Holographic Anyonic Superfluids

Matt Lippert (Amsterdam)

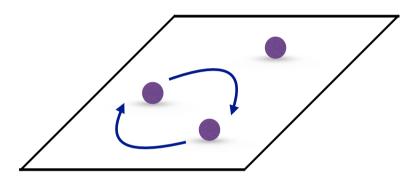
with Niko Jokela (USC) and Gilad Lifschytz (Haifa)

Plan

- Anyons, $SL(2,\mathbb{Z})$, and Quantum Hall Effect
- Superfluids and Anyon Superfliuds
- A Holographic Anyon Superfluid
- A Flowing Holographic Anyon Superfluid

Anyons

particles in 2+1 dim can have arbitrary statistics



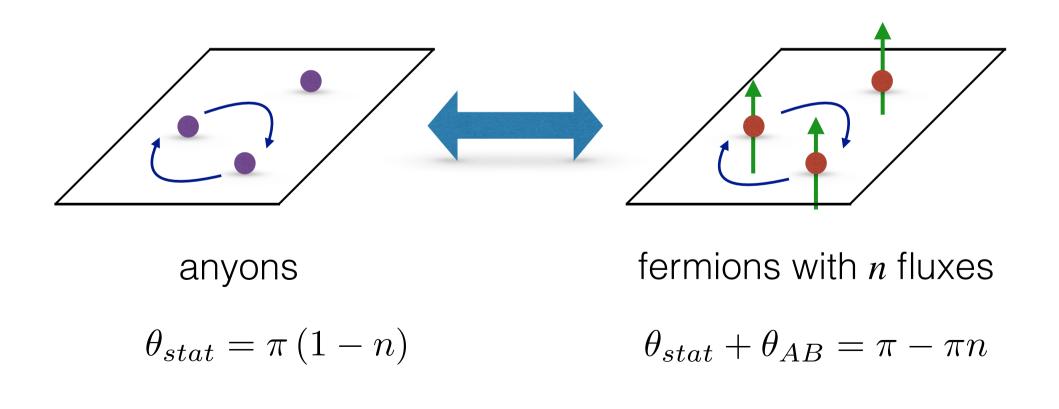
$$|\psi_1\psi_2\rangle = e^{i\theta}|\psi_2\psi_1\rangle$$

- $\theta = 0$ bosons
- $\theta = \pi$ fermions
- $\theta = \pi n/m$ anyons Wilczek

Alternate Description

charged particles with *n* magnetic fluxes attached

statistical phase $\theta \leftrightarrow$ Aharonov-Bohm phase πn



Flux attachment and $SL(2,\mathbb{Z})$

2+1 dim CFT

• *U*(1) current - *J*

Witten Burgess, Dolan

• external vector - \mathcal{A}

• define
$$\mathcal{B} = \frac{1}{2\pi} * d\mathcal{A}$$

mapping to CFT'

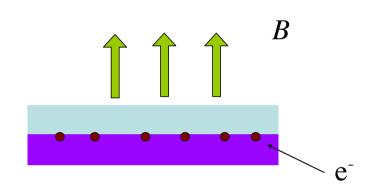
- add Chern-Simons term for \mathcal{A} : $J' = J + \mathcal{B}$
- make \mathcal{A} dynamical: $J' = \mathcal{B}$
- generate $SL(2,\mathbb{Z})$

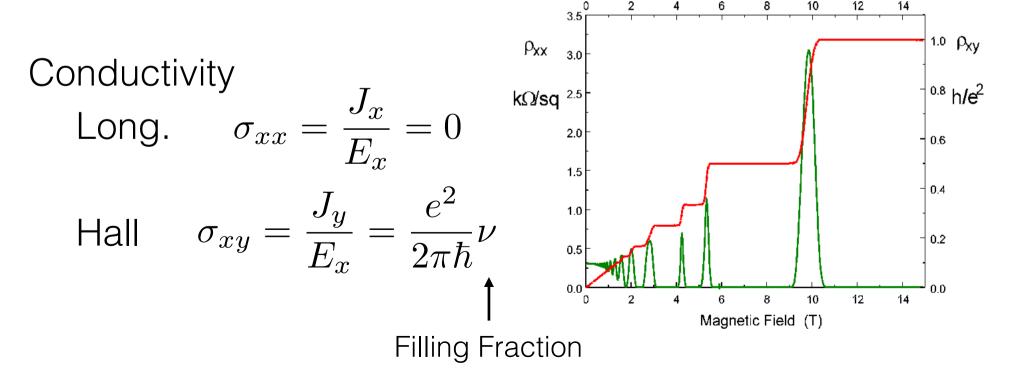
$$\left(\begin{array}{c}J'\\\mathcal{B}'\end{array}\right) = \left(\begin{array}{cc}a&b\\c&d\end{array}\right) \left(\begin{array}{c}J\\\mathcal{B}\end{array}\right)$$

