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Introduction: AdS/CMT

Use the gauge/gravity correspondence as a tool to investigate the
dynamics of strongly coupled CFTs at finite temperature and charge
density and/or placed in an external magnetic field.

• Attempt to understand universal features of strongly coupled
condensed matter systems found in the vicinity of ‘quantum
critical points’.

• Explore black hole physics: construct and study novel charged
black hole solutions that asymptote to AdS.
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Introduction: Top-Down Vs Bottom-Up

Top-Down Approach:

• Consider theories obtained by consistent truncations of the
D=10,11 supergravities.

• Difficult to obtain CFTs of interest; involved calculations.

• CFT guaranteed to be well defined.

Bottom-Up Approach:

• Consider phenomenological gravity theories with only few addi-
tional d.o.f. that are dual to CFTs with the desirable features.

• No guarantee to have a string embedding.

• Simple calculations.
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Introduction: Questions

Specific questions that can be addressed:

• What type of phases are possible and what are the transport
properties of each phase?

• What kind of ground states are possible? classification of IR ge-
ometries, investigation of new emergent IR scaling behaviours?

• How do these phases compete? What is the dual phase dia-
gram?
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Holographic superconductors

High Tc -superconductors consitute one the most challenging prob-
lems in condensed matter physics. Remain mysterious due to their
strongly coulped nature.

Minimal ingredients:

• finite temperature → black holes in the bulk

• finite charge density → U(1) gauge field

• an “order parameter” that spontaneously acquires an expecta-
tion value, e.g. a charged scalar for s-wave superconductors.

Superconducting instabilities: As the temperature is reduced, a
new branch of black holes supported by non-vanishing hair emerges
at some critical temperature. The U(1) symmetry is now
spontaneously broken.
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Spatially modulated phases

In condensed matter, phases with spontaneously broken transla-
tional invariance are very common. Realised in various configura-
tions, e.g. stripes, checkerboards and helices.

• Spin Density Wave

• Charge Density Wave

• Current density wave

The modulation is fixed by an order parameter with non-zero mo-
mentum and it’s not related to the underlying lattice of the material.

Holographically, SM phases dual to BHs with broken translational
invariance.
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Key point to get SM phases = mixing modes

• Consider a perturbations of a charged scalar in AdS2×R2.The
e.o.m. becomes �Ads2φ−M2φ = 0, where M2 = m2−ce2+k2.
Unstable region is centered around k = 0.

• Finding the temprature at which the instability sets in, one gets
a “bell curve” with the max. at k = 0.

• Mixing of modes would introduce off-diagonal terms in the mass
matrix that drive the most unstable mode off k = 0, shifting
of the “bell curve” to k 6= 0.
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Examples, at finite charge density:

• in D=5[Nakamura,Ooguri,Park] and in D=4 [Donos,Gauntlett] with
the mixing introduced by CS terms and axions respectively.

• PT does not necessarily need to be broken [Donos,Gauntlett].

Examples, in magnetic field:

• in D=4,5 with mixing term φ ∗ F ∧ G [Donos,Gauntlett,CP]

• in U(1)3 and U(1)4 sugra with metric components mixing as
well [Donos,Gauntlett,CP]. Interesting interplay with susy solu-
tions.

→ Spatially modulated phases are more the rule, than the exception.
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Plan for this talk

Question:
Is it possible to have spatially modulates superconducting states in
holography?[Donos,Gauntlett]

• The FFLO state describes an s-wave superconductor in which
the cooper pair has non-vanishing momentum.

• This was conjectured to exist in the ’60s and possibly has been
seen experimentally in heavy fermion materials and some or-
ganic superconductors, eg CeCoIn5.
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The model of interest

Aim: Study p-wave superconductors in D=5. The order parameter
can be either an SU(2) vector or a two-form. Both cases give similar
results; we focus on the second case.

Consider a theory of gravity in D=5 coupled to a U(1) gauge field
and a complex two-form

L = (R + 12) ∗ 1− 1

2
∗ F ∧ F − 1

2
∗ C ∧ C̄ − i

2m
C ∧ H̄

where F = dA and H = dC + ieA ∧ C .

• For particular values of (e,m), this theory can be obtained as
a consistent truncation from D = 10, 11; corresponds to a
subsector of the D = 5 Romans theory.
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• This theory admits a unit radius AdS5 vacuum solution with
A = C = 0 which is dual to a d=4 CFT with a conserved
U(1) current and a tensor operator with charge, e, and scaling
dimension ∆ = 2 + m.

• Another solution of the theory is the electrically charged AdS-
RN black hole.

ds2 = −gdt2 + g−1dr2 + r2(dx2i ) , A = µ(1−
r2+
r2

)dt .

