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Unified approach to the holographic map

The main motivation of this work is the desire for a universal algorithmic
construction of the holographic dual to any gravitational theory

Within the gauge/gravity duality such a universal algorithm does exist and there
are feasible ways to generalize it beyond supergravity

The input of this algorithm is the gravitational Lagrangian (or equations of motion —
cf. Vasiliev’s theory) and possibly a choice of boundary conditions

The output is the full holographic dictionary, i.e. spectrum of operators, sources,
1-point functions, free energy etc.

The central objects are a complete integral of the radial Hamilton-Jacobi equation
and the symplectic 2-form of the theory



These two objects:

m determine the boundary terms that render the variational problem at infinity well
posed and the on-shell action UV finite

m lead to a very efficient way of deriving the general asymptotic expansions — cf.
Fefferman-Graham expansions, and hence identifying the sources and 1-point
functions of the dual operators (symplectic form)

m provide ‘fake superpotentials’ that turn the second order equations of motion into
first order BPS-like equations

m provide a complete set of asymptotic WKB wavefunctions of quantum gravity



Lifshitz & hyerscaling holography

m Holographic description of quantum critical points and QFTs exhibiting
hyperscaling violation

m Geometries suffer from IR pathologies — not relevant here

m These backgrounds can emerge in the IR or some intermediate energy scale
starting with some other UV completion — e.g. AdS in the same or higher
dimensions

m Here we will focus on the case where these geometries are considered as the UV.
Otherwise we can develop the holographic dictionary in whatever UV completion
these geometries emerge from



Related work for Lifshitz

m [Ross & Saremi '09] (Einstein-Proca, counterterms by hand, only linearized
fluctuations)

m [Ross '11] (Einstein-Proca, vielbein formalism, counteterms derived using dilatation
operator method [I.P. & Skenderis '04])

= [Mann & McNees '11] (Einstein-Proca, counterterms put by hand)

m [Baggio, de Boer & Holsheimer '11] (Einstein-Proca-scalar with no mixing , only
constant sources, incomplete source/vev map)

® [Chemissany, Geissbiihler, Hartong & Rollier '12] (d = 4 z = 2, Scherk-Schwarz
reduction from 5d axion-dilaton model [I.P. "11])

B [Korovin, Skenderis & Taylor '13] (z = 1 + ¢)

B [Christensen, Hartong, Obers & Rollier '13] (d = 4 z = 2, Scherk-Schwarz reduction
from 5d axion-dilaton model [I.P."11])

B [Andrade & Ross '13] (Einstein-Proca, linear metric fluctuations)
= Related work also in Hofava gravity
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Lifshitz

m The Lifshitz metric is
dsiJr2 =22 (du2 —u 2D dzadma>
with dynamical exponent z # 1
m This metric is invariant under the scaling transformation
z® = Xzt — Nt , u—
m The null energy condition
Tuwktk” >0, KMk, =0

requires
z>1



Hyperscaling violating Lifshitz

m Hyperscaling refers to the property that the free energy and other thermodynamic
quantities scale with temperature by their naive dimension. e.g. S ~ 7(2=9)/z,
where 6 is the hyperscaling violating parameter

m The Hyperscaling violating Lifshitz metric is [Huijse, Sachdev & Swingle '11]
d83+2 = (2y—2(d=0)/d (du2 — 2D g2 4 dx“d:va)
with dynamical exponent z # 1 and hyperscaling violation exponent 6 # 0
m This metric has the scaling property that under
% = Xz, t— Nt , u— du

the metric transforms as
ds3 o — X2/4ds?

m In order to interpret the space spanned by the spatial transverse coordinates as a
boundary of the hvLf space then we must require that

0<d



m For 6 > 0 the metric develops a curvature singularity as u« — 0
m For 6 = 0 the metric reduces to Lifshitz geometry
m For 6 < 0 we can bring this metric to the canonical form

ds® = dr? + ’yijd:vid:pj
by the coordinate change

r d 6/d
7 u s <

m After this coordinate transformation the components of the induced metric -;; are

Vet = —TZ(lﬂ%)v Yta =0,  Yap = 7’2(1+‘%|)



