O}(\epsilon)=$ boundary value problem for bulk functions $H^{(1 z)}\left(u, p_{z}\right) \& H^{(1 t)}\left(u, q_{0}\right)$
$=1$ at boundary (explicitly sourced)
= regular at horizon (static)
$=1$ at boundary (explicitly sourced)
= incoming-wave at horizon (time-dep.)

7. Solving Einstein's equations

e.g. turn on field-theory metric perturbation

$$
g_{(0) \mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+\mathrm{d} \underline{x}^{2}+\epsilon\left(H_{t y}^{(b)} e^{i p_{z} z} 2 \mathrm{~d} t \mathrm{~d} y+H_{x z}^{(b)} e^{-i q_{0} t} 2 \mathrm{~d} x \mathrm{~d} z\right)
$$

> bulk metric:

$$
g_{m n} \mathrm{~d} x^{m} \mathrm{~d} x^{n}=\underbrace{g_{m n}^{(0)} \mathrm{d} x^{m} \mathrm{~d} x^{n}}+\underbrace{\leftarrow \underbrace{\downarrow^{\downarrow}}_{g_{\mu \nu}^{(1)} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}}+\underbrace{\epsilon_{2 \nu}^{(2)} g_{\mu \nu}^{\mu} \mathrm{d} x^{\nu}+\mathcal{O}\left(\epsilon^{3}\right)}}
$$

$$
\Longrightarrow g_{x y}^{(2)}=e^{2 A} H^{(2 t z)}\left(u, q_{0}, p_{z}\right) H_{t y}^{(b)} e^{i p_{z} z} H_{x z}^{(b)} e^{-i q_{0} t}
$$

$>$ xy-component of Einstein's eqs. at $\mathcal{O}\left(\epsilon^{2}\right)=$ boundary value problem for bulk function $H^{(2 t z)}\left(u, q_{0}, p_{z}\right)$

$$
\begin{aligned}
& =0 \text { at boundary (not explicitly sourced) } \\
& \text { \& near-horizon form dictated by } H^{(1 z)}(u) \text { and } H^{(1 t)}(u)
\end{aligned}
$$

7. Solving Einstein's equations

It turns out that the 3 field-theory metric perturbations
$\left\{h_{x z}(t), h_{y z}(t)\right\},\left\{h_{t x}(z), h_{t y}(z)\right\},\left\{h_{t y}(z), h_{x z}(t)\right\}$
involve 5 independent bulk functions:

$$
\begin{aligned}
H^{(1 z)}(u, q), & H^{(1 t)}(u, q) \\
H^{(2 t z)}(u, q, p), & H^{(2 t t)}(u, q, p), \quad H^{(2 z z)}(u, q, p)
\end{aligned}
$$

\checkmark done: perturbative expansion in sources (in ϵ)
$>$ next: hydro gradient expansion
$>2 \mathrm{x} \quad H^{(1 \ldots)}(u, q)=H_{0}(u)+q H_{1}(u)+q^{2} H_{2}(u)+\mathcal{O}\left(q^{3}\right)$

$$
\begin{aligned}
>3 x \quad & H^{(2 \ldots)}(u, q, p)=H_{(0,0)}(u)+\left[q H_{(1,0)}(u)+p H_{(0,1)}\right] \\
& +\left[q^{2} H_{(2,0)}+q p H_{(1,1)}(u)(u)+p^{2} H_{(0,2)}(u)\right]+\ldots
\end{aligned}
$$

> $2 \times 3+3 \times 6=24$ functions

7. Solving Einstein's equations

> $2 \times 3+3 \times 6=24$ functions

- We found analytic solutions for 19 and explicit integral expressions for another 4
(given in terms of arbitrary black-brane background solutions)
>1 unknown function
...which however (as it turns out) does not enter $\left\langle T^{\mu \nu}\right\rangle$!

7. Solving Einstein's equations

To give an idea of what the solutions look like:

$$
H^{(1 t)}(u, q)=\underbrace{(1-u)^{-i q /(4 \pi T)}}_{\text {incoming-wave }}\left[1-q \frac{i}{4 \pi T} \log \left(\frac{f(u)}{1-u}\right)+q^{2} K_{2}^{(1 t)}+\mathcal{O}\left(q^{3}\right)\right]
$$

...where

$$
\begin{aligned}
K_{2}^{(1 t)}(u)= & \int_{0}^{u} \mathrm{~d} v \frac{1}{v f(v) e^{4 A(v)}} \int_{1}^{v} \mathrm{~d} w w f(w) e^{4 A(w)}\left(-\frac{L^{2}}{4 f(w)}\right)\left\{\frac{1}{w^{2} f(w) e^{2 A(w)}}\right. \\
& \left.+\frac{f+2(1-w) f^{\prime}-\log \left(\frac{1-w}{f}\right)\left[\frac{f}{w}+4(1-w) A^{\prime} f+(1-w) f^{\prime}\right]}{(1-w)^{2} f_{H}^{2} e^{2 A_{H}}}\right\}
\end{aligned}
$$

Note: all results reproduce conformal expressions for $\phi \rightarrow 0$.

9. Numerical results

Two families of holographic RG flows

$1^{\text {st }}$ family of bulk potentials:

- derives from quartic superpotential $L W=-\frac{3}{2}-\frac{\phi^{2}}{8}+\frac{\phi^{4}}{16 \phi_{m}^{2}}$
- has max at $\phi=0$, min at $\phi=\phi_{m}$
$>$ second AdS region for $\phi \rightarrow \phi_{m}$ with smaller AdS radius and IR operator dimension $\Delta_{\mathrm{IR}}=4+48 /\left(24+\phi_{m}^{2}\right) \in(4,6)$
$>$ dual IR fixed point
$2^{\text {nd }}$ family of bulk potentials:

$$
V_{(2)}=\frac{1}{L^{2}}\left[-12-\left(\frac{3}{2}-\frac{1}{\gamma^{2}}\right) \phi^{2}+\frac{2}{\gamma^{4}}(1-\cosh (\gamma \phi))\right]
$$

- monotonically decreasing --> non-conformal IR
- in the deep IR: $L^{2} V_{(2)} \xrightarrow{\phi \rightarrow \infty}-e^{\gamma \phi} / \gamma^{4}$
> non-conformal Chamblin-Reall background (transport coefficients obtained by compactifying AdS)

9. Numerical results

9. Numerical results