An example: Anyons and the Quantum Hall Effect

Set-up:

- e⁻ in 2+1-dim
- magnetic field B
- low temperature T



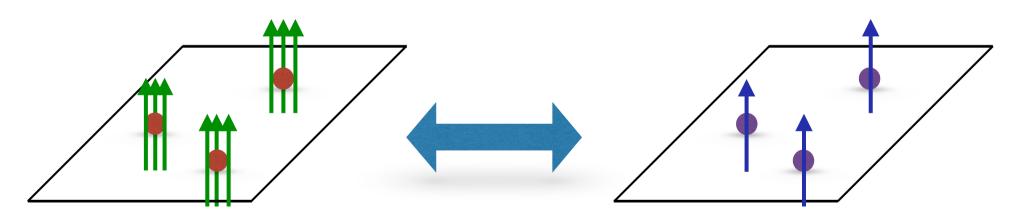


An example: Anyons and the Quantum Hall Effect

QH fluid:

• Filling fraction $\nu = 2\pi \frac{D}{B}$

• *SL*(2,Z) maps between QH states: $\nu' = \frac{a\nu - b}{-c\nu + d}$



FQH fluid of fermions $\boldsymbol{\nu}$

Special ex: v = 1/3 IQH fluid of anyons $\theta = \pi/\nu$

$$\theta = 3\pi$$
 -fermions Jain

Superfluids

- Flow without resistance
- For example:
 - Liquid ⁴He, T < 2.17K
 - Holographic dual of hairy BH
- Spontaneously broken global symmetry

⁴He fountain

Anyon Superfluids

Anyons in
$$B = 0$$
 Superfluid Laughlin

Start with:

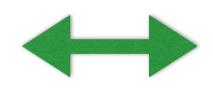
- QH fluid of fermions, filling fraction v
- Background E_x \longrightarrow Hall current $J_y = \frac{\nu}{2\pi} E_x$

SL(2, \mathbb{Z}) with $d/c = \nu$

$$J'_{y} = d \ J_{y} \neq 0 \qquad \text{current}$$
$$B' = E'_{x} = 0 \qquad \text{no sources}$$
$$\theta' = \pi \left(1 - \frac{1}{\nu}\right) \qquad \text{anyons}$$

Superfluidity without symmetry breaking

Usually: massless mode



spontaneous symmetry breaking

For anyons:

massless mode Spontaneous $[T_x, T_y] \neq 0$

Chen, Wilczek, Witten, Halperin, Giddings

Holographic Models of the QHE

Brane intersections with #ND=6

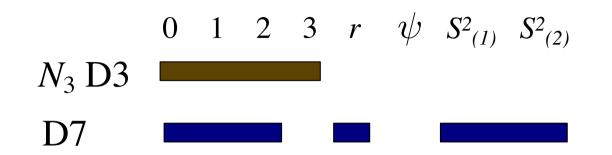
- fundamental fermions
- probe Dq in Dp background
- SUSY
- Chern-Simons terms

Familiar example: Sakai-Sugimoto D4-D8-D8

QHE Models:
D3-D7': Bergman, NJ, GL, ML 2+1-dim defect, v irrational
D2-D8': Järvinen, NJ, ML

fully 2+1-dim, v = 1

D3-D7' Model



$$d\Omega_5^2 = d\psi^2 + \cos^2\psi \ d\Omega_{2(1)}^2 + \sin^2\psi \ d\Omega_{2(2)}^2$$

Probe D7:

- wraps $S^2 \times S^2 \subset S^5$
- fermions on 2+1-dim defect
- embedding $\psi(r)$
 - tachyonic
 - stabilize with wrapped flux on S^2

Add charges and magnetic field

Magnetic Field $F_{12} = B$

Charge Density $F_{0r} = A'_0(r)$

Sources for A_0 :

