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Motivation

* The purpose of todays talk is to study far from equilibrium
processes in AdS/CFT

e Learn more about the duality in extreme environments
- Learn more about black holes

- Learn more about the dictionary between bulk and
boundary

- Test whether the duality gives sensible results
e Tool for strongly coupled dynamicsin QFT

- Search for universality at strong coupling

- Experimental systems to keep in mind: Cold atom systems,
condensed matter systems, Heavy ion collisions etc.



Non-Equilibrium example

Take a QFT and prepare it in the vacuum state

Excite the system at t=0 homogeneously in space — injects a
finite energy density into the system N

E.g. atime dependent coupling j]

H = Hy+ A(t) / ix O(x).
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Sometimes called a “global quench”

Want to preserve spatial translational and rotational
symmetries for simplicity

Non-trivial dynamics is mainly in non-local observables



Non-Equilibrium example

* AdS version of the previous setup

H = Hy+ A1) / dxO(x). S=5)— / d®x J (t)O(x)

* Sources are dual to boundary values of fields

e Start from the vacuum (= AdS) — Suddenly perturb a boundary
value of a field — The perturbation starts falling deeper to the bulk
and forms a black brane

e Asimple analytic model for this process is BH
provided by the Vaidya spacetime, which
corresponds to a null shock wave starting AdS
from the boundary and forming an AdS-
Schwarchild black brane




AdS version of the story

* Dictionary:
- Thermalization < Black hole formation
- Thermalization time scale? — When does the black hole form?

(In gravity there is no preferred time coordinate, so there is no one
correct answer)

- More precise question: When/How does a specific observable
thermalize? Choose to look at correlation functions of local
operators.

I = Hy + A(t) / Ix O(x). o
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Outline

1. On correlation functions

Heuristic picture of correlators

Formalism in non-equilibrium QFT

2. AdS/CFT dictionary out of equilibrium

Review of different dictionaries

Sketch of a proof of equivalence of the two “"best” dictionaries

3. Explicit example of 2-point functions in a
collapsing spacetime
Method

Results



Correlation functions

Example 1: the Harmonic Oscillator

| | I

Classical ground state x=0
Quantum ground state
T v 2 /9 )
3_'"*(._;*_") - ( _,ff;- L[4
Prepare the same ground state and measure the position of the
particle: On average find () = 0, but due to quantum

fluctuations the single measurements give non-zero values and the
distribution of measured values has a width

Az? = (.,rz> — <.r)’" = /({.f'..£'2|l_‘(._f')|2 =5



Correlation functions

 Example 2: Free scalar QFT

1 2 \ 92 2 9
H = = / dx (H‘ + (Vo) + mzfp-)

e Quantum ground state is again a Gaussian (as we are dealing with a
set of coupled harmonic oscillators)
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* By measuring the field at two spatially separated points x and y,
and recording the measured values can construct

(p(xX)p(y)) = / do| |V @] |2()(X}(*)(y) — K1 (X,y) & —m|x—y|

e This tells us two things, the measured values at spatially separated
points are correlated (due to entanglement) and the wavefunction
has a width due to quantum mechanics



Correlation functions

Example 3: Free scalar QFT with a classical source

1 )
H{)/r[X( + (V@)% + m2¢? )]r))

Treat the current term as an interaction and use the Dirac
interaction picture. Then states evolve as

|e__.f*(7.‘)> _ T(tﬁ-’_i [y dt'dx’ J(;l-.;)f;;(g-f})|_E_L__-_,(U)>

What is the average value of the field at some point x, after turning
on a small source?

($(x)) = ((0)|T (el Jo 4t/ Ty g T (7t o '’ I)e() | 4(0))

~ (1(0)|o(x)|(0)) — i/(lz"rlx’.f(.i")ﬁ(f — t"Y{W(0)| [p(x), p(2")] [1(0))



Correlation functions
 Foralocalized source J(z) = Job(z)
(i((}?(..’_‘)) m— —2'._][}(¥R(tl". [))

 The analogous question in QED would be: turn on a current in the
light bulb at x'=0, what is the amount of light you will see at x?
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e The retarded correlator quantifies response



Correlation functions

e | essons:

- Different correlation functions answer to different physical
questions:

One point functions = Average results for observables
Spacelike separated correlator = Quantum fluctuations in the state