The model

T k2

§=_t /M 422/ =5 (Rlg] — aduddhd — Z()F? — W($) A% — V(g))

m Preserve U(1) gauge symmetry via the Stlickelberg mechanism:
Ay — By =A, —0uw
such that under a U(1) transformation
Ay = Ap+0uN, w—=w+A

m Weyl transformation:
g — 625¢g



1

% = 22

d22/=ge®? (R[g] — acdudd" ¢ — Ze(¢)F* — We(¢)B? — V(o))

g =a—d(d+ 1)§2
Ze(¢) = e 242 Z(9)
We(¢) = W (o)
Ve(o) = >V (¢)




Lifshitz & hvLf solutions

Ve = VOCQ(P+5)¢>7 Ze = Zoe*Q(EJrV)lﬁ7 We = Woe2o?



Lifshitz solutions

ds? = dr? — e2*"dt? + ?"da?, B = b(r)dt, & = o + pr,

p=—

_ (o +dPE)p® —dug+2(2 - 1)
= z—1
VZiéiz—e

o
zZ — €
o=
n

Wo = 2Zoe(d + z + dp& — ¢€)
Vo = —d(1 + u)(d+ 2 + dué) — (= — 1)e
b @ o

[

0% = %Zo(z —1)e




HvLf solutions

ds? = dr? — r?v=dt? + r?1dz?, B=0b(r)dt, ¢=¢o+plogr,

where
1+dz 14 d
v, = —, v = —.
’ 0] 0]
wE+p) =-1
B (e +d?€2) p? —dé(v1 + D —vi(d+ vz — 1) + vz (vz — 1)
B v, — 1
V:_g_uz—e
1
v, —€—1
o= ——
1

Wo = 2eZold(v1 + p€) + vz — 1 — ele”2(0H&+)90

Vo = {e(v1 — vz) — d(v1 + p&)[d(v1 + p&) + vz — 1]}e2PF %
Q .
= r
€,
1

Q2 = §Zo(l’z - ’/1)6




Relation between Lifshitz & HvLf

m The parameter ¢ allows us to automatically construct hvLf solutions from Lifshitz
ones and vice versa — but they solve different equations of motion

m If (3, A, ¢) is a solution of the equations of motion with £ = 0 then
(99, AP, ¢19)) = (e72%5, 4,1, 6)

solves the equations of motion with non-zero ¢ — cf. non-conformal branes

m The above Lifshitz and hvLf solutions both solve the equations of motion with a
given &, but we can relate Lifshitz solutions with one value of £, say &;,, to hvLf
solutions with a different value &;,



Change of coordinates

m Starting with the hvLf metric and introducing the new coordinates

d 185 01N ™" y1-0. 7 (|9\>7”1 1vg -
T (L B e e L N
e (d) * d z

the metric takes the form

2(6|7 _ .
ds? =N%e”d  (di? — e**Tdi? + €27 dF?)

while the scalar is given by

¢ = Gor + HLT = don + pplogr
where

d
Hh = KL

d d d
Poh = PoL — pr 7 log A — pp — log —,
’ ] o] o]

16l

m It follows that if g, is a Lifshitz metric and

then

is a hvLf metric with parameter 6.



Relation of parameters

m If g, solves the equations of motion with £ = 0, then gz = e~2¢%g, solves the
equations of motion with non-zero ¢

m Let ge, = e 2L %g, be a Lifshitz metric and g¢, = e~2¢1%g, a hvLf one with
hyperscaling violating parameter 6 that solve the equations of motion
corresponding respectively to £ = £, and £ = &,

m [t follows that the above Lifshitz and hvLf solutions are related via a local
diffeomorphism and with the following map between parameters

ol 1 1 /1
¢, —ép=— = —, [e zalfd(dJrl)— — 4 2&p
dur,  pn L o [N

€h
v — 1

€, =

1
p=—L=—n——
Hh

e —z—prér  €n —Vz — préh

KL Hh
€L —z  —etrvz:—1

KL Hh

(V171>EL7VZ+1}¢0L

0, = QL(VI _ 1)(1/171)5[,71/;4»16[ (v1—Lng



Generic dilaton-axion system

1
S =g [ 4 VA (Bl — 0up0" o — Z(@)0ux0"x + V(#)

= Anisotropic AV = 4 plasma [Mateos & Trancanelli *11]
= Improved Holographic QCD [Gursoy, Kiritsis '07]
= Non-conformal branes [Wiseman & Withers '08], [Kanitscheider, Skenderis, & Taylor '08]



