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Holographic Lattices

CFT with a deformation by an operator that breaks
translation invariance

Why!

* Translation invariance = momentum is conserved,
hence no dissipation and hence DC response are infinite.
To model more realistic metallic behaviour or insulating
behaviour we can use a lattice

* The lattice deformation can lead to novel ground states
at T=0. Can also model metal-insulator transitions

* Formal developments: thermo-electric DC
conductivities in terms of black hole horizon data
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Plan
* Drude physics

e Lattice with global U(1) symmetry and (%) . In Einstein-
Maxwell theory. Coherent metals.

* Q-lattices, using scalars and global symmetry. Can give coherent
metals, incoherent metals and insulators and transitions between

them.

e Helical lattices in D=5 pure gravity. Universal deformation.
Coherent metals. Comments on calculating Greens functions



Drude Model of transport in a metal
Quasi-particle interactions ignored
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* Drude physics doesn’t require quasi-particles

Coherent metals arise when momentum is nearly

conserved
Pole on negative imaginary axis near origin W= ——
-

e Similar comments apply to thermal conductivity ) = —kVT

* There are also “incoherent” metals without Drude peaks

Not dominated by single time scale 7
Of particular interest to realise these in holography

* Insulators with opc = kpc =0 atT=0



Holographic CFTs at finite charge density

Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

S:/d4x\/jg{R+6—iF2+...}

Admits AdS4 vacuum VRN d=3 CFT with global U(I)



Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is
translationally invariant

dr?
ds® = —Udt* 1 - r?(dz* + dy*)
T
Ay = p(l = =5) d=3 CFT
poT
T=0 limit: AdSs; x R? < AdSy

IR Uv



By perturbing the black hole and using holographic tools we
can calculate the electric conductivity and find a delta
functionat w =0

Construct lattice black holes dual to CFT with ()
Ai(x, ) N,u(a:)—l—O(%) r— 00
guv (2, 7)

Need to solve PDEs in two variables

e.g. Monochromatic lattice:

u(x) =+ Acoskx

After constructing black holes, one can perturb, again solving
PDEs, to extract thermo-electric conductivities



Find Drude physics at finite T
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Coherent metal phases UV data

Can be understood by
k A
analysing T=0 solutions: /n Aln

IR fixed point AdSs x R?
in the IR

J

At T=0 the black holes approach  AdS, x R?

perturbed by irrelevant operator with A(k;r) > 1

— AdS-RN

Don’t find exceptions to this behaviour even for dirty lattices e.g.

10
p(x)=1+A ) cos(nkz+6y).

n=1



Holographic Q-lattices

¢ |llustrative D=4 model

1 YA
£=R— Sl + V() - 202 e

* Choose V,Z sothat AdS-RN is a solutionat ¢ =0

* Now o <+ @O in CFT. Want to build a holographic lattice
by deforming with the operator O
* The model has a gauge /(1) and a global /(1) symmetry

Exploit the global bulk symmetry to break translations so that
we only have to solve ODEs



Ansatz for fields

ds® = —Udt®> + U tdr? + 2V da? + e2V2dy?
Ay = a(r)

g@(?“, aj) — ¢(T)6ikx

UV expansion:

U = r? e e2v1:7“2—|—... V2 =2 4.

Homogeneous and anisotropic and periodic holographic lattices

UWVdata: T/p AptTA k/p |




For small deformations from AdS-RN we find Drude peaks
corresponding to coherent metals.

This can be understood
by examining T=0
behaviour of solutions:

k/w A p
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«—— AdS-RN

[ New] AdS, x R?

For larger deformations, for specific models, we find a transition
to new behaviour. The new ground states can be both insulators

and also incoherent metals!

See also:



D=4 CFTs with a Helical Twist [Donos,Gauntlett,Pantelidou]

Study a universal helical deformation that applies to all d=4 CFTS

First recall the Bianchi V' 11, Lie algebra
L1, L] = —kL3 L+, L3| = kLo Lo, L3] =0

I 6’3,;1 -+ k(xg(‘?@ — $28x3) Lo = 8332 L3 = 82133




Useful to introduce the left-invariant one-forms

W1 — d.fI?l
wo = cos (kx1) dxo — sin (kx1) dxs,

w3 — COS (kﬂ?l) diCQ + sin (]{7331) da’ig

We want to explicitly break the 1SO(3) spatial symmetry
of the CFT down to Bianchi V],

Achieve by introducing suitable sources for the stress tensor

Equivalently, consider CFT not on R'3 but on
ds® = —dt* + w] + e** w3 + e 20 w3

with k., «g parametrising the deformation



Study in holography by considering
S = /d5x\/—g(R+ 12)

This is a consistent truncation of all AdSs x M solutions in
string/M-theory. Hence analysis applies to entire class of CFTs

Ansatz

ds® = —qg f2dt* + g 'dr® + h* wi +r* (620‘ w5 4 e 2 wg)

Equations of motion
/ / /! //
f : [ ] [ ] [ ) 7 g : [ ] [ ) [ ] , h : [ ] [ ) [ ] ’ & : [ ] [ ] [ ]

AdS-Schwarzschild: f=1, g= r? "+ h=r o=




Expand functions at UV boundary

2 k*
f =1+ 555 (1 = coshdag) - fﬁ 561 (3 +4coshdag — 7 cosh8ap) s
kQ

g =r? (1 — W(l — cosh 4ay)

k2
h =r (1 — — (1 — cosh 4ay)