This corresponds to the high temperature, spatially homoge-
neous and isotropic phase of the dual CFTs when held at finite
chemical potential µ.
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Step 1: Instabilities in the NHL

Study perturbations around the near-horizon limit of the electric
AdS-RN: AdS2 × RD−2 .

• Modes tend to be more unstable in this region.

• Use the AdSd BF bound criterion to check for instabilities:
if the bound is violated, the theory is unstable (converse not
always true)

L2M2 ≥ −(d − 1)2

4
.



Introduction Main Part Conclusions

In our model:
In the NHL, peturbations of the two-form, δC , decouple; consider
the ansatz [Donos,Gauntlett]

δC = · · ·+ dx1 ∧ (u3dx
3 + v3dx

2),

where u3 = d3cos(kx1), v3 = d3sin(kx1) → p-wave
or u3 = d3e

ikx1 , v3 = id3e
ikx1 → p+ip-wave.

• For both cases, if e2 > m2

2 , the BF bound is violated for a
certain k . Most unstable mode has k 6= 0; when heated up, we
expect the preferred branch to be modulated.
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p-wave: δC = · · ·+ d3(r) dx1 ∧ [sin (kx1) dx2 + cos (kx1) dx3]

k = 0: order parameter pointing in −dx2
3 translations and rotations in (x1, x3).

k 6= 0: dualise to see the helical structure, pitch is 2π/k .
x2, x3 translations, x1 translation combined with a rotation,
(x2, x3) rotation (Bianchi VII0)

x1

x3

x2
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(p+ip)-wave: δC = · · ·+ e−ikx1 id3(r)dx1 ∧ (dx2 − idx3)

k = 0: order parameter pointing in dx2 + idx3
3 translations and (x2, x3) rotations upto const gauge transf.

k 6= 0: same as before, but x1 translations are compensated by a
gauge transf.

No helical structure, no symmetry reduction.
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Step 2: Perturbations around AdS5-RN

Consider linearised perturbations around the full AdS-RN black
hole. [Donos,Gauntlett]

• Specify the critical temperature at which the instability sets in.

• Allows to search for instabilities localised far from the horizon.

In our model:

• Two-form perturbations, δC , decouple again. Consider the
same ansatz as before.

• All the action is included in the last term ∼ d3(r):
regular at the horizon and spontaneously breaking the U(1).

d3 = d3+ +O(r − r+), d3 = cd3r
−|m| + · · · .
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• Obtain an one-parameter
family of solutions as ex-
pected. Plot the critical
temperatures Tc versus k for
the existence of normalisable
static perturbations of the
two-form for fixed (m, e).
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• For fixed m, Tc increases as e increases. For fixed e, Tc

decreases as m increases.

• Depending on (e,m) this plot may not cross the k = 0 axis.

• p- and (p+ip)-wave set in at the same temperature.
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Step 3: Backreacted solutions

Construct the backreacted BHs to get information about the ther-
modynamics: is the new branch of black holes preferred?

• In principle, one needs to solve PDEs to study spatial modula-
tion.

• Here, we can get away with solving ODEs: the three-dimensional
Euclidean group breaks down to Bianchi VII0.

• Use the left-invariant one-form of this Lie algebra when con-
structing the ansatz.

ω1 = dx1 ,

ω2 = cos (kx1) dx2 − sin (kx1) dx3 ,

ω3 = sin (kx1) dx2 + cos (kx1) dx3 .
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p-wave helical superconductors

Consider the following ansatz:

ds2 = −g f 2 dt2 + g−1dr2 + h2 ω2
1 + r2

(
e2α ω2

2 + e−2α ω2
3

)
,

A = a dt ,

C = (i c1 dt + c2dr) ∧ ω2 + c3 ω1 ∧ ω3 ,

• E.o.m. boil down to a set of ODEs which is solved subject
to boundary conditions: regularity at the horizon and AdS5
asymptotics compatible with spontaneous symmetry breaking -
no sources.

• Obtain a two parameter family of solutions, labeled by (k ,T ),
consistent with the bell curves of step 2.
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• All the solutions have a lower free energy than AdS-RN: the
CFT undergoes a phase transition to a helical superconducting
phase.

• The preferred ones lie along the red locus: as the temperature
is lowered, the pitch is increasing. (e,m) = (2, 2)
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• Interestingly, preferred solutions satisfy ch = 0. This is under-
stood by varying the free energy with respect to k:
k∂kw = 8ch = 0.

• Plot the condensate along the preferred branch. The phase
transition is second order: near Tc , we have a mean field be-
haviour.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
102T

2

4

6

8

10

12

102 c3as



Introduction Main Part Conclusions

• On the k = 0 branch, ch = cα = 0, signaling the existence of a
reduction of the ansatz: h = re−α. Consequence of enhanced
symmetry.

