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Main points:

The holographic bottom up model is both tractable, and a good approximation to

Kondo-like physics.

Our specific results may be numerical, but we have a thorough understanding of

the qualitative features of our model due to energy conditions and geometrical

considerations.

The results can be compared to field theory calculations, with interesting

similarities.
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Part I: Field theory side

Spin-spin interaction of electrons with a localised magnetic impurity. This

may be another type of atom (i.e. Fe in Au), or, in the Anderson model , an

electron (slave fermion) bound in a quantum dot:

In 2-electron 
state, Coulomb 
repulsion adds 
energy U

Impact on resistivity at low temperatures.

At low temperature, electrons form a bound state around impurity, the

Kondo cloud .

Can be mapped to a 1 + 1 dimensional system [Affleck et. al. 1991]:

H =
v

2π
ψ†Li∂xψL +

v

2
λKδ(x)~Sψ†L~τψL

v: Fermi velocity, λK : Kondo coupling.
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The top-down Kondo model

Holographic top-down model [Erdmenger, Hoyos, O’Bannon, Wu: 1310.3271]:

Brane setup:

0 1 2 3 4 5 6 7 8 9

N D3 x x x x

N7 D7 x x x x x x x x

N5 D5 x x x x x x

D3/D7 strings: chiral fermions in 1+1 d → electrons ψL.

D3/D5 strings: slave fermions in 0+1 d → impurity spin ~S = χ†~Tχ.

D5/D7 strings: tachyonic scalar → Formation of Kondo cloud:

〈O〉 ≡
〈
ψ†Lχ

〉
6= 0
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The bottom-up Kondo model

Idea: Construct top-down model, and strip it from everything that seems

non-essential. [Erdmenger et. al.: 1310.3271]

→ Holographic bottom-up model:

Dual gravity model has 2 + 1 (bulk-) dimensions.

Localised spin impurity is represented by co-dimension one hypersurface

(”brane”) extending from boundary into the bulk.

Finite T is implemented by BTZ black hole background.

Kondo cloud is described by condensation of scalar field Φ.
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The bottom-up Kondo model

S = SCS [A]−
∫

d3xδ(x)
√
−g
(
1
4 f mnfmn + γmn(DmΦ)†DnΦ + V (Φ†Φ)

)
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What can we learn from this model?
How can we obtain information about the Kondo cloud from our model?

Kondo cloud is formed by anti-aligned spins

⇒ expect imprint on entanglement entropy :

SEE (A) = −TrA[ρA log(ρA)], ρA ≡ TrB [ρA∪B ].

E.g. entanglement of state |Ψ〉 = 1
N
(∣∣ ↑↑↑ ↓︸︷︷︸

A

↓ ...︸︷︷︸
B

〉
−
∣∣ ↓↓↓ ↑︸︷︷︸

A

↑ ...︸︷︷︸
B

〉)
does not

vanish.

SEE is determined by spacelike geodesics [Ryu, Takayanagi, 2006]:

SEE (A) =
Area (EA)

4GN
, EA: co-dim two extremal surface.

⇒ to calculate it, we need backreaction on the geometry.

What is the backreaction of an infinitely thin hypersurface carrying

energy-momentum? Israel junction conditions!
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Part II: Including backreaction

In electromagnetism: To describe field around an infinitely thin charged surface

Σ, integrate Maxwells equations in a box around Σ:

⇒ ~E|| continuous, ~E⊥ discontinuous on Σ

In gravity: To describe backreaction of an infinitely thin massive surface,

integrate Einsteins equations in a box

⇒ Israel junction conditions [Israel, 1966]:

(K+
ij − γijK

+)− (K−ij − γijK
−) = −κSij

Sij : energy momentum tensor on the brane, γij : induced metric,

K±: extrinsic curvatures depending on embedding.
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Israel junction conditions

With mirror symmetry (K+ = −K−): K+
ij − γijK+ = −κ2 Sij (∗)

⇒ Embedding (location of the brane) will not be x ≡ 0 anymore, but a dynamical

function x(z) with (∗) its own equations of motion.

identify points

boundary boundary

hypersurface

bulkbulk

With (∗) we arrive at a general setting for the study of AdS/boundary CFT

correspondence proposed by Takayanagi et. al.: [Takayanagi 2011, Fujita et. al.

