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Holographic Lattices

CFT with a deformation by an operator that breaks 
translation invariance

Why?

• Translation invariance         momentum is conserved, 
hence no dissipation and hence DC response are infinite. 
To model more realistic metallic behaviour or insulating 
behaviour we can use a lattice

)

• The lattice deformation can lead to novel ground states 
at T=0. Can also model metal-insulator transitions

• Formal developments: thermo-electric DC 
conductivities in terms of black hole horizon data

  
  Analogous to 

[Donos,Gauntlett]   
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Plan

• Lattice with global U(1) symmetry and          . In Einstein-
Maxwell theory.  Coherent metals.

• Q-lattices, using scalars and global symmetry. Can give coherent 
metals, incoherent metals and insulators and transitions between 
them.

• Drude physics

• Helical lattices in D=5 pure gravity.  Universal deformation. 
Coherent metals. Comments on calculating Greens functions

µ(x)



Drude Model of transport in a metal  
               Quasi-particle interactions ignored
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Coherent metals arise when momentum is nearly 
conserved [Hartnoll,Hofman]   

• Drude physics doesn’t require quasi-particles

• There are also “incoherent” metals without Drude peaks

• Insulators with                                 at T=0

• Similar comments apply to thermal conductivity

Pole on negative imaginary axis near origin ! = � i

⌧

Not dominated by single time scale ⌧

Q = �̄rT

�DC = ̄DC = 0

Of particular interest to realise these in holography



Holographic CFTs at finite charge density

 Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

Admits              vacuumAdS4 d=3 CFT with global U(1)
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At = µ(1� r+
r
)

Electric flux

T
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Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is 
translationally invariant

µ

T=0 limit: AdS4AdS2 ⇥ R2

 UV IR

d=3 CFT



Need to solve PDEs in two variables

[Horowitz, Santos,Tong]   

Construct lattice black holes dual to CFT with 

By perturbing the black hole and using holographic tools we 
can calculate the electric conductivity and find a delta 
function at 

µ(x) = µ+A cos kx

! = 0 [Hartnoll]   

µ(x)

At(x, r) ⇠ µ(x) +O(
1

r

) r ! 1

After constructing black holes, one can perturb, again solving 
PDEs, to extract thermo-electric conductivities

gµ⌫(x, r)

[Donos,Gauntlett]   

e.g. Monochromatic lattice:
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Find Drude physics at finite T



UV data

IR fixed point

Coherent metal phases

AdS-RN

At T=0 the black holes approach                           in the IRAdS2 ⇥ R2

AdS2 ⇥ R2

perturbed by irrelevant operator with

k/µ

�(kIR) � 1

A/µ

Don’t find exceptions to this behaviour even for dirty lattices e.g.

µ(x) = 1 +A

10X

n=1

cos(nk x+ ✓n) ,

Can be understood by 
analysing T=0 solutions:



Holographic Q-lattices 

• Choose             so that AdS-RN is a solution at 

• Now                in CFT.  Want to build a holographic lattice 
by deforming with the operator

• The model has a gauge           and a global           symmetryU(1) U(1)

Exploit the global bulk symmetry to break translations so that 
we only have to solve ODEs

• Illustrative D=4 model 

L = R� 1

2
|@'|2 + V (|'|)� Z(|'|)

4
F 2

V, Z ' = 0

' $ O
O

[Donos,Gauntlett]   



Homogeneous and anisotropic and periodic holographic lattices

Ansatz for fields

U = r2 + . . . ,

a = µ+
q

r
. . . ,

UV expansion:

e2V1 = r2 + . . . e2V2 = r2 + . . .

� =
�

r3��
+ . . .

UV data: T/µ �/µ3�� k/µ
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2

At = a(r)

'(r, x) = �(r)eikx



For small deformations from AdS-RN we find Drude peaks
corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:

New

For larger deformations, for specific models, we find a transition 
to new behaviour.  The new ground states can be both insulators
and also incoherent metals!