Radial Hamiltonian formulation

m ADM decomposition
ds® = (N2 + NiNi)dTQ + 2N, drdx’ + %-jdxidxj
m Lagrangian
L= 55 [, d%o AN (=R + KiK] = K2 + 32 (p = Ni9,)?
+ 2 Z2(9) (X — N'0:x) + Bipip + Z(0)ix0ix — V() )
= Hamiltonian

H= [ d% (NH+NH)
ZT‘

m Constraints

1 1
2 2 —1 2
71" +ZF¢+ZZ (go)TrX)

55V (R0 = 000 — Z(2)00x0"x + V() = 0

H = 72Dj7rij + 7r<p8it,0 + ﬂxaix =0

+



Canonical momenta

m Momenta from off-shell Lagrangian:

5L 1 y y 1
ij - _ KA _ K Koi = —4
s 5%]_ QHQW( Y )7 ij 271]7
S§L 1 .
Wso—%—?ﬁ%
SL 1 .
™= 50T —VYZ(P)X%
X K

= Momenta from Hamilton’s principal functional S[v, ¢, x| (on-shell action):

08 S S
= My = — Ty = —
vij dp dx




BPS-like equations & asymptotic expansions

m Combining the two expressions for the canonical momenta leads to the first order
equations:

Yij = AK> (’Yik'le ! ’Ykl’Yz]) L o8
d— f57kl
2188
fﬁw
%= K221 ()= 25
V7 Ox

m Given a solution S[v, ¢, x| of the Hamilton-Jacobi equation these equations:

m are first order BPS-like equations for background solutions (cf. fake supergravity),
with S as the (fake) superpotential

m determine the asymptotic expansions of the fields v;;, ¢ and x
(cf. Fefferman-Graham expansion)



Recursive solution of the Hamilton-Jacobi equation

m The Hamilton-Jacobi equation is a functional equation for the on-shell action as a
function of the induced fields on a given hypersurface %, i.e.

S= [ dLly, ¢,
Js,

m Look for a solution in the form of a covariant expansion in eigenfunctions of a
suitable functional operator ¢

S:S(o)+5(2)+3(4)+"‘

® The choice of 3 is not unique, but it must be chosen so that the covariant
expansion is compatible with the radial asymptotic expansion of the fields



Dilatation operator

m e.g. for AIAdS asymptotics we have
Yij ~ 2%i5, ¢~ —(d—Ag)p, x~0

m |t follows that the generator of radial translations can represented asymptotically
as

: ) 5 B : 5 )
aT:/dda:(w +¢—+x—>~/ddx(2fy,~ —(d-A (,0—)
. 7 675 % ox . 7 i ( 2 5

m This is the dilatation operator of the dual theory and it is the correct operator for
the covariant expansion in the case of AIAdS asymptotics [I. P. & Skenderis '04]




Non-AIAdS asymptotics & zero order solution

m More general asymptotics can be parameterized in terms of the relations

Yig ~ figlvooxl, @~ gl e xl, x ~ hly, e, X

where f;;, g, h are algebraic functions of v, ¢ and x
= Any asymptotic solution of this form can be obtained from a ‘superpotential’

1
Sy =— [ d=AU(p,x)
k2 s,

via the first order BPS-like equations
m U(yp, x) satisfies

(0,07 + 27 ()(OU) ~ T 07 + V(o) =0

m Any x dependence of U(y, x) gives only a finite contribution to S and therefore we
can take U () for the purpose of constructing the general asymptotic expansions



Expansion operator

m We expand S in eigenfunctions of an operator § such that S(0) is an eigenfunction
and higher order terms are asymptotically subleading

m An operator that fulfills these criteria for arbitrary superpotential U () is

. )
0:=16y = /ddﬂvnﬁ
ij

m ¢, counts powers of the induced metric ;5. e.g.