Retarded correlator = Response of the system



Correlation functions: Formalism

* Inthe following will work in the Heisenberg picture
V() =[vt))  Alt) = Ut t)A)U (L )

e Consider the two point function

<L‘|4‘l(lL_))B(TL1 ) | L-’) = <L‘|[_..*'TT(?LQ. ?Le.):l(f!)[?(f_) ?L.zj)[_..*'TT(?Ll. f;)B(TL,)[T(fl ?Lf)lt*>
= (|U (t, t:) A(t:)U (ta, t1) B(t:)U (1, t:) [¥)
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X — X
to t
* Important to notice the time-evolution backwards in time (in

particle physics often consider amplitudes from initial to final
states so there is only forwards time-evolution)

o



Correlation functions: Formalism
* Apply this to QFT and go to the path integral formalism

(V| A(t2) B(t)|0) = (WU (ta, t:)A(t:) U (ta, t1) B(t:)U (t1, t;) |2)

_/ d., dip_] Sl (1)) oo (t3) [10) A(p(t2)) B (t1))
 Forthe moment, the initial state wavefunction

(p4|1) = W [p4]
is arbitrary. It is our initial data.

» Canalso define a generating functional, from which correlation
functions are obtained by differentiation

Z(Jy I = [ gy dip_] Sosl-Slo-ti unatd-eod gl (6) i (8)1)



Correlation functions: Formalism

Example of an initial state wavefunction: the ground state
Consider the following quantity

(le™™ |po) = ) e En(p|n){n|epo)

mn

In the large tau limit this is dominated by the ground state, and
thus
. LU R = )
(l0) o< lim {ple™™ o) = lim /W?EJ By BB
T—r00 T—r00
By adding non-trivial sources to the Euclidean action, one can

prepare more general states. In the following specialize to states
that can be prepared in this way



Correlation functions: Formalism

* Collecting all the pieces we obtain the generating functional
Z [‘LF ) J—} — [diﬁ(ﬂ etoclec]ti Joecdc

e Non-equilibrium correlators can be

calculated from a generating functional that

is obtained by gluing together Euclidean - f< X

and Lorentzian spacetimes and performing

a path integral over the fields in all of the

parts.



The AdS/CFT dictionary

Recall the standard AdS/CFT dictionary

Zorr |[J] = / AP e —oE(P

H=-2— J+. ..

Where all the bulk fields are denoted as
® = (g, As, 0,...)

At weak coupling (large-N in CFT), can perform a saddle point
approximation

~
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Leads to a well posed problem as the boundary sources are enough
to determine the unique classical solution, since the equations of
motion are elliptic



The AdS/CFT dictionary

e Forsome Lorentzian situations (ground state or thermal state) one
can take the Euclidean correlator and analytically continue it to
Lorentzian time

* One way to generalize the dictionary to non-equilibrium situations
is to build a holographic version of the complex time contour path
integral. An obvious candidate dictionary is

ZC‘FT {J—Fj J_} — [d(p(q 6'2:5'(? [(I)C-']

(I)i:z&— JL+...




The AdS/CFT dictionary

e Again at weak coupling in the bulk, we can perform a saddle point

approximation

T {J+~ J_} ~ ptS1P+]|—15[2-| -5k [‘I’Eﬂ—SE [(I)E.Q}

0
0

2 (?ZS D] —iS[D_] —

Seg |®Pe1| — Se [Pp2] ) =0

e Variations on the Lorentzian parts leads to Lorentzian eoms.
Variations at the Euclidean parts leads to Euclidean eoms.
Variations at the joining surfaces lead to "matching conditions”.
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The AdS/CFT dictionary

* Inthe following we will assume that the metric has been
appropriately matched and consider a free scalar field in this metric

background

* The Euclidean on-shell action of a scalar field can be written in the
following form, where K is the inverse of the equal time two point

function

Sg = —/ dX1dXs ¢(X1) K (X1, X2)P(X2)
4 JEnr

* Using this the equations of motion become
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The AdS/CFT dictionary

There is also another independent version of the AdS/CFT
dictionary where one identifies bulk and boundary operators

s

O(z) = lim 272 d(x, 2)

z—()

In addition, to calculate correlation functions, one has to make a
map between bulk and boundary theory state

For the states that can be prepared with a Euclidean path integral,
this map is the same as before, the bulk wavefunction of the
quantum field is

U [P] = Ve ortbel
Sp(r=0)=>

This is the “extrapolate” dictionary, and isssimpler to use in practice



The AdS/CFT dictionary

* We have two versions of the AdS/CFT dictionary, that are supposed
to make sense in non-equilibrium situations in a class of initial
states

e There are three options:
- Both of them are wrong
- One of them is correct and the other one wrong
- Both of them are correct and lead to the same result

 We will argue that in the case of a free scalar, they lead to the same
results. We take this as evidence for the third option.