• Boundary stress tensor is inhomogeneous and exhibits anisotropic
nature of p-wave superconductors: (also, traceless and con-
served)

〈Ttt〉 = 3M + 8ch ,

〈Tx1x1〉 = M + 8ch ,

〈Tx2x2〉 = M + 8cα cos(2kx1) ,

〈Tx3x3〉 = M − 8cα cos(2kx1) ,

〈Tx2x3〉 = −8cα sin(2kx1) .
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• For large enough e, the preferred locus exhibit inversion of the
pitch of the helix - this point is completely regular. This phe-
nomenon was seen experimentally in e.g. helimagnets.
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• Solutions with k = 0 are only relevant at the inversion point.
Finite k solutions can not be ignored.
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Ground States

Scaling solutions:
The system admits the following scaling solutions in the IR:

• If k = 0, the IR fixed point is invariant under the anisotropic
scaling: similar to [Taylor]

r → λ−1r , t → λz t, x1,3 → λ1−γx1,3, x2 → λ1+γx2 .
The entropy density scales like S ∼ T (3−γ)/z .

• If k 6= 0, there is a helical scaling symmetry: similar to [Kachru

et al.]

r → λ−1r , t → λz t, x2,3 → λx2,3, x1 → x1 .
The entropy density scales like S ∼ T 2/z .
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• If k 6= 0, possible to have the same AdS5 in the IR as in the
UV.
- [Horowitz,Roberts]: s-wave superconductor. In the condensed
phase, the gauge field is transformed to an irrelevant operator.
-In our case, the condensate vanishes at T = 0 and we are left
only with relevant modes. Puzzling!
- [Sachdev et al.]: introducing a lattice. Exploid the k-dependence
of the relevant modes.
- k-dependence allows us to suppress relevant modes, e.g.

c3(r) = c03
e−kx/r

r1/2
+ · · ·
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Black Holes at T=0:
The T=0 limit of our black holes approaches smooth domain walls
that interpolate between AdS5 in the UV and the following IR:

Question:
Both, the AdS5 and the helical scaling, exist at k 6= 0 but emerge
at k < 0 and k > 0 respectively. Is this related to thermodynamics
or is there a problem with constructing the domain walls?
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(p+ip)-wave superconductors

A very similar story for the (p+ip)-case:

ds2 = −gf 2dt2 + g−1dr2 + h2(dx1 + Qdt)2 + r2(dx22 + dx23 ) ,

A = adt + wdx1 ,

C = (ic1dt + c2dr + ic3dx1) ∧ (ω2 − iω3) ,

• The ansatz is now stationary, but not static.

• By solving a set of seven coupled ODEs subject to boundary
conditions, we obtain a 2-parameter family of (p+ip)-wave su-
perconductors. Label solutions by (k,T) as before.
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• These solutions have lower free energy than the AdS-RN as
well; p-wave and (p+ip)-wave phases compete.

• Apart from the standard smarr-type formula, all the solutions
satisfy two additional contrains on the UV data [Donos,Gauntlett].

4ch −
k

e
cw = 0

2cQ + cwµ = 0

• The preferred locus of solutions satisfy cw = 0⇒ ch = cQ = 0.
Also understood by varying the action with respect to k .

• On the k = 0 branch, ch = 0, but cw , cQ 6= 0: no symmetry
enhancement.
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• Boundary stress tensor is homogeneous and exhibits the isotropic
nature of (p+ip)-wave superconductor:

〈Ttt〉 = 3M + 8ch ,

〈Ttx1〉 = 4cQ ,

〈Tx1x1〉 = M + 8ch ,

〈Tx2x2〉 = M ,

〈Tx3x3〉 = M ,

• For large e, k becomes slightly negative as the temperature is
lowered.
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• Have not yet been able to pin down the precise behaviour of
the solution when T → 0; scenarion of AdS5 in the IR.

• The entropy of the ground states goes to zero. For small values
of the charge, there is an interesting crossover in its behaviour.
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Competition between p and p+ip

Both instabilities set in at the same Tc . Which is preferred?
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• p-wave is preferred for small e and (p+ip)-wave for large e.

• For intermediate values of e, there is a first order transition
between the two at T∗; the black holes have the same free
energy, but do not intersect on field space.
c.f. [Gubser,Pufu]
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Further remarks

• The discussion of homogeneous p-wave superconductors has
been generalised to include spatial modulation.

• Can you find two forms with e,m in top down setting, perhaps
with addition of extra fields, that are unstable?

• Spatially modulated phases are more fundamental than ex-
pected.

• The field is moving towards solving PDEs [Donos],[Withers],

[Rozali et al.]
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Thank you!
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