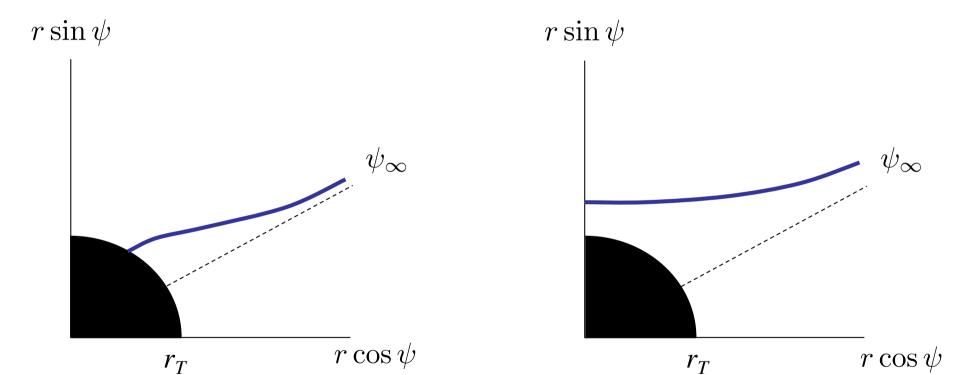
- "Fractionalized": charged BH
- "Mesonic": Induced by Chern-Simons

$$S_{CS} \sim \int C_5 \wedge F \wedge F$$

Embeddings

Black Hole

Minkowski



D7 enters horizon metallic

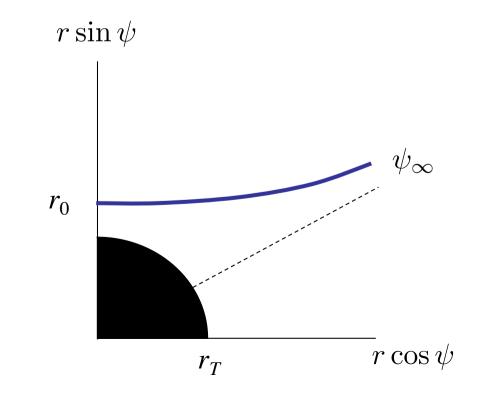
D7 ends where S² shrinks QH fluid

Minkowski Embedding - QH state

• no sources at tip
$$\longrightarrow \nu = 2\pi \frac{D}{B} \approx 1 - \frac{2\psi_{\infty}}{\pi}$$

• gap for charged excitations $m_{gap} = r_0$

$$\sigma_{xy} = \frac{\nu}{2\pi}$$



Alternative Quantization

Standard Dirichlet conditions: bulk gauge field *A* fixed at boundary

$$\delta S_D = \int_{\partial} J_{\mu} \delta A^{\mu}$$

Change to Neumann condition:

$$S_N = S_D - \int_{\partial} J_{\mu} A^{\mu} \quad \Longrightarrow \quad \delta S_N = -\int_{\partial} A^{\mu} \delta J_{\mu}$$

define $J = \frac{1}{2\pi} * dv$ and recall $\mathcal{B} = \frac{1}{2\pi} * d\mathcal{A}$
 $\delta S_N = -\int_{\partial} \mathcal{B}_{\mu} \delta v^{\mu}$

General alternative quantization

Dirichlet to Neumann = Bulk electric-magnetic duality

General boundary variation implements $SL(2,\mathbb{Z})$

$$\delta S = \int_{\partial} \left(a J_{\mu} + b \mathcal{B}_{\mu} \right) \left(c \delta v^{\mu} + d \delta A^{\mu} \right)$$

For anyons with *B*=0, choose $d/c = \nu$

Fluctuations

Bulk remains unchanged under $SL(2,\mathbb{Z})$ Lowest modes:

$$\left.\begin{array}{c}1. \ \delta J'\\2. \ \delta\psi\end{array}\right\} \text{ with fixed }\mathcal{B}'$$

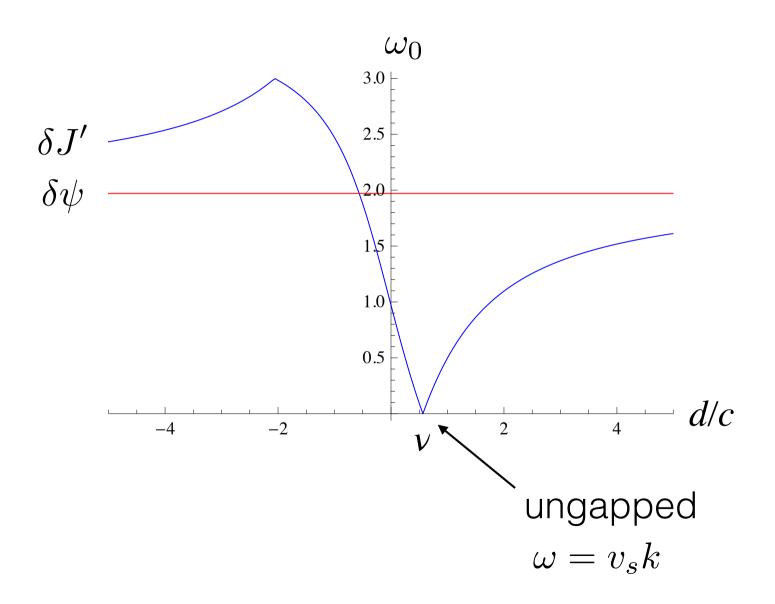
In original $SL(2,\mathbb{Z})$ variables:

