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Quantum Quenches:
» consider quantum system with Hamiltonian:
H=Hy+ \t)0H
- prepare system in eigenstate |%0) of Hamiltonian H
- abruptly turn on A : system evolves unitarily according to H

- Question: How do observables, eg, expectation values and
correlation functions, evolve in time?

- for most systems, coupling to environment is
unavoidable —> decoherence, dissipation

- effects minimized for, eg, cold atoms in
optical lattice

—> |S there “universal” behaviour?




Quantum Quenches & Holography:

—> |s there “universal” behaviour?

what are organizing principles for out-of-equilibrium systems?

- theoretical progress made for variety systems: d=2 CFT,
(nearly) free fields, integrable models, . . ..

- still seeking broadly applicable and efficient techniques

- what can AdS/CFT correspondence offer?
—> strongly coupled field theories
—> real-time analysis
—> finite temperature (if desired)
—> general spacetime dimension

* perhaps re-organization of problem will lead to new insights



Quantum Quenches & Holography:

- AdS/CFT lends itself to the study quantum quenches for a new
class of strongly coupled field theories

» there has been a great deal of interest in the past few years

Chesler, Yaffe; Das, Nishioka, Takayanagi, Basu; Bhattacharyya, Minwalla;
Abajo-Arrastia, Aparicio, Lopez; Albash, Johnson; Ebrahim, Headrick;
Balasubramanian, Bernamonti, de Boer, Copland, Craps, Keski-Vakkuri,
Mueller, Schafer, Shigemori, Staessens, Galli; Allias, Tonni; Keranen,
Keski-Vakkuri, Thorlacius; Galante, Schvellinger; Carceres, Kundu; Wu;
Garfinkle, Pando Zayas, Reichmann; Bhaseen, Gauntlett, Simons, Sonner,
Wiseman; Auzzi, Elitzur, Gudnason, Rabinovici; . . . . ..

- much of work aimed at “thermalization” (eg, quark-gluon plasma)

« AdS/CFT connects far-from-equilibrium physics is naturally
leads to studying highly dynamical situations in gravity
—> new dialogue with “numerical relativity”



Quantum Quenches & Holography:

« AdS/CFT allows us to study quantum quenches for strongly
coupled field theories in any number of dimensions

Where are control parameters in AAS/CFT framework?

AdS/CFT dictionary:
gravity fields < > boundary operators
) oH
eg, consider some scalar field in AdS:
equation of motion: (V? —m*)®+--- =0
A (0H)

asymptotic solutions: ¢ ~ Y + A + - -

—> integration constants become coupling and expectation value

. : d d?
recall conformal dimension: A = 3 + T +m2I2




Holographic Quantum Quench (cartoon):

careful examination

choice of b.c. )
of scalar tails
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- quench —> thermal state, in expectation with previous analyses



Holographic Quantum Quench (cartoon):
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- “thermal quench”: quantum quench at finite temperature



Holographic Thermal Quench:

sleWiiEUlelglal collapse
Y(erlglely black hole

launch scalar
waves into AdS

AdS BH geometry

A L *fixboundary dimension:d = 4

- choose conformal dimension,
2 <A <4 and profile
AN

At) = == [1 + tanh(t/At)}

: r » solve linearized scalar eom
- / in fixed BH geometry

«-')/v ——> determines (Oa)(t)
% - determine “BH mass” £(t) with

diffeomorphism Ward identity™:
0'(Tij) = (Oa) 95\
—> integrate for £(), ie,
r=0oo 8,55 = —<OA> 8t)\

* boundary constraint from Einstein eq’s




Holographic Thermal Quench:

- profile:  \(¢) = % [1 + tanh(t/At)]

4




Holographic Thermal Quench:

* lessons learned:

1. Renormalization of (strongly coupled) boundary QFT with
time-dependent couplings works in a straightforward way

- holography gives well-defined approach to renormalize bdry QFT

» bdry theory has new divergences: (A = UV cut-off scale)
I o f d*z/—g (A4 + AZPATENZ () -
+ A2 70T 9NN + AP2TOR(g) A2 + - )

- familiar in the context of QFT in curved backgrounds

* new log divergences lead to new scheme dependent ambiguities

(Bianchi, Freedman & Skenderis; Aharony, Buchel & Yarom;
Petkou & Skenderis; Emparan, Johnson & Myers; . . .)



Holographic Thermal Quench:

- profile:  \(¢) = % [1 + tanh(t/At)]

4




Holographic Thermal Quench:

* lessons learned:

2. Response to “fast” quenches exhibits universal scaling

- for example: max{Oa) ~ A;;_4
b A0 F At — 0
AN?
AE ~ yields physical
(At)ZA_‘l _ divergence!!

