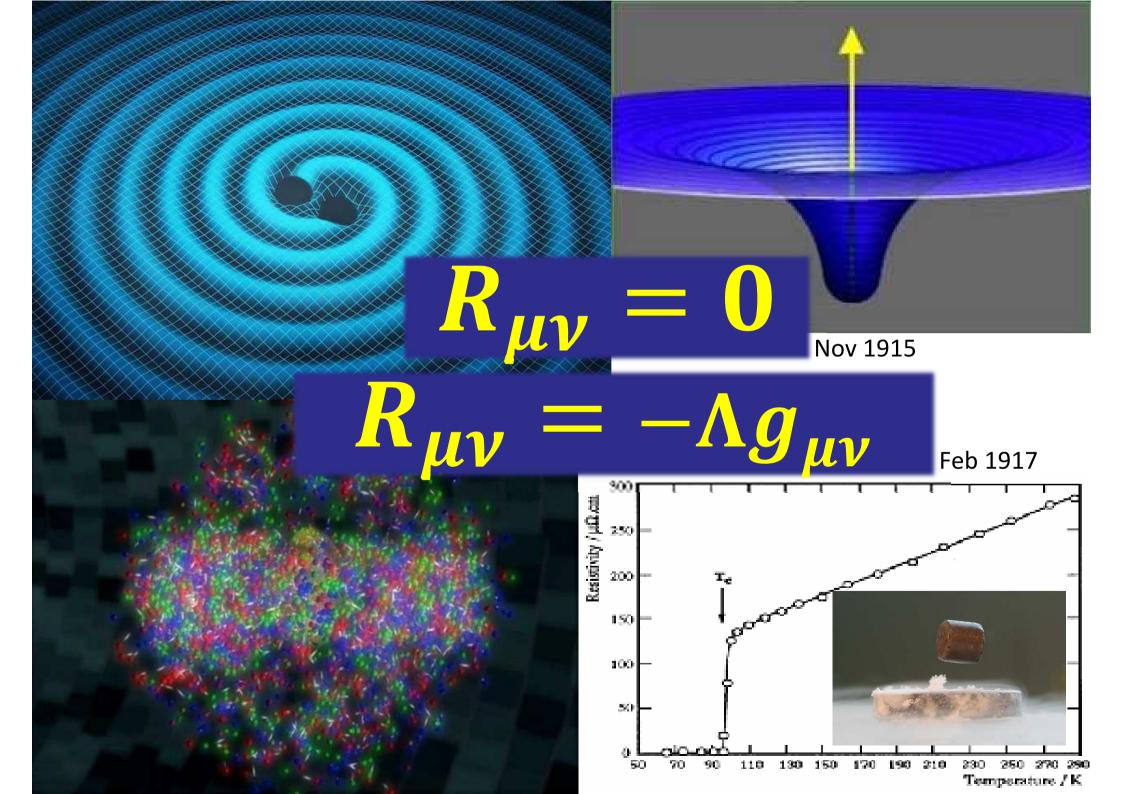
Black holes in the 1/D expansion

Roberto Emparan ICREA & U. Barcelona (& YITP Kyoto)

w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka



A dimensionless, adjustable parameter is a good thing to have for studying a theory

Quantum ElectroDynamics

Perturb around $e^2 = 0$

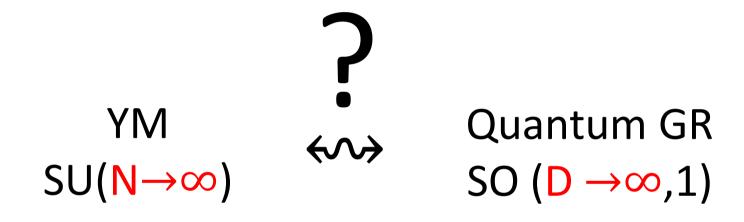
Quantum GluoDynamics SU(3) Yang-Mills theory

No parameter?

Quantum GluoDynamics SU(N) Yang-Mills theory parameter!

What dimensionless parameter in $R_{\mu\nu} = \Lambda g_{\mu\nu}$?

 $\mu, \nu = 0, \dots, D$



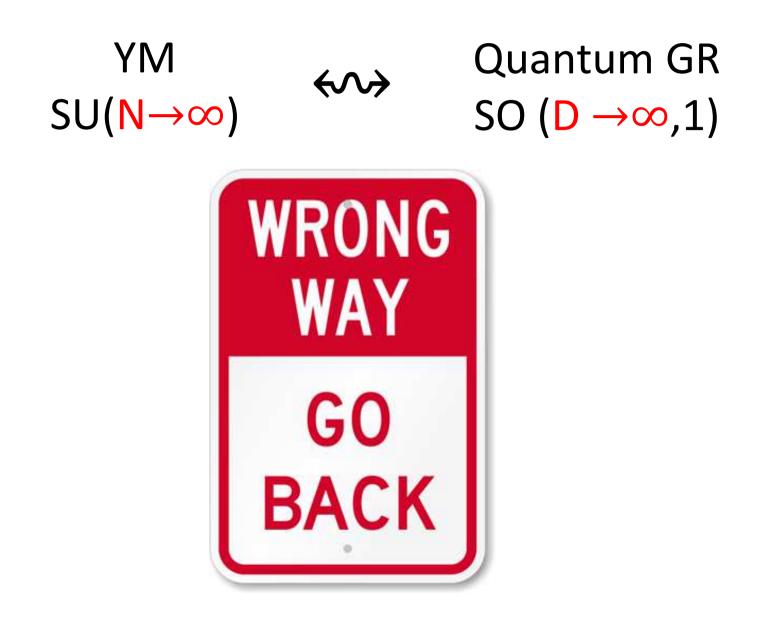
Quantum GR: SO(D-1,1) local Lorentz group

graviton polarizations grows with D BUT:

No topological expansion of Feynman diagrams

Strominger 1981 Bjerrum-Bohr 2004

Even worse: UV behavior infinitely bad



Classical General Relativity D-diml Einstein's theory

Well-defined for all D Many problems can be formulated keeping D arbitrary

> \rightarrow D = continuous parameter \rightarrow expand in 1/D

Kol et al RE+Suzuki+Tanabe

Classical General Relativity D-diml Einstein's theory

Large D keeps essential physics of D=4 \exists black holes \exists gravitational waves simplifies the theory reformulation in terms of other variables?

BH in D dimensions

$$ds^{2} = -\left(1 - \left(\frac{r_{0}}{r}\right)^{D-3}\right)dt^{2} + \frac{dr^{2}}{1 - \left(\frac{r_{0}}{r}\right)^{D-3}} + r^{2}d\Omega_{D-2}$$

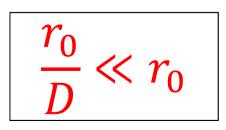
Localization of interactions

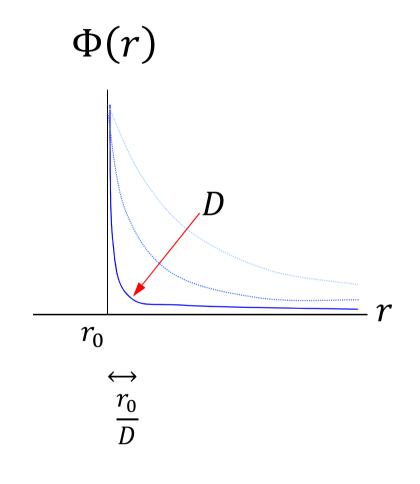
Large potential gradient:

$$\Phi(r) \sim \left(\frac{r_0}{r}\right)^{D-3}$$

$$\nabla \Phi \Big|_{r_0} \sim D/r_0$$

 \Rightarrow Hierarchy of scales



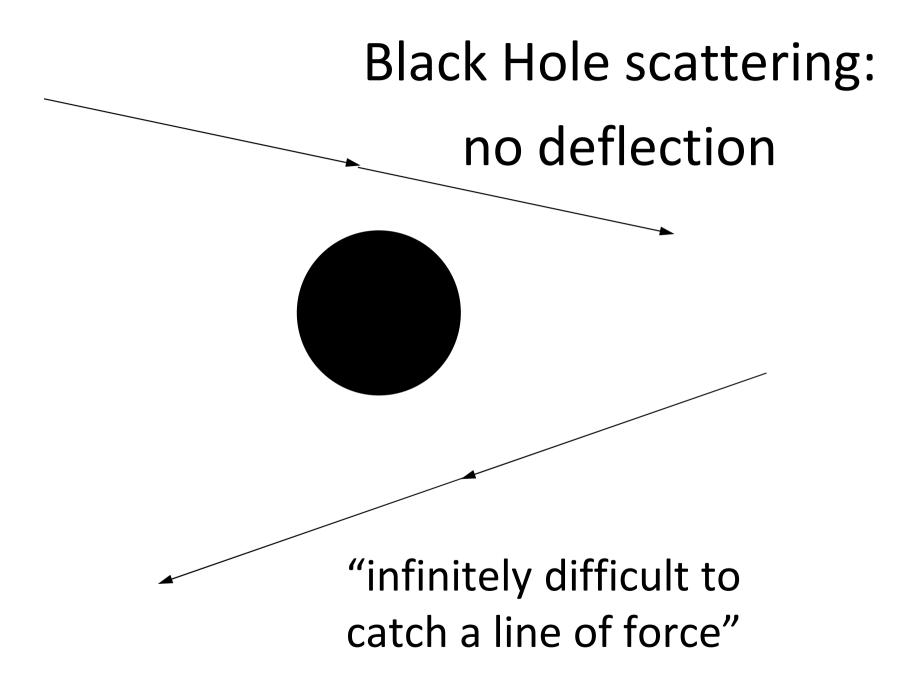


Fixed
$$r > r_0$$
 $D \to \infty$

$$1 - \left(\frac{r_0}{r}\right)^{D-3} \to 1$$

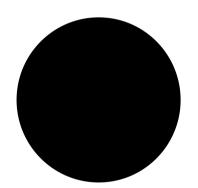
$$ds^2 \rightarrow -dt^2 + dr^2 + r^2 d\Omega_{D-2}$$