See also: [Gouteraux][Andrade,Withers]



Study a universal helical deformation that applies to all  d=4 CFTS

D=4 CFTs with a Helical Twist

First recall the Bianchi            Lie algebra

L2 = @
x2

L3 = @
x3

[L2, L3] = 0

L

1 = @

x1 + k(x3@x2 � x2@x3)

[L1, L2] = �kL3 [L1, L3] = kL2

x3

x1

x2

V II0

[Donos,Gauntlett,Pantelidou]



Useful to introduce the left-invariant one-forms

!1 = dx1

!2 = cos (kx1) dx2 � sin (kx1) dx3,

!3 = cos (kx1) dx2 + sin (kx1) dx3

We want to explicitly break the                spatial symmetryISO(3)

of the CFT down to Bianchi V II0

Achieve by introducing suitable sources for the stress tensor

Equivalently, consider CFT not on           but on R1,3

ds2 = �dt2 + !2
1 + e2↵0 !2

2 + e�2↵0 !2
3

with            parametrising the deformationk,↵0



Study in holography by considering

S =

Z
d

5
x

p
�g(R+ 12)

This is a consistent truncation of all                     solutions in 
string/M-theory. Hence analysis applies to entire class of CFTs

AdS5 ⇥M

ds2 = �g f2 dt2 + g�1dr2 + h2 !2
1 + r2

�
e2↵ !2

2 + e�2↵ !2
3

�
Ansatz

Equations of motion

f 0 = . . . , g0 = . . . , h00 = . . . , ↵00 = . . .

AdS-Schwarzschild: f = 1, g = r2 �
r4+
r2

, h = r, ↵ = 0



Expand functions at UV boundary

f =1 +

k2

12r2
(1� cosh 4↵0)�

ch
r4

+

k4

96r4
(3 + 4 cosh 4↵0 � 7 cosh 8↵0) + log r() + . . . ,

g =r2
✓
1� k2

6r2
(1� cosh 4↵0)�

M

r4
+ log r() + . . .

◆
,

h =r

✓
1� k2

4r2
(1� cosh 4↵0) +

ch
r4

+ log r() + . . .

◆
,

↵ =↵0 �
k2

4r2
sinh 4↵0 +

c↵
r4

+ log r() + . . . .

Source parameters: ↵0, k
Vev parameters: ch, c↵,M

Log terms arise because of conformal anomaly

Together these give            of helically deformed CFTTµ⌫

Tµ
µ =

k4

3

(cosh(8↵0)� cosh(4↵0))



g = g+(r � r+) + · · · , f = f+ + · · · ,
h = h+ + · · · , ↵ = ↵+ + · · ·

g+ = 4r+

Boundary conditions in the IR - smooth black hole horizon

with

Parameter count: expect two parameter family of black 
holes labelled by            ,          (for fixed dynamical scale)k/T ↵0



Thermodynamics from 

    Killing vector
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[Donos,Gauntlett]    



First law
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Results of numerics

At T=0 the solution might be approaching  AdS5?

α0= 14
α0= 12
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T=0 interpolating solutions

Consider small perturbation of      about AdS5 which 
one solve in terms of Bessel functions

↵

Suggests the IR expansion as r ! 0

g = r2 +
k3↵̄2

+

r
e�4k/h̄+r(1 +

5h̄+

8k
r +O(r2)) + · · · ,

f = f̄+ � k3↵̄2
+f̄+

2r3
e�4k/h̄+r(1 +

5h̄+

8k
r +O(r2)) + · · · ,

h = h̄+r �
k3↵̄2

+h̄+

2r2
e�4k/h̄+r(1 +

21h̄+

8k
r +O(r2)) + · · · ,

↵ =
↵̄+2k2p
⇡h̄+r2

K2

✓
2k

h̄+r

◆
+ · · · ,

Note that there can be a renormalisation of length scales



Length scale renormalisation

�̄ ⌘

s
g
x1x1(r ! 0)
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x1x1(r ! 1)
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Note similar T=0 ground states have been seen before

s-wave superconductors [Horowitz,Roberts]    

p-wave superconductors [Basu,He,Mukherjee,Rozali,Shieh]
[Donos,Gauntlett,Pantelidou]    

Chemical potential lattice          with no zero-mode                                      
[Chesler,Lucas,Sachdev]    

µ(x)



Greens functions for thermal conductivity at finite T

Perturb black hole

�(ds2) = 2�g
tx1(t, r)dtdx1 + 2 �g23(t, r)!2!3

�g
tx1(t, r) =

Z
d!