57"7/”' = 2’}/”', ‘;’yRij = 0, 5ryR = —2R, 6A/(al(,081(,0) = —281@824,0



Linear equations for higher order terms

m Inserting the expansion of S in eigenfunctions of §., into the Hamilton-Jacobi
equation and collecting terms of the same eigenvalue we obtain a tower of linear
equations for £3,,), n > 0

d—2n
d—1

—
U’(s@)@/ dda:z:@nr( )U(S@)L(zn) — Rigmy >0

m The source terms are given by

1 ) .
R2) = =55 V7 (B = 810" = Z(2)9ix0') ,
| n—1 ) 1
_ 2.,—5 7
Rian) = =26%772 3 (W<2m>j7r(2(n—m))i = T em) T n-m))
m=1

1 1 __
1 e @m)Tem-m) T 12 1(50)7FX(2m)7rX(2(n7m))) ;o n>1



General solution of linear equations

m Homogeneous solution (UV finite):

LT = F (am) by, xJe™ (472mAW)
where " .
? L.
A= U
d—1 / o)

and F(2,,)[7, x] is a local function of ~;; and x of weight d — 2n

m Inhomogeneous solution:

Ligmy = e (- 2n>A<¢)/ LA=IARIR ()




Functional integration

R(2n)

£(2n)

rim (9)t112: 0 Im o 00, 0. 05 @

im

r2(e)t"Y DD

ijkl ijkl
(T122(“’)t;] + 512, (0)ty ) 8,00 0Dy D¢

ikl ijkl
(Tzz(vr)t;] + 552 (9) 1y )Ding;Dleq;

Fifom Tim (@)E1I2Im O 00, 0. 0 e

im
P ro (@)t DDy
n,1"2 i B
Ty N, i
~ A2 UNATOG (L) £7 1 r2 (@)t 0100
ikl
fi 3 5129(@)t5’ " 9,00;0D Dy
~,tgkl L ijkl
(12 2 ma2 @47+ 425 s p0 (21t
A 2
—2475 U/ 470% (A7) 47 2 502 (9115 "1 0i 00,0 Di Dy o

D;D;¢Dy Do

T
- ©
3

I

= (A/)m e—(d72n)A /90 %e(dfhz)A (A/)fm




Recursion procedure

[ 5

R(2n) % L (2n) —  A{7men}
5 /

{Tent2)} —————— Lintz) ——— Rent2)

l I

Rintsy ——— Lnta)



Radial Hamiltonian formalism for massive
vector-scalar theory

m Radial ADM Lagrangian:

2d
L = 2H2/dd+1x\/ Ned5¢{R[7}+K2 KVK;; + == 5

K(¢$— N'9;9)
2 (6= N'0i6) — ar 0900
—Z¢(9) (%VU(FM — N*Fri)(Frj — N'Fy) + ’Yij‘rleuchz)
~We(0) (% (Ar = NPA; — &+ N'ow)” + 'yijBiB]) - v5(¢)}
m Hamiltonian:
o= [ (Gmt + At by +om) L

= /dd‘Hx (NH + N;H' + A F)



Constraints

- K ) 1 i 1 2
M= = & {2 ('Yik’le - g’Yij'Ykl) ikl 2o (mp — 26m)
11
+ 2 @)t S W 1(¢)7ri}
+ Wed&b (=R + agd'¢0i¢ + Ze () Y Fij + We(¢) B' Bi + Ve ()

H' = —2D;nl + F'i7d + m38'¢p — Bim,

F=-Dit’ + 7,



Canonical momenta

m From off-shell Lagrangian:

oL oodE
iJ dé¢ K ij _ K4 4+ = ij _ Nka ) ,
™ P 2,#\/ ve ( v N <¢> k¢>
i oL
i _ _ S~ edEP . _ NFk .
TTSA 2142 7 Ze(0 )N 7 (B = N
(5L ded ( 2045 7. )
= —=— 2dEK — N*0;
=53 2’{2 V—e 3 (- )
T = i—L Fedsd’WE( ) (w— N"9;w — Ar + N'A;)
w

m From on-shell action:

ij 6S i 6S oS oS
=

bviy A T s T




Flow equations

m Combining the two expressions for the momenta:

4k? ag +d%¢? 5 13 5
——e %2 (('Yik'le - ’Yij’Ykl) o ) S,

Vi = V= do P zvij%
A; = f%QV%e—deglwm %s,

¢ = —%2\/%—76_‘154) (% — 287ij %) S,

W= —\/'f—;e*dwwgl(@%s



Zero derivative solution

m The zero order solution of the HJ equation contains not transverse derivatives:
Sy = /dd“x\ﬁU(qs,A A

m Inserting this ansatz into the Hamiltonian constraint yields a PDE for U(X,Y),
where X := ¢, Y := B; B* = A; A* (cf. superpotential equation)

i (Ux —&(d+ 1)U +26YUy)? + Z H(X)Y U
- i ((d4+ 1)U +2(d—1)YUy) (U — 2YUy) = %e2d§x (We(X)Y + Ve(X))

m Lifshitz asymptotics impose constraints on the asymptotic form of U(X,Y)



Lifshitz constraints

m Decomposition in time and spatial parts:
VYij dztdr! = — (n2 - nana)dt2 +2ngdtdz® + o gpdz® dxb, A;dz' = adt+ Agdz®

m The first order flow equations become:

d2 2
Oyn? = 4e~%® (7Uy(a —n%A,)?% + ( XU+ ¢ ——Ux MYU}/) n2)

2do 20 do
d2 2
fq = de~ %9 (UyaAa + (2d U+ %U %YUY) na)
a +d2 2
Gap = de U (UyAaAb + <2d U+ i fdiagYUy) aab)

a=—e %7 (¢)Uya
Aq = —e" %071 (8)Uy Aq

b= —Lemdto (1 (a4 1)U + 26vUy)
o



m Requiring that U (X,Y"), via these flow equations, leads to asymptotically Lifshitz
bahaviour, i.e.

n~ e n)(t,z)

Ng ~ ezrn(o)a(t,x)
Tab ~ €7 g(0yap (t, T)
a ~ aq)(t,z)e”

Aa ~ Agya(t,z)e”

®m imposes the constraints:

1
ET2Z7YX), Ban~0

BB~ —
Y = BiB' ~Yo(X) =~ — 7

m or equivalently

) z—1__
Y = B;B' ~ Y,(X)B; ~ By = (Bot, Boa) := (” Z 1(‘15)7 0>




Asymptotic form of zero order solution

m Moreover, the function U (X, Y") must satisfy

U(X, Yo(X)) ~ e®X (d(1 + pé) + 2~ 1)
Uy (X, Yo(X)) ~ —ee™X Z¢(X)
Ux (X, Yo(X)) ~ e™X (—pog + dé(d + 2))

m Hence, the asymptotic form of the zero order solution is

1 1 X
S0y ~ = /E d g /—rede? (d(l + pé) + 5(z —-1) - cZg(qb)BiBl)




Comments

m B; must be kept explicitly in the zero order solution to reproduce the asymptotic
form of 7 via the flow equations

m The Lifshitz constraints means that we set some of the sources of the full theory to
zero — sources of irrelevant operators with respect to the Lifshitz theory

m How the Lifshitz constraints are relaxed in subleading orders depends on a
complete integral U (X, Y") of the superpotential equation — we will mostly focus
on the case where the Lifshitz constraints are violated by normalizable modes
only, i.e.

B, — By =0 (e(e—z—d—d,ué)'r>

m Our approach remains fully covariant despite the non-relativistic constraints —
simplifies the solution of the HJ equation



Recursive solution of the HJ equation

= In order to solve the HJ equation iteratively, we again expand S formally in
eigenfunctions of a suitably chosen operator §

m The requirements that determine the operator 3 are:
m the zero order solution

o
So) = = [ 4" ey/ AU, B
Z'V‘

is an eigenfunction for arbitrary U (¢, B?) and
= the expansion in eigenfunctions of § is compatible with the asymptotic expansions in the
radial coordinate

m These determine

~ 0 0
5= [ ditt (2 ij—— + B; )
/ xT Yij 57“ + ZdBi

S=So+S@yt+ - +Suw +- -

m We then write

with .
08y = (d+1—=k)S 1y



Linear recursion equations

1 5 5
e Z (Ux — (d+1)EU + 26YUy) — — 4Uy B;Bj —
(0% 6¢) 6 Yij
1 - )
+ {— (U — 2(ag + d*€*)YUy +deUx) + Z; 1UY} Bi—— } /dd+1xc<k)
da 0B;
€™ (aeU — 2(a¢ + d*)YUy + dUx) (d+1— k) Ly = Ry, k>0

Ry = —‘_ved@*(—Rh]+a§0i¢8i¢+2§(¢)FijFij)51@2

LR aeo
— W (}5)7@; m)Tw (k—m
ZF mX:l (m) ( )