$$0 = \delta B' = c \ \delta D + d \ \delta B$$

$$\frac{\delta D}{\delta B} = \frac{d}{c}$$

if $\frac{d}{c} = \nu$ \blacktriangleright extra *D* is compensated by extra *B*

Spectrum vs. *d/c*

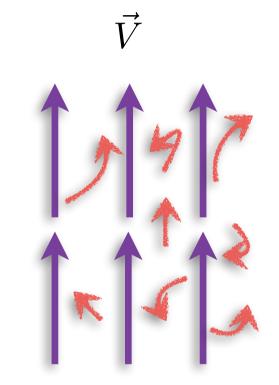


Superfluids can flow

Two component description:

- superfluid with velocity $ec{V}$ -
- normal fluid →

at low T, gas of phonons



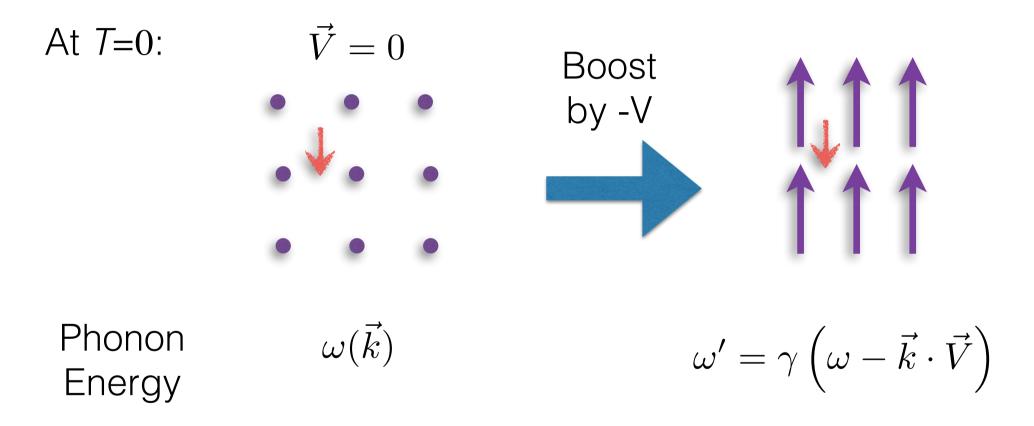
In holographic model:

Superfluid velocity Vy

Electric field E_x

But not too fast!

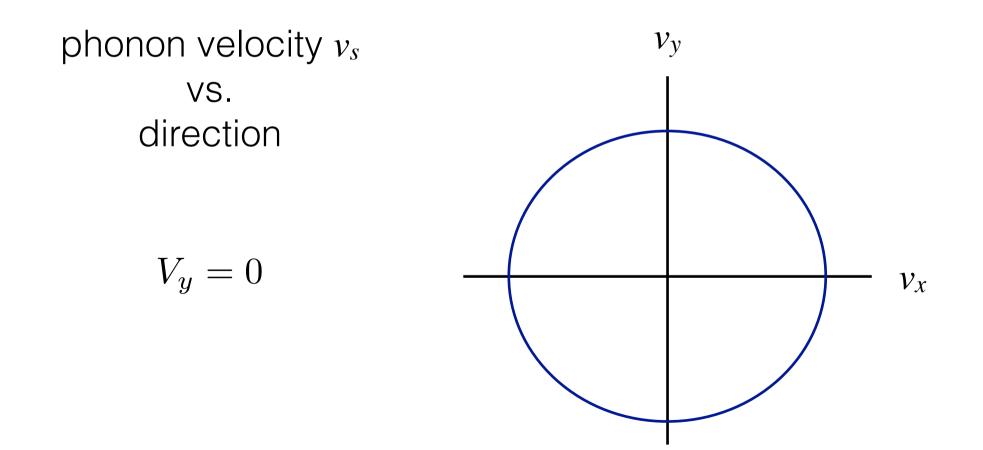
Superfluid stable only if all excitations have $\omega(k) > 0$



Landau criterion for superfluidity:

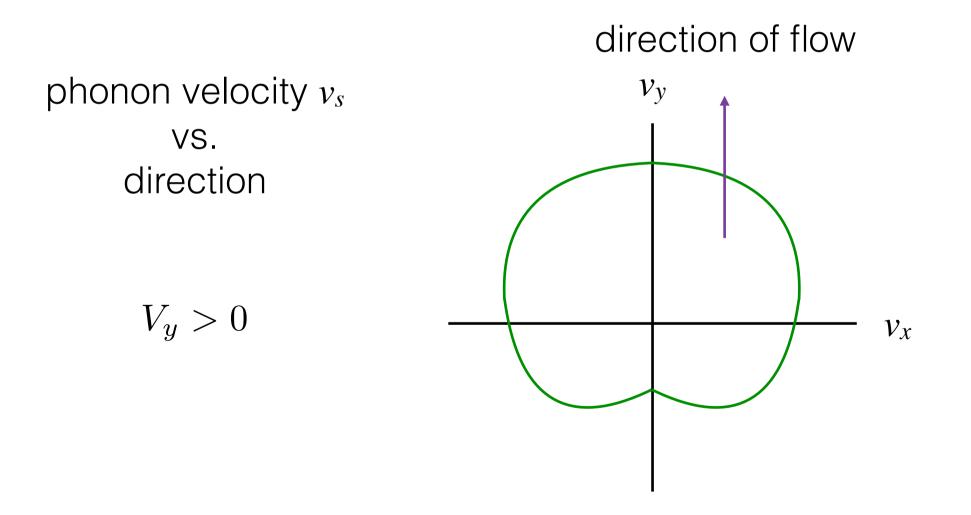
Anisotropic sound speed

Now $T \ge 0$, holographic anyonic superfluid:



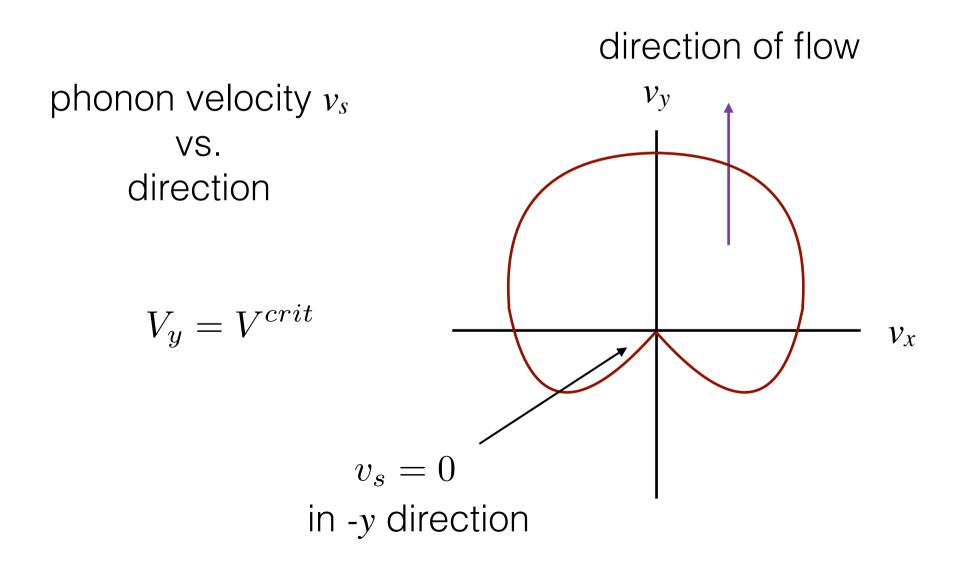
Anisotropic sound speed

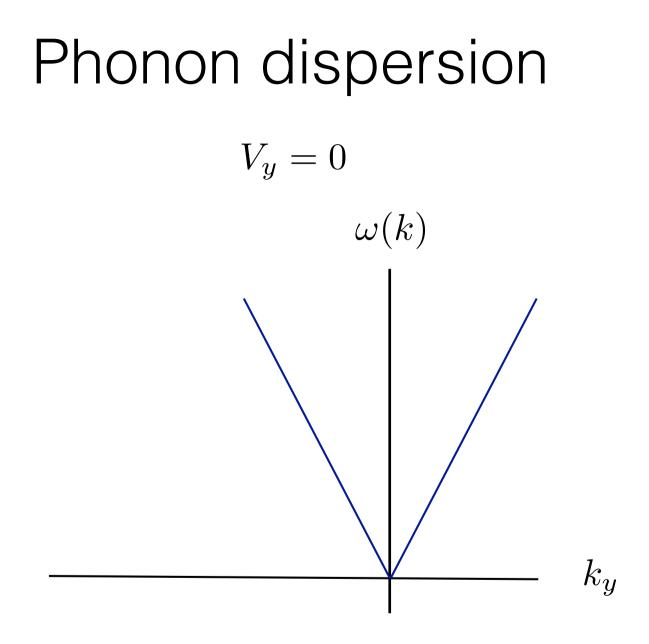
Now $T \ge 0$, holographic anyonic superfluid:

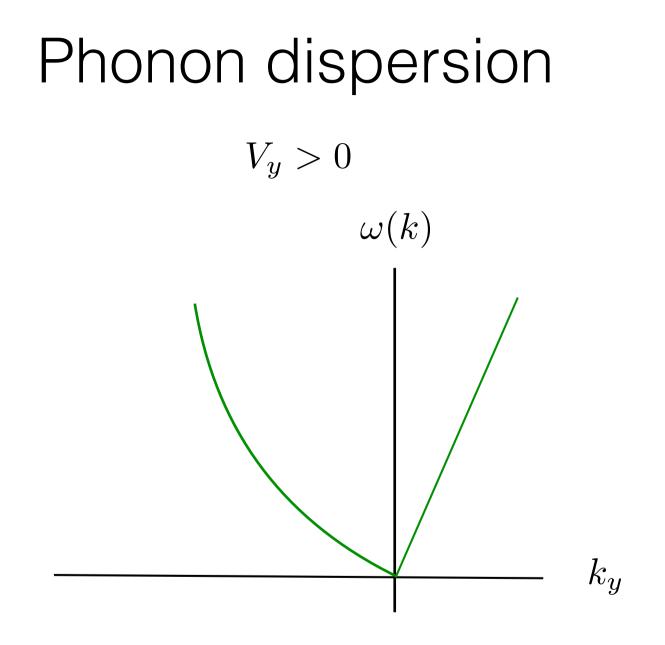


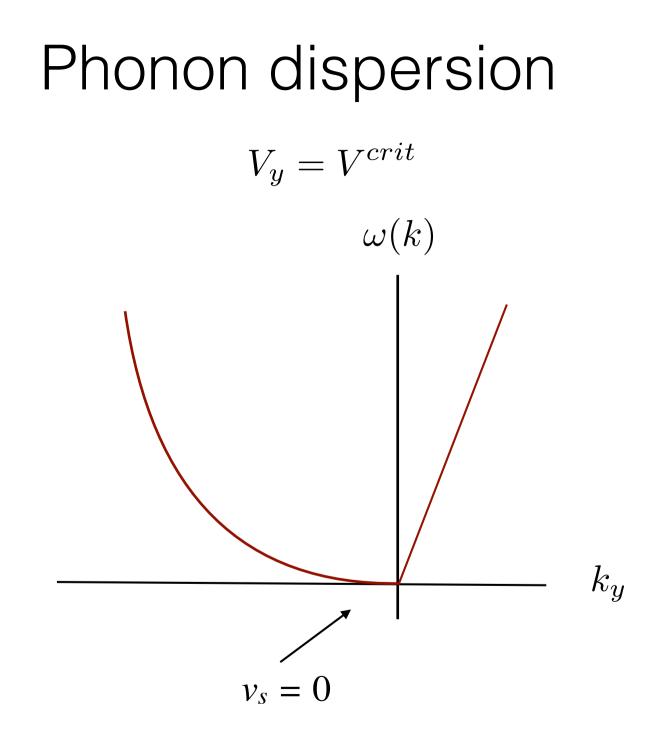
Anisotropic sound speed

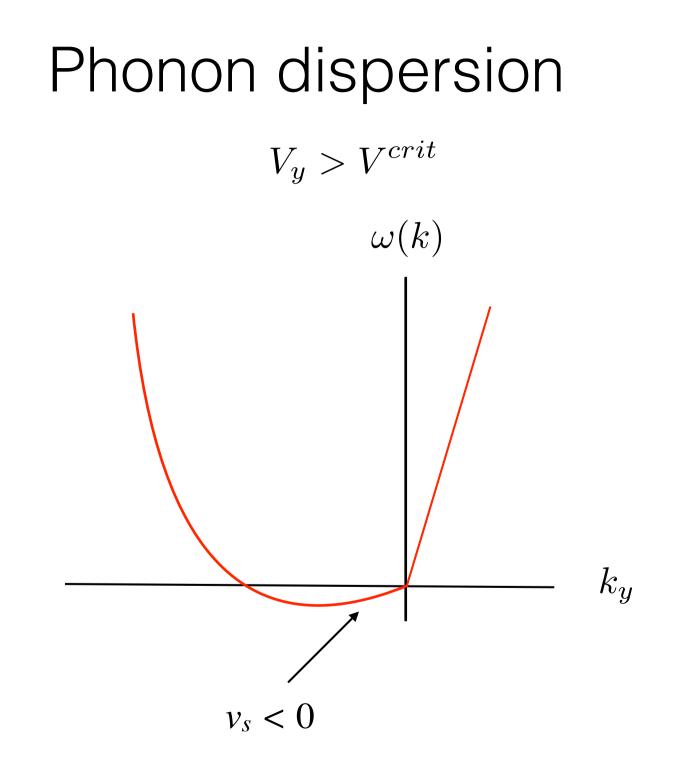
Now $T \ge 0$, holographic anyonic superfluid:



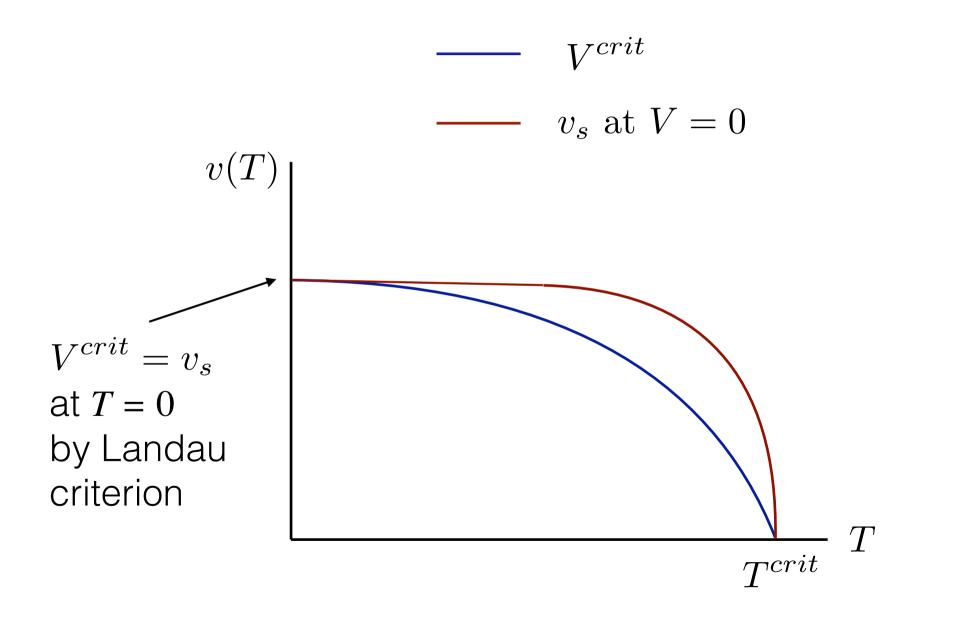






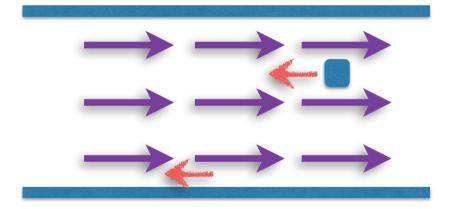


Critical Velocity vs. Temperature

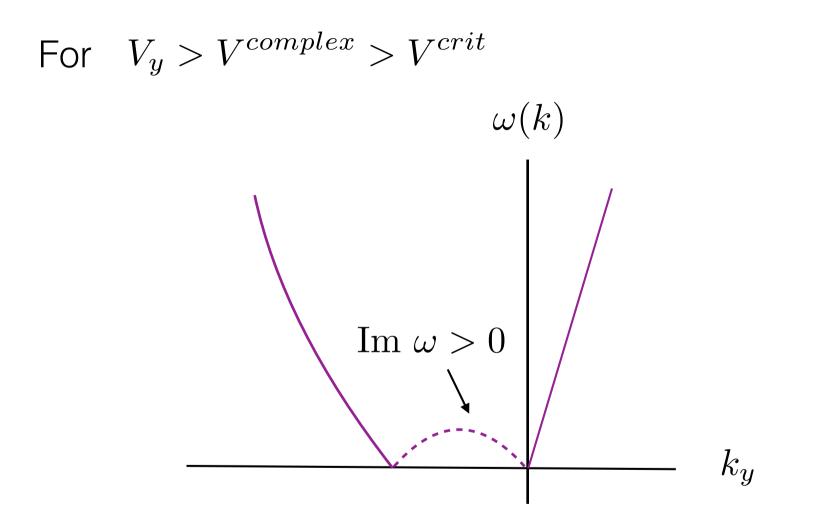


Instability ?