42

k2
o =0 — ) sinh 4o

Source parameters: g, k
Vev parameters: c¢p,Cq, M

Together these give T"" of helically deformed CFT

Log terms arise because of conformal anomaly

]{34
T, = Y (cosh(8cayy) — cosh(4ay))



Boundary conditions in the IR - smooth black hole horizon

g=gi(r—ri) oo, = fite

with gr =4r,

Parameter count: expect two parameter family of black
holes labelled by £/T , oy (for fixed dynamical scale)



Thermodynamics from 1T

Free energy density w

Boundary metric 7 <« ds® = —dt® + w3

Killing vector 0
L 27 [k y
w=-—Ts— %/ dﬂfl\/ —7Y (T ﬁ)/tt)
0

Killing vectors 0,, and 0,

620&0 W

ko[ 2,2 2,8

W= —— dxiv/—" (Tx Yoy + T 7902903) :
27T 0
k 2m [k 3 2 3 3

W = —2— dxiv/—" (Taj Y2 + AT ’nymS)
T Jo

2
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First law

9 27 /[ k

ow = —sol — T driv/—7y (%TW5VW)
0

Sk ( 9 27 [k

+ ? w + ? dx vV —7 (Txlx%yxlam + Tx1$3,7961903))
0



Results of numerics
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At T=0 the solution might be approaching AdS5!?



T=0 interpolating solutions

Consider small perturbation of a about AdS5 which
one solve in terms of Bessel functions

Suggests the IR expansionas 7 — 0

k3—2 _ 1.
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Note that there can be a renormalisation of length scales



Length scale renormalisation

20
5\ _ 9331561 (T — O) 1.8
\ 9zyz, (r = 00) 1.6

Note similar T=0 ground states have been seen before

Chemical potential lattice ;1(z) with no zero-mode

s-wave superconductors

p-wave superconductors



Greens functions for thermal conductivity at finite T

Perturb black hole

6(ds?) = 204y, (t,7)dtdzy + 2 6g23(t, r)waws

with
dw —wt
0tz (T, 1) = _2776 Rz, (W, T)
dw —wt
0g23(t, ) = %6 has(w, )

We obtain linear ODEs:

7 7
23—o.o ta,;_o.o

. . . . / /
and a constraint equation involving n;, and has3



IR boundary conditions

Ingoing at black hole horizon

UV boundary conditions

k
ht:ﬂl — 7“281 & sinh 2@082 ‘
2 1 2
hos =[1r*ss5 (2zwk sinh 2ags1 + —32 k? cosh? 2000S9) .

with the constraint

64iwv; + 128k sinh 2agvs + iw(—128¢y, + 16k sinh 2ci9*)s;
— 4k (64ca cosh 2ag + 4k sinh 20403(2k2 — w? 4+ 2k? cosh 4040)) so =10



Greens function J; = G5,
with

1 65(2)
Ji = (T*"1) = lim
1= (T = lim V/—o0 Ohi g, (1)
1 65(2)

Jo = (T¥2%3) = lim
2 = ) = = s ()

Calculate the variation of the action and discard a
horizon contribution

552 = /d2 /WO = 537, Ji(w) + s (w )Ji(w))

with
lesl(...)—|—52(...)—4f01

|
Va
p—t
N\
—
_I_
N\

dots are fixed by w and black hole background: o, k, M, cq,cy,



0Ji we need to work out v
833‘ (93j

To obtain Gij =

This is subtle due to residual gauge invariance

—1wt

Take the background black hole with r1 — T1+e €0
which induces

4
S1 — S1 — €W v1 — v1 — 2teqw(cy, + — sinh? 2000
’ 8

So — 89 — 2epk sinh 209, vs — v — €ok cosh 2 (4cq + k* cosh 2ay sinh? 2000)

[ ] av- [ ] [ ]
with some work one can find a—z consistent with these
S .
J



Alternative procedure: work in a gauge with 51 = 0

Ji
and calculate G0 = —
S2

8120

Then work in a gauge with s3 =0 and Gi1 =

1

S1

S92 =0



Comment: suppose we calculate on-shell action
(2) dw (@ . _ _
S2) — —(3232(...)+5151(...)+3152(...)+3132(...)
-+ 2(82@2 + SoU9 — S1U1 — 51?}1))

dots are fixed by w and black hole background: «q, k, M, c,,cp,

Here we did NOT discard any terms arising from the
black hole horizon

Using the same derivatives for gvi as above we find
5j
025 (2)
Gij + G,

8Si8§j B



Numerical results

Focus on

Gll (CU) — <Tt£U1 TtCC1>

and recall that
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Summary/Final Comments

* Holographic lattices are interesting

d=3,4 CFTs with global U(l) symmetry:

Einstein-Maxwell theory and 1 (x) deformation (PDEs)

Q-lattice: Einstein-Maxwell plus scalar field with global
symmetry in the bulk (ODEs)

d=4 CFTs with universal helical deformation (ODEs)



* All of these included a realisation of strongly coupled
Drude physics at finite T, at least for small deformations

The Drude physics can be understood by the
appearance of translationally invariant ground states

in the far IR: AdS, x R* or AdSs

* For larger deformations the Q-lattices realised
incoherent metallic an insulating phases

The T=0 ground states break translation invariance

The phases have novel thermoelectric transport properties
(not determined by memory matrix formalism)

* What is the landscape of such spatially modulated ground
states?