2 k=1
K2 4 1 ij ki
- T,ye £ mZZI {2 (’m’m - g%‘j’m) T (m) " T (k—m)

1 __ i 1
+ZZ5 1(¢)W(m) T(k—m)i + Z (7r¢(m) — 2571'("1)) (7r¢(k,m> — 2§7T(k7m))}




General solution method (characteristics)

m To solve these linear equations in general we need to eliminate the functional
derivatives w.r.t. v;; and B; by means of a field redefinition

Yij = Yij = vij — (¢, B*)B; B,
B; = v; = B(¢, B*)B;
m The functions 9(¢, B2) and 5(¢, B?) are determined through linear PDEs
m The recursion relations then simplify to
1 0
eI~ (Ux — (d+ DEU +26YUy) 31 [ @ 1a ool
1 ~
— e % (agU — 2(ag + €)Y Uy +dEUx) (d+ 1= 1)L [F,v, 6]
:R(n)ﬁjvvv(ﬁ]v n>0

m Only need to integrate in ¢, keeping 7;; and v; fixed.



Solution with Lifshitz constraints implemented

m [f the Lifshitz constraints are only violated by normalizable modes, then a simpler
recursion algorithm is possible. Namely, in that case we need only know S to
linear order in B; — B,;

m At each order k in the expansion in eigenfunctions of 5 we expand
Ly (@), B(z), $(x)] = L{y [1(2), ¢(x)]

+/dd+1:c'(Bi(90,) _Boi(x/))ﬁbi) (), p(z); '] 4 -



k = 0 equations

m The zero order solution S is specified by the function U (X, Y") which can be
Taylor expanded as

U = Uo(9) + UL($)(Y = Yo(9)) + U2($)(Y — Yo(¢))* + O(Y — Yo(9))*

where _ _ _
Y —Y, =2B}(B; — Boi) + (B* — B;)(Bi — Boi)

m Parameterizing the coefficients as
Up = el@TDEY 7y, (¢)

and inserting this expansion in the ‘superpotential equation’ for U(X,Y") we get a
tower of equations for the functions w,, (¢)



m The lowest two equations are:

2/, Z \Z 8
{E (“O+ Z“l) 7 -1
1 , Z/ !
ta (“0 * 7“) ( Z

Z 2¢ z
u’1+—u1>— 1u%—u1(u0—4u1):—

1 z' \? 2 2(d—1) 2 d+1
("6 - “”) *(f - T) uit Guon == g = 5 V-

4
ul + g (uo =+ 2(d — 1)U1) u

2e

Wzt



k > 0 equations

m For k > 0 the leading order equation is

1/, Z 5 4 g d+1_1 0
{E (uo + fm) % —4Y " u1BoiBoj s /d T E(n>

1 A ! 1 2¢ ;
+ (% (uE) + —ul) — + = (up +2(d — Duy) — = lul) Boi /dd"rlx’[f%:l)

—(d+1—n) (; (u6 + Z?/u1> + é(uo — 2u1)) E(()n) v(x),d(x)] = e‘&d”]g?n)



Consistency condition

m The Taylor expansion in B; — B,,; is not automatically consistent with the radial
evolution. Demanding compatibility leads to additional equations
m The potential incompatibility arises due to two possible ways of evaluating the
radial derivative of B;:
m Since B; = B,,; up to normalizable modes
. . ;i Z!
B; = B,; + normalizable = o 1 E(¢)
n 2 Ze(¢)

¢> B, + normalizable

= But also

. k21 a4 é
Bi=———— P71 i ——8 — i
TRV ¢ (Oni5p, i«



m Demanding that these two expressions give the same result lead to the following
consistency conditions

2 z' z' 8e 4
z - - = 2(d — 1)uy) =0
a(u0+ Zm) 7 271u1+d(uo+ ( Ju1)

5 175 1 ¢Z
2Y, !By B a*tta'Lf d+1—k == )20 =
( okl 20 Z 6¢)/ Hd+1=R) (5= 507 ) L
d—1 1 zZ' € :
) {d (%) Z_JB@/ dd“x’ﬂémw¢<x’>;wl

+ eyt B, (W (00D, [a el (), o))