2011, Nozaki et. al. 2012].
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Israel junction conditions: example

To explain this construction, look at the example of branes with constant tension(
Sij = λ

2 γij
)

embedded in global AdS3 [Azeyanagi et. al. 2007]:

On the left: x+(z) for various λ (λ >> 0, λ ≈ 0 , λ << 0).

On the right: full construction involving x±(z).
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Israel junction conditions: example

If brane bends the ”wrong” way, curves may have to be refracted or reflected.

Meaning for entanglement entropy, Wilson loops etc? Is λ < 0 physical?

We will later see that such problems do not occur when WEC is satisfied.
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Israel junction conditions: questions

K+
ij − γijK+ = −κ2 Sij

curvature = energy momentum

Geometric equations of a similar form as Einstein equations, extrinsic curvature

tensors (K+
ij ) instead of intrinsic ones (Rµν).

General questions:

Impact of energy conditions on possible geometries?

Find exact solutions for simple toy models of Sij?

Investigate Kondo model?

Answers in [Erdmenger, M.F., Newrzella: 1410.7811].
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Possible geometries in 2 + 1 dimensions
Which impact do energy conditions have on the possible geometries?

Four examples:

Null energy condition (NEC): Sijm
imj ≥ 0 ∀ mimi = 0

Weak energy condition (WEC): Sijm
imj ≥ 0 ∀ mimi < 0

Strong energy condition (SEC): (Sij − Sγij)mimj ≥ 0 ∀ mimi < 0
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Possible geometries in 2 + 1 dimensions

Barrier Theorem [Engelhardt, Wall: 1312.3699]

Let Q be a hypersurface splitting the spacetime N in two parts N± with

boundaries M± such that K+
ij v iv j ≤ 0 for any vector field v i on Q. Then any

spacelike extremal surface Υ which is anchored in M+ remains in N+.
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Possible geometries in 2 + 1 dimensions
With the junction conditions, we can express the assumption made in the barrier

theorem in terms of energy conditions:

WEC and SEC satisfied on Q in 1+1 d ⇒ K+
ij v iv j ≤ 0 ∀v i
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Possible geometries in 2 + 1 dimensions

Whether or not a brane Q bends back to the boundary or goes deep into the bulk

depends on whether Sij satisfies or violates WEC and SEC.

Q is an extremal surface barrier if the WEC is satisfied.
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Exact analytical solutions

We first studied simple models for Sij and obtained some exact analytical

solutions to the junction conditions for:

Perfect fluids: Sij = (ρ+ p)uiuj + pγij with p = a · ρ, a ∈ R.

As the special case thereof with a = 1: The free massless scalar φ with

Sij = ∂iφ∂jφ−
1

2
γij(∂φ)2.

The U(1) Yang-Mills field ai in the absence of sources:

Sij = −1

4
f mnfmnγij + γmnfmi fnj

Constant tension solutions Sij = λ
2 γij .

All of these were studied in AdS and BTZ backgrounds.
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Exact analytical solutions
For the free massless scalar φ with Sij = ∂iφ∂jφ− 1

2γij(∂φ)2, we obtain

x+(z) =
cz3

3
2F1

(
1

2
,

3

4
;

7

4
; c2z4

)
.

with 2F1(a, b; c; d) the hypergeometric function. WEC and SEC are satisfied,

hence the brane bends back to the boundary.
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Geodesic normal flow construction
For constant curvature backgrounds, we can analytically construct constant

tension solutions:

Start in the trivial embedding with Sij = 0.

Construct the geodesics normal to this hypersurface.

Shift every point of the initial hypersurface along the normal geodesics by a

distance s related to the value of the tension λ.
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Junction conditions for Chern-Simons field

Our Kondo model contains both the metric field and a Chern-Simons field in

the bulk. Assume CS field to be U(1) in simplest case.