* seems to indicate instantaneous quench is problematic

with At = 0, get o
abrupt jump in A(%) P
b

_>F'




Holographic Thermal Quench:

* lessons learned:

2. Response to “fast” quenches exhibits universal scaling

for example: max(Oa) —
° . IMNaxX({UA) —
i (At)2A—4
AN?
AE ~
& (At)2A—4

r At—0

yields physical

divergence!!

* seems to indicate instantaneous quench is problematic

- compare to seminal work of, eg, Calabrese & Cardy
—> “instantaneous quench” is basic starting point

» identified a physical problem?

» simply an issue with perturbative expansion?



Holographic Quantum Quench (cartoon):

Al
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Holographic Quantum Quench (cartoon):
Al

AdS geometry

. Question:
p What is AS ?
I
: Omin = At t=At
' only consider
E this region Y A F =0
|




Holographic Quantum Quench (cartoon):

Al
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Generalizing “Fast” Quenches:

—> Question: What is A& ?

- focus: full details of evolution, eg, approach to final state, are not
determined but allows us to understand scaling behaviour

* as we scale At — 0, only “tiny” region of solution in asymptotic
AdS relevant for this question

—> certainly full numerical simulations are not needed
—> solvable with purely analytic approach!!



Generalizing “Fast” Quenches:
—> Question: What is AE ?

- solve full bulk equations of motion perturbatively for p < 1

. 2
 2(d-3) 2d(d—=3) | 4,2 d=3 0
. 2 / . 2 .
3 pZE, 2 2P2 (pQAl) A A
+2(d —2)(d — 1) (AE) —( 5 )]+ 1 —4|\ ] 25
B u(cb) m2q52 p4A 9 q.jg 4A’E/ . (E/)Q
0 = d-G-D 2a—ntou—p®) tg -y - AAS
2% A 3.2
Ty 2 T
. 2 .
() 1 ¢ AN Y )
0= 2(d—1)+2(d—1) (p2A) > +pz:+p4A22

&' b +Az'_A’2+Zg
d—1 ' A AY )
_ u(9)
0 ¢

(d—1)p*AY'¢' A (d—1)2d ¢
Y LT T a4 A

—m2§b+p4A¢”+2p3Aa§'+p4A’q5'+



Generalizing “Fast” Quenches:

- key: asymptotic fields in AdS decay in precise manner (ie,
Fefferman-Graham expansion)

o = pP2 (po(t) + a1 pph(t) +ax p*py(t) + )

+p2 (b1p2(t) + ba pph(t) + bs p° py (1) + - - )

linear scalar eq:
P02 — (d—1)pd,¢ — p*0 ¢+ A(d—A)p =0

recall \(t) ~ po(t) and (Oa)(t) ~ p2(t)



Generalizing “Fast” Quenches:

- key: asymptotic fields in AdS decay in precise manner (ie,
Fefferman-Graham expansion)

o = pP2 (po(t) + a1 pph(t) +ax p*py(t) + )
+e1pP PR () + cop® A po (B)py () + - -

+dy p* () + -
nonlinearities -I-pA (b1p2 () + bo pph () + bs 0 po(t) + - )

in eom
§+elpdpo(t)pz(t) + eap™po(t)ph(t) + - - -

. set At = a At and take limit & — O (while po(t/At) kept fixed)

—> natural to scale coordinates: ¢ = af, p = ap
eg, po(t/At) = po(t/At)



Generalizing “Fast” Quenches:

- key: asymptotic fields in AdS decay in precise manner (ie,
Fefferman-Graham expansion) ——> nonlinearities unimportant!

6 = @252 (po() + a1 pph(E) + az 2Py (E) + - )

2 _ ~ . A A _ A ’ A

A

—_— A —_—

+a 058 (bapa(D) + b p i (F) + bs 7 B (F) + )

| diéé ~d E"!a/\ Efa | ~d4] E"‘a AIE’\!B | )

—
. set At = a At and take limit & — 0 (while po(t/At) kept fixed)

—> natural to scale coordinates: ¢ = af, p = ap
—> add: pa(t) = &’ pa(t) —> “matching be”: § = —(2A — d)




Generalizing “Fast” Quenches:

- key: asymptotic fields in AdS decay in precise manner (ie,
Fefferman-Graham expansion) ——> nonlinearities unimportant!

¢ = a5 (po() + ay ppo(t) + ag 5P py(E) + - - )
+a®2p% (bipa(t) + ba pps(E) + b3 p° Pl (1) + -+ )
. set At = a At and take limit & — 0 (while po(t/At) kept fixed)

—> natural to scale coordinates: t = oaf, p = ap
—> need: p2(t) = a” P2 D po(t) —> ¢ — o’ %9
» similar scaling arguments yield:
¥ =1/p, ¥ = Y/ a; A=1/p*, A= Alo?

- relevant solution = linearized scalar solution in AdS space!
but solving A& for full nonlinear problem!