General solution to linear order in Lifshiz
constraintsat k = 0

zZ! 4 2 2(d+1
V:E(u6+?UI) (ufy — uh) + = (uo — u1)ur + uous — < u? — (d+ )u2

w 2 z(

d z—1 d
, Z ,  Z 2¢ o
u0+?u1 u1+?u1 —Z_lul—ul(u0—4u1)

4
u1 + a(uo—i—Q(d—l)ul) =0

z—1

0

uo(¢) ~ (z — 1+ d(1 + pg)) e ¢

ui(¢) ~ S (z —1)e™*®

1
2




General solution to linear order in Lifshiz
constraints at £k > 0

0 .
] E(ky
1 , 7z ) _1 0 d+1,./ 0
|:E <u0 + ?ul) % —4Y, u1 By Boj 5’Yij:| /d T E(k)
—(d+1-k) 3 u'+zu +l(u —2uq) ) £, = e SPRY
o w0+ —ua ) + 2 (w0 —2u) ) L,y = *)
m £ is determined algebraically from £?

(k) (k)



Solution method (characteristics)

m The vector field

where

¢ do
s(¢) := exp <2a/ u’—f;lm)
(A

is constant w.r.t. the differential operator acting on C‘()k)

m The functional derivative w.r.t. the induced metric ~;; can be eliminated by a
change of variables
Yig = Yij = Yij — 9(#)BoiBoj
where
9 =Y, (1= c*s%(9))

m The integration constant ¢ must be non-zero since det ¥ = c¢?u? det v



Formal

= In terms of the new variables the equation for L((’k> becomes

1 ;2 O [ a1 4,0
. (u0+ ?ul) —(/d T ﬁ(k)

solution

S z' 1 _
—(d+1-k) (* (uf) +u )+ g(uo —2u1) C?k) =e fd’R?k)

(67

m The inhomogeneous solution is

[
L 5, ¢3 0] =ae<d+1—k>ic<¢>/ do’

o~ (d+1-k)K(8)

etd’ <u6 + Z7'u1

> R(()k) [ﬁv ¢>/§ ’U]

where

e(P) — Zgl/25z7i1*1

m The functional integrations can be now performed as in the relativistic

axion-dilaton case




New solutions

= ‘Superpotential’ equation:
1
2 (Ux —€(@d+ 1)U + 2YUy)? + 2. H(X)YUY

- 2171 (d+ 1)U +2(d — 1)YUy) (U — 2Y Uy ) = %eﬂﬁx (We(X)Y + Ve (X))

m First order flow equations:

+d2§2
i, = 4e~ %X (Uy A, A, (ﬂU I i ST P
g ¢ (Y it 2da +2a X do Y ) i
A; = _e*dfngl(X)UyA,-
. 1
= ——e %X (Ux — (d+ 1)U + 26Y Uy)
(6%

w =



Complete integrals

m Ansatz that separates variables:

U(X,Y) =eredsX \/32§Xu2(X) +e202(X)Y
m Inserting this ansatz into the superpotential equation gives
0% = agaW(X) >0

2
200w’ —u? (2002 +0'?) = av? (V(X) — %aszl(X))

u? (u’2 - @zﬂ) = au?V(X)

m These can be solved to obtain

v= :t\/E/X dX'\/eaW (X")

w2 {avﬁ_lfxﬁ(V %’UQEQZ_l) o' w40

- —% (V—lv2£2Z’1), v =0

2

where

v

B(X) = e 2



m This class of solutions is compatible with Lifshitz asymptotics provided
e:z+g(5i \/52—4a), €2 > 4a

and
2

«
—,USZZ-F%

m Given this explicit solution for U (X, Y") the first order flow equations can be
integrated to obtain a multi-parameter family of solutions — cf. BPS solutions



Concluding remarks

General recursive algorithm for solving the radial Hamilton-Jacobi equation for an
Einstein-Proca-scalar theory with arbitrary scalar couplings

Lifshitz and hvLf asymptotics can be imposed covariantly as second class
constraints — they correspond to turning off certain irrelevant operators (in
agreement with the results of Ross in the vielbein formalism)

Work in progress to reproduce the results of our algorithm for Lifshitz boundary
conditions using the Dirac algorithm for second class constraints

Work in progress to deduce the asymptotic expansions and the full dictionary for a
number of concrete examples
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