Similarly to the metric, we get junctions conditions for the CS field along the

hypersurface Q (located at η ≡ 0) if it carries a current in its worldvolume.

Split up field: A ∼ θ(η)A+ + θ(−η)A− + δ(η)A0.

Q

A

A
0

+

A-
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Junction conditions for Chern-Simons field

Q

A

A
0

+

A-

With Dm ≡ (A+||
m + A−||m )/2 (projected mean value),

Cm ≡ A+||
m − A−||m (projected discontinuity),

and A0
µ = A0nµ (component localised on Q is normal)

we find: εmn
(
Cn − ∂nA0

)
= 2πJm [γ,Φ, a,D]

What about non-abelian case, gravitational Chern-Simons terms?
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Part III: Entanglement entropy for Kondo model

Sbrane [am,Φ] = −
∫

dVbrane

(
1
4 f mnfmn + γmn(DmΦ)†DnΦ + V (Φ†Φ)

)
Due to Yang-Mills field am, SEC is violated everywhere in the bulk.

Hence brane starts at boundary and falls into black hole, does not turn

around and bend back to boundary.

Preliminary numerical results:
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Numerical results
Preliminary results on entanglement entropy: Difference of SEE (`) relative to

solution with Φ ≡ 0.
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[Erdmenger, M.F., Hoyos, Newrzella, O’Bannon, Wu: work in progress]
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Discussion: Entanglement entropy

While the precise numerics may still be improved, some of the qualitative features

of these results follow directly from the energy conditions and simple geometric

considerations.

Entanglement entropy for given ` decreases as Kondo cloud forms: because

Φ satisfies NEC, brane bends to the right.

As `→∞, curves go to a constant, which decreases as Kondo cloud forms.

The fall-off towards this constant value is for large ` exponential, due to

simple geometric arguments.

The holographic g -theorem for BCFTs is satisfied as the NEC is satisfied

[Takayanagi 2011].
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Discussion: Entanglement entropy

The fall-off towards this constant value is for large ` exponential, due to simple

geometric arguments:

∆SEE (`)
∼−−→ c0 + c1(T )T

(
1 + 2e−4π`T + ...

)
Qualitative agreement with results of field theory calculations [Affleck et. al.

2007, 2009; Eriksson, Johannesson 2011]:

∆SEE (`) = c̃0 +
π2ξKT

6v
coth

(
2π`T

v

)
→ c̃0 +

π2ξKT

6v

(
1 + 2e−

4π`T
v + ...

)
v : Fermi velocity, ξK : Kondo scale

Matching exponential behaviour in both expressions is satisfactory. Can we

reproduce the coth behaviour?
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Discussion: Large ` behaviour

For large `, the holographic entangling curves pass trough the brane close to

the black hole event horizon.

We can then approximate our dynamic brane by a constant tension brane,

characterised only by its tension and the geometrical quantity D.

Constant tension solutions are analytically known, and so is their impact on

entanglement entropy.
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Discussion: Large ` behaviour

Hence for `→∞ we find:

∆SEE (`) = c0 + SBH(`+ D)− SBH(`)

with SBH(`) = c
3 log

(
β
πε sinh

(
2π`
β

))
.

Numerically, it turns out D becomes small as Kondo cloud forms!

∆SEE (`) ∼ c0 + D∂`SBH(`)

= c0 +
c

3

2πD

β
coth

(
2π`

β

)

Can we read off Kondo scale ξK from c · D? → Work in progress...
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Summary and Outlook

We studied a holographic model of the Kondo effect.

Gravity dual involves thin brane carrying energy-momentum.

Backreaction of the brane is described by Israel junction conditions.

We obtained general results constraining possible geometries of the brane by

energy conditions [Erdmenger et. al. 1410.7811].

These results may also be applicable to holographic duals of BCFTs

[Takayanagi, 2011] or the Hall effect [Melnikov et. al, 2012] involving thin

branes.

Specific Kondo model will be solved numerically, results on entanglement

entropy can be compared to field theory literature.
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