Generalizing “Fast” Quenches:
- analytic solutions, eg:  A(t) = 16AN((t/At)* — 2(t/At)° + (t/AL)?)

—> o0 G () ) 4

20-2A (5 4 1) T(42 — A)
F(d+1+ﬁ;—2A) (A—%)

where b, =
At)/AA (A1)*27HOA) (1) /AN

0.8+

06+

04

02

| 012 o O‘.4 _L_/At O‘.6 T



Generalizing “Fast” Quenches:
- as we scale At — 0, only “tiny” region in asymptotic AdS relevant
- relevant solution = linearized scalar solution in AdS space!

- general scaling (Oa) ~ AX/(At)*2~ with holographic dictionary,

le, “energy conservation”: At
AE — —/ 0t (O) Dy
0

é )

AN AN?
‘ <OA> ~ (At)ZA—d ! AL ~ (At)2A—d

.

J

» matches previous perturbative numerical calc’s (for d=4)
- result here applies for full nonlinear solution!!
» identified a physicalsrelstem® coffect
o . " - -



Generalizing “Fast” Quenches:

p
AN?
AE ~
& (At)28—d
J/

~N

d
- At — 0 yields physical divergence for§ <A<d

—> “instantaneous” quench seems problematic!?!
» can consider various scaling limits:
—> At =alty; AN = > YA
as a — 0, A& finite but (Oa)divergent
—> At =alty; AN =a**T4AN

as a — 0, (Oa)finite but A€ vanishes
but would not be “standard” protocol
. d d
» operators in range ; — 1= A < seem to be okay

- note UV fixed point, ie, CFT, is source of divergence
- strongly coupled holographic QFT versus free fields???



Generalizing “Fast” Quenches:

- compare directly to C&C, ie, qguench mass of a free scalar:

\=m?*: Op = ¢ A=d-—2
- quench with finite At and examine limit At — 0
2
eq. of motion: {W _ % (1+ ta,nh(t/At))} b =0

- example in: Birrell & Davies, “Quantum Fields in Curved Space”

(1))

eg, “In” modes:

f(t) = iﬂk exp [—i(w, +w_ Atlog(2 cosh(t/At))

1
X oF (1 + iw_At,iw_At, 1 — ik At; 5(1 + tanh(t/At))

1
with ws = (ke + V> + m?)




Generalizing “Fast” Quenches:

- compare directly to C&C, ie, qguench mass of a free scalar:
2

A(t) = m2(t) = ’% 1 4 tanh(t/At)] ;

Op = ¢° ; A=d—2

* given individual modes, consider two point correlator
Gr(t1,t2) = in(0] ox(t1) d—k(t2) [0)in

- yields simple result in the limit At — 0 :

1 e—iw(ti—t2) | (w — WO)Q

4w STwow

2 2
W — wy

Gk: (tla t2)

cosw(ty — to)

cosw(ty + t2)

(w=Vk2+m2, wo=k)

—> recover the “sudden quench” results of C&C!!

STwow



Generalizing “Fast” Quenches:
kma:n

- consider response: (¢°) ~ /_ dk k%3 |5 Fy |2
0

- following holographic example, UV divergences are removed by
adding appropriate counterterms in effective action

- “wherever you see terms with k,,,,., subtract them off”
- UV divergences: eg, consider a constant mass

5 kmaaz kd—Q kma,az d—3 1 91 d—5
~ dk = dk K77 — —m k"% 4+ -
@) ]0 VE? +m? /0 [ 2 ]

1 2
— —kd—2 . m kd_4 4.,

d_z max Q(d_4) max
* regulated response (d=5):

(¢?) ~ fooo dk [k2 D Fy|* — k2 + imz(t)}

|1 + tanh(t/At)]

where m?(t) = %



Generalizing “Fast” Quenches:

- regulated response (d=5): (¢°) ~ / dk [k2 2 1 |* — k* — %mz(t)]
0

<¢2> _ <¢2 > adiabatic

—0.5

[E—
(V)]
T T T T

() p—
()] ()
T | E—

S
o

—4 —2 0 2 t/At4 6 8 10



Generalizing “Fast” Quenches:

* regulated response (d=5):
1011

108

107

{ T T T

|{||||

W

{ T

T { T T T

|{||||

0.1,

compare holographic scaling: (Oa) 1/(At)25—d

—> Yholo — 2A — d
= d—4 =1

slope: v = 0.9996

‘||||‘||||‘ ‘ 1 ‘ 1 ‘ 1 ‘ ‘

10 15 20 30 50 70 100 150 200

1/(mAt)



Generalizing “Fast” Quenches:
* regulated response (d 9 8 7 ,6,5 4)