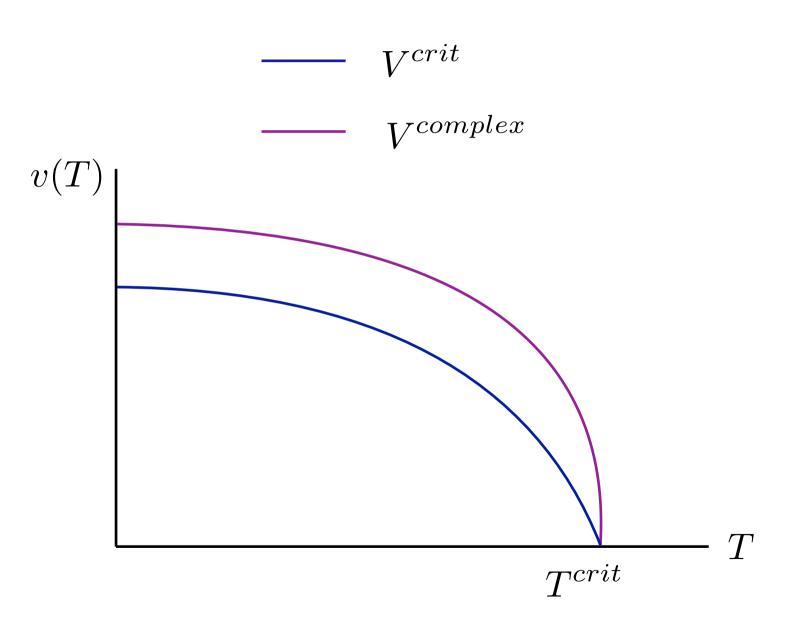
- At T = 0 and $V_y > V^{crit}$
- Lorentz invar. Infinite superfluid stable
- Barrier/boundary can excite modes with $\omega < 0$

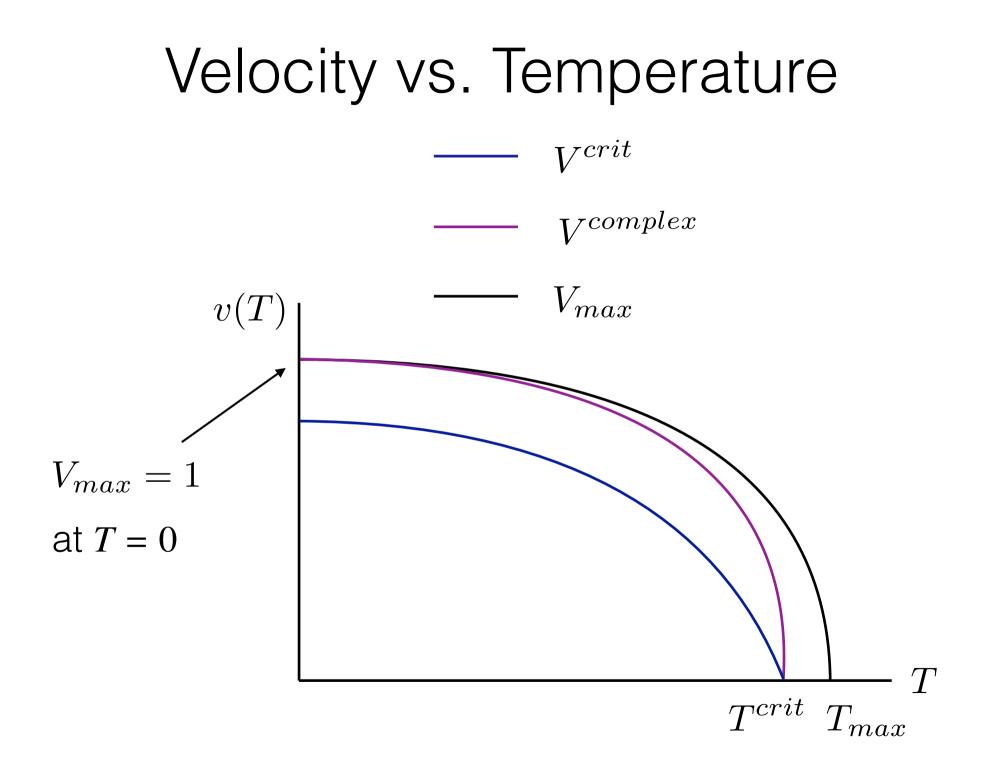


Instability



Velocity vs. Temperature





Summary

- Anyonic superfluid: non-standard superfluid
- Related to QH fluid by $SL(2,\mathbb{Z})$
- Holographic model of strongly-coupled anyon superflulid
 - $T \ge 0$
 - $V^{complex} > V^{crit}$
 - ground state at large V?