The AdS/CFT dictionary

* We will prove the equivalence by constructing a solution to the
equations of motion following from the gluing approach

* The ansatz for the solution is motivated by the “extrapolate”
dictionary

* First we need to slightly reformulate the problem

) .
= m’Z)mi —0 Do, ) |i—i, = ‘)/(17{131(_')+({If1.f1')f1(_1131.113)

thﬁr(iﬂ-f)‘t:tm = Df@_(m.?‘)h:tm ch;)_(:lr.?‘)\t:tf = é /(f:r,lr;)(ml.h)ff(ml.m)

Ll Es, )= .:é_-.fi(.rg_) g

« Astandard approach to solving equations like this is to define bulk
to boundary propagators (in the following take /- = 0)

Oy () = /fJZITBIl—+_!_(.f'.J'B)-..JT_F(J'B:} Gd_(xz) = /(!ﬂ?BI‘L—__F(J'.J‘B),_}_F(J-'B)



The AdS/CFT dictionary

The bulk to boundary propagators have to satisfy all the same
equations of motion as the scalar field itself, except that the
boundary condition near the AdS boundary is different

- i g Y o DN g . A 7-(1)
ﬁ&ﬁ(i 1:~1; JZ) — & {jalﬁg ( I ‘{'2) ELES0 | Ila:ﬁ Bl

The gluing dictionary leads to the correlators

(TO(21)O(x2)) = lim 272 K4y (21, 21; 72)

21—0
(O(21)O(y)) = lim 272K (ay, 20572)
On the other hand the corresponding correlators according to the
“extrapolate” dictionary are
(T'O(x1)O(x2)) = lim fi,g_i(To(;l z1)d(x2, 22))

1 .ZQ—.‘vU

(O(@)O(s)) = _lim 72746 (w1, 21)0(23, 2))

21.20—0 -



The AdS/CFT dictionary

e Assuming that the dictionaries are equivalent leads to the
identities

Ky (x1,21;22) = 11210 25 Tz, 21)P(T2, 22))
Z2

Ko (w1, 21300) = lim 22 (0(21, 20)0(22, 22))

* So proving the equivalence of the dictionaries is equivalent to
showing that the above K's satisfy all the equations of motion

arising from the gluing construction



The AdS/CFT dictionary

It is clear that they satisfy the correct bulk equation of motion as
(O = m*}(To(x1)o(x2)) = id(x1 — 22)

(O —m?*)(o(z1)d(x2)) = 0
The initial and final conditions are the trickiest to show. There need

to use the fact that the kernel K in the wavefunction is the inverse
of the bulk to bulk correlator.

The delta function boundary condition at AdS boundary follows
from the delta function on the right hand side of the Klein-Gordon
equation for the bulk correlator.

This is the proof.



AdS-Vaidya correlator

» Consider the example in the beginning

BH
A

\

AdS

f

e The Vaidya spacetime provides a simple analytic example of the
above process

1 S i
ds® = — [—(_1 — O(v)z%)dv® — 2dv dz + f‘f,r'ﬂ

-
F

e By itself this does not solve the vacuum Einstein's equations, but
needs a source. In a realistic case, this would be a scalar field that is
collapsing, and the theta function would be a smooth function.



AdS-Vaidya correlator

We will want to work out the correlation functions in this
spacetime.

Energy-momentum tensor one point functions become time
independent immediately

Consider a scalar field

1 L 5
& = ) / f'z’d.;_w/—g (E)}M PO ¢ + ?.”2{:._}2)
The simplest case iswhen m? = —3/4  (thereis a hidden Weyl

symmetry in this case)

We want the two point function of the scalar. Use the extrapolate
dictionary, and work in the Heisenberg picture. State is the initial
AdS vacuum.



AdS-Vaidya correlator

 We choose to calculate the time ordered 2-point correlator (all
others can be obtained from this one)

Gr(xo,x1) = (W|To(x2)o(x1)|7)
e From the Heisenberg equation of motion, it follows that
(L1; — ?H?)C; (B9, T1) = 5("2 — %) — (Ly — ???Q)C;:‘F(J'Q...{'l)
V—Y

e Thus, we are lead to solve a 6 dimensional PDE.

e The initial data is given by the initial state (the AdS vacuum)
G'}?-ds ('L‘g. o, 29, .81, ]
_ /A& 1
4 vV —(v2a —v1)2 —2(va —v1)(22 — 21) + (w2 — 21)% + i€
1
V—(v2a —v1)? —2(v2 —v1)(22 — 21) + 42122 + (22 — 21)% + e




AdS-Vaidya correlator

Since the eom is linear we can use the method of Green's functions

L1 ) L3
Gr(xs, 1) = i/ dxy Gp (iﬂgﬁﬁz)(ﬁﬁGR(ﬁzvﬂfﬁ)
ta—const

 We will use the above formula 3 times as follows

GF(I_i..:I‘S} = —1 /if:lfgd:l‘ldél‘?[] (GF{;I'I..;lﬁjjﬁhc_;g(l?,l.E.Tl))'(ﬁ ( lg Ty ) ﬁ Cr 13 s ) )

AdS o /// Black Hole




AdS-Vaidya correlator

* Thisis useful because the retarded correlator happens to be
independent of the initial state (a proof in the next slide)

e Thus, we can use the thermal retarded correlator in the black hole
part, which is analytically known

l"__rr]ﬁiTEI:-'_‘g.J‘gn Zol11,T1.21)

|

N \,-f 3272 ( veosh(zo — x1) — 2120 — (1 — z122) cosh(va — v1) — (22 — z1) sinh(vy — vy) + e

|
N l.ka"jli'_'t'_ir:]l[-.!'g — 1)+ 2329 — (1 — z329) cosh(ve —vy) — (29 — z1) sinh{vg — v1) + r'r-)

AdS g /// Black Hole




AdS-Vaidya correlator
e The retarded correlator is independent of the state because

1) It satisfies a second order differential equation

2) The initial data is all determined by the equal time commutation
relations

Gr(ra,11) = 0(ts — t1){[D(12), O(1)])
- At equal times we thus have

Gr =0

01, G o ([9(1), IL(x2) )]s, =, = 10(®1 — @2)



AdS-Vaidya correlator

e The taskis to compute the 6 dimensional integral

Gp(zy,x3) = —i / drodxdxg (GF{;T'I.:E{}j{ﬁ“ Grlry, :r_rlj)ﬁ"“” (G;;{.rgq.1_'D]<BEEG’H{.1?3,1‘-3))

e Technical details:
- The integrand has singularities at lightlike separated points

- It is better to Fourier transform to k-space, which gets rid of 3
integrals and softens the lightcone divergences to logarithmic



AdS-Vaidya correlator

Then to the results:
- Blue curve = AdS vacuum correlator

- Green curve = BTZ thermal correlator

Re(Gg) Im(Gg)
0.0190 —00349 [
0.0185F L

F -0.0350
0.0180 | i
0.0175 ;— -0.0351 :_

0.0170 F

: -0.0352 |
0.0165F [
0.0160 F . -0.0353 F
B Ny,
||||||||||||||||||| \P k K
0.5 1.0 15 2.0 0.0

vy = 0.051, v; = 0.001 and for z; = 0.10 and z, = 0.20,
The real part is close to the vacuum, while the imaginary part is
thermal right away

Gr(zo,x1) = 2i0(t2 — t1) Im Gp (w2, x1)



AdS-Vaidya correlator

e Fast (exponential?) approach to thermality. Smallest momentum
has the slowest approach

Re(GE ™-Gg)

0.20
0.15
— k =0.01
o10r k = 0.34
k =067
0.05
— k=1.00
000 N N e
i 0.5 1.0 5 20
-0.05F

(TO(z1)O(x2)) = lim 27222 {Td(z1, 21)P(x2, 22))

21,29—0



AdS-Vaidya correlator

» Atthe qualitative level the results are explained by a simple
geodesic estimate

t —m L[]

> G(rg;xy) X e
.4 Re(GETT-GEY
020 +
A A
015}
d 0.10? :
BH F

AdS

0.00 —

-005}

- N Gin(x, 12:0.11), | < t1 +
G(.r.fg:(l.tl){ th( 'S 1) |z| < t1+12

|z|2A (cosh(ty /2) cosh(ta/2))2A ‘f| > 11 + 19




Conclusions and open questions

There are two versions of the AdS/CFT dictionary that are suitable
for non-equilibrium settings (for a class of initial states that can be
prepared with a Euclidean path integral).

For a free scalar, the dictionaries agree.

For 2-point functions of bulk gauge fields and gravity the previous
proof propably goes through. One has to work out the appropriate
gauge fixings etc.

For higher point functions could possibly do a perturbative proof of
equivalence.

Also a non-perturbative proof using path integrals is possible, and
has been done in Euclidean time for interacting bulk quantum
scalar fields



Conclusions and open questions

 What about states that cannot be prepared with Euclidean path
integrals?

e Whatis the CFT dual of the bulk wavefunction?