2⇡
e�i!th

tx1(!, r)

�g23(t, r) =

Z
d!

2⇡
e�i!th23(!, r)

with

We obtain linear ODEs:

h00
2 3 = . . . h00

t x

= . . .

and a constraint equation involving          and  h0
t x

h0
23



IR boundary conditions

Ingoing at black hole horizon

UV boundary conditions

h
tx1 = r2s1 +

i!k

2

sinh 2↵0s2 +
v1
r2

+ · · ·

h2 3 = r2s2 + (

1

2

i!k sinh 2↵0s1 +
!2

4

s2 � k2 cosh2 2↵0s2) +
v2
r2

+ . . .

with the constraint

64i!v1 + 128k sinh 2↵0v2 + i!(�128ch + 16k4 sinh 2↵0
4
)s1

� 4k
�
64c↵ cosh 2↵0 + 4k2 sinh 2↵0

3
(2k2 � !2

+ 2k2 cosh 4↵0)
�
s2 = 0

[Son,Starinets]



Greens function Ji = Gijsj
with

J1 = hT t x1i = lim
r!1

1p
�g1

�S(2)

�h
t x1(r)

,

J2 = hT!2 !3i = lim
r!1

1p
�g1

�S(2)

�h2 3(r)
.

Calculate the variation of the action and discard a 
horizon contribution

�S

(2)
1 =

Z
d

2
x

Z

!�0

d!

2⇡

⇣
�s̄i(!)Ji(!) + �si(!)J̄i(!)

!

with

J1 = s1(. . . ) + s2(. . . )� 4v1

J2 = s1(. . . ) + s2(. . . ) + 4v2

dots are fixed by     and  black hole background: ↵0, k,M, c↵, ch!



To obtain                     we need to work out Gij =
@Ji
@sj

@vi
@sj

This is subtle due to residual gauge invariance

Take the background black hole with x1 ! x1 + e

�i!t
✏0

which induces

s1 ! s1 � i✏0!, v1 ! v1 � 2i✏0!(ch +

k4

8

sinh

4
2↵0)

s2 ! s2 � 2✏0k sinh 2↵0, v2 ! v2 � ✏0k cosh 2↵0(4c↵ + k4 cosh 2↵0 sinh
3
2↵0)

with some work one can find          consistent with these
@vi
@sj



Alternative procedure: work in a gauge with s1 = 0

and calculate Gi2 =
Ji
s2

����
s1=0

Then work in a gauge with Gi1 =
Ji
s1

����
s2=0

s2 = 0 and



Comment: suppose we calculate on-shell action

S(2)
1 =

Z

!�0

d!

2⇡

⇣
s2s̄2(. . . ) + s1s̄1(. . . ) + s1s̄2(. . . ) + s̄1s2(. . . )

+ 2(s2v̄2 + s̄2v2 � s1v̄1 � s̄1v1)
⌘

Here we did NOT discard any terms arising from the 
black hole horizon

@2S(2)

@si@s̄j
= Gij +G†

ij

Using the same derivatives for           as above we find        @vi
@sj

dots are fixed by     and  black hole background: ↵0, k,M, c↵, ch!



Numerical results

Focus on G11(!) = hT tx1T tx1i
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• Holographic lattices are interesting

Summary/Final Comments

d=3,4 CFTs with global U(1) symmetry:

µ(x)Einstein-Maxwell theory and           deformation (PDEs)

Q-lattice: Einstein-Maxwell plus scalar field with global 
symmetry in the bulk  (ODEs)

d=4 CFTs with universal helical deformation (ODEs)



• All of these included a realisation of strongly coupled 
Drude physics at finite T, at least for small deformations

The Drude physics can be understood by the 
appearance of translationally invariant ground states 
in the far IR:                       or AdS2 ⇥ R2 AdS5

• For larger deformations the Q-lattices realised 
incoherent metallic an insulating phases

The T=0 ground states break translation invariance 

The phases have novel thermoelectric transport properties
(not determined by memory matrix formalism)

• What is the landscape of such spatially modulated ground 
states?