10115 [ ' I ' ' T T T T2 ?
" Yholo — d — 4 543210 d=9 : 7_49951

—> holographic scaling |

ol reproduced by free field! d=8: v=3.9988]
sl d=T7: ~=30000
= d—=6: ~=2.0005

I |
c%_: 100 /’d/MOQQQG-
< ; ]
d=4: log {1 e

w

0.1 5

‘IIII‘IIII‘ ‘ 1 ‘ 1 ‘ 1 |‘||||‘||||‘

4
10 10 15 20 30 50 70 100 150 200
1/(mAt)




Generalizing “Fast” Quenches:
- can verify that Ward identity is satisified: 0, = —(Oa) O\
- evaluate & independently and compare above numerically

E =Ty = 0,00, + 0i6;p + m? (1)

- some analytic progress: expand for small At , find
v

(%) pin 5d—3 O Am2(t/At) + O(1/At?~%)  (odd d)

100 =1 T [T LI T T T T ™1 T T T T | - T

o0
o
L I

<¢2> - <Q§2 > adiabatic

| t/At




Generalizing “Fast” Quenches:
- extend free field calculations to fermions:

A=m: Or =V ; A=d—-1
» guench with finite At and examine limit At — 0

eq. of motion: [*y“% — % (1 4+ tanh(t/At)) |y =0

* again, related to problem of fermions in a cosmological bkgd



* regulated response (d 7 6 5 4.3 2)

Generalizing “Fast” Quenches:
- —> holographic scalmg ]
reproduced by free field!

1*’—_’/_._’__.———0—4—‘—*"—’_'_'(1:2: logﬁt

- 10 15 20 30 0 70 100 150 200
1/(mAt)



Generalizing “Fast” Quenches:

- consider S = Scrr +/dd:c A(t) Oa(z) with A(t) = AN f(t/At)

- apply conformal perturbation theory
(OA(0)) = (Oa(0) expli / A O (2)]Jorr

(OA(0))err +iANOA(0) ] A2 £ (1 ADO A () e

AN 0.(0) / e f(t/A)OA(z) / 2’ F(# ) ADOA () yers + - -

2
AP AN?

= b (At)2A—d + 0 (At)3A-2d +




Generalizing “Fast” Quenches:

- consider S = Scrr +/dd:c A(t) Oa(z) with A(t) = AN f(t/At)

- apply conformal perturbation theory
(OA(0)) = (Oa(0) expli / A O (2)]Jorr

IO+ iAN(Oa(0) [ e f(t/ MO (@))crr

—AT>‘2<0A(0) / e f(t/A)OA(z) / 2’ F(# ) ADOA () yers + - -

1
~ g (gt gt )

- organized with dimensionless effective coupling:g = AX (At)42

*in limit A\ fixed and At - 0: g— 01l

—> leading term dominates: (Oa(0)) ~ b, —

(At)2A—d




Generalizing “Fast” Quenches:

- holographic scaling should appear quite generally!!
A\ )
( At)2A—4

AN?
(At)25—4

- for example: (Op) ~

At —0
AE ~

- what about sudden quenches of C&C??



Generalizing “Fast” Quenches:
* regulated response (d 9 8 7,6,5,4 3)

T { T T T

T { T T T T

10“E |
" Yholo = d— 4—543210 1

.| —> holographic scaling
10° ;
? reproduced by free field!

w

0.1+
d=3: v= —1. 0106
10—4 | BT | . | . | . | o
10 15 20 30 50 70 100 150 200
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- _
d=8: v =3.9988 ;

ol d=7: v =3.0000
' d=6: ~=20005

o [
|
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3 i ]
d=14: log {11 s

) 1/(mAt)



Generalizing “Fast” Quenches:

- regulated response (d=9,8,7,6,5,4,3):
1011 T { '
" scaling need not produce divergence '
(d—2)/2< A <d)2 d=9: 7=4.£51

10"" —— much of C&C is d=2,3 d=18: v =3.0088

{ T T T { T T T T { T T T T

ol d=7: v =3.0000
' d=6: ~=20005

o [
|
5100///’-d/5’)/09996
= . ]
0.1¢ :
d=3: v = —1.0106
0 0 100 150 200

10 10 15 20 30 50 70 100
1/(mAt)




Generalizing “Fast” Quenches:

- holographic scaling should appear quite generally!!
A\ )
( At)2A—4

AN?
(At)25—4

- for example: (Op) ~

At —0
AE ~

- what about sudden quenches of C&C??

d=3: v=-10106 ——> suggests A& — 0?7?77

« an order of limits???



Conclusions:

 guantum quenches: interesting arena for holographic study

* lessons learned:

1. Renormalization of (strongly coupled) boundary QFT with
time-dependent couplings works in a straightforward way

2. Response to fast quenches exhibits universal scaling

» much of fast holographic quenches analytically accessible

» both lessons 1 & 2 apply beyond holographic arena!!

Lots to explore!