Flat, empty space at $r > r_0$ "Far-zone" limit

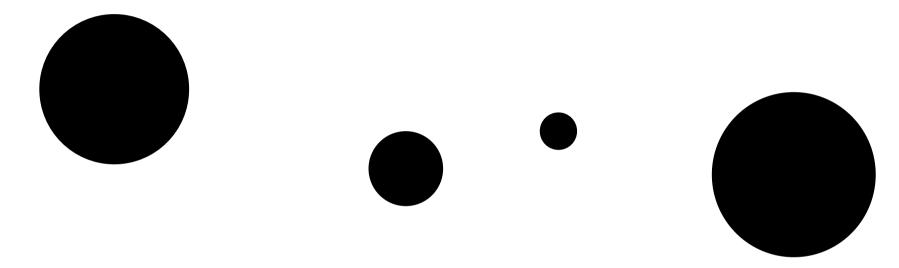


Black Hole scattering

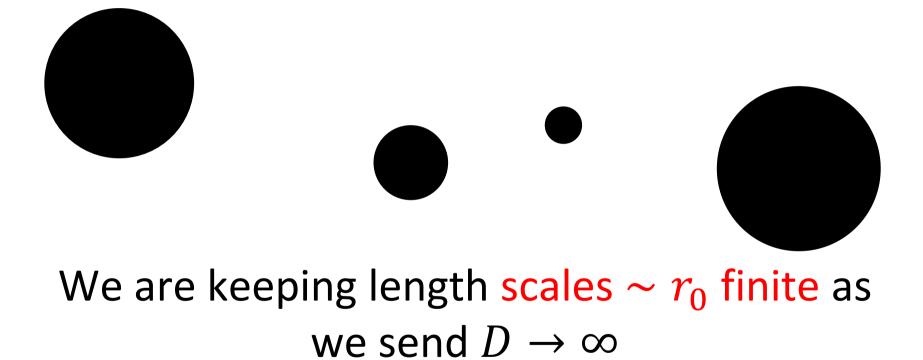
No absorption of waves with wavelength



No interaction

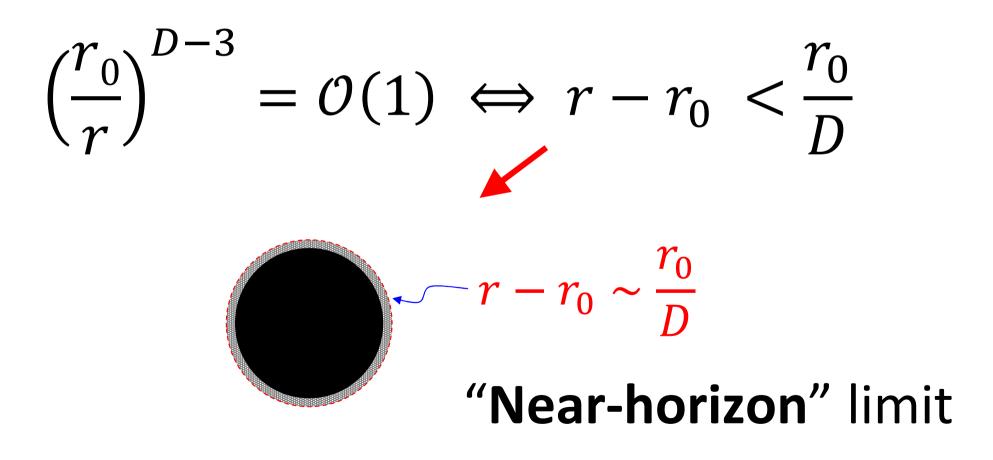


Holes cut out in Minkowski space



"Far-zone" limit

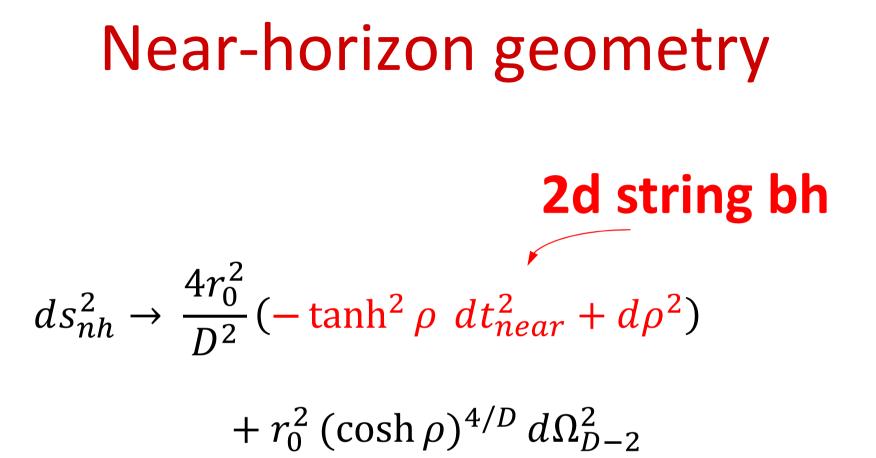
Now take a limit that does *not trivialize* the gravitational field



Near-horizon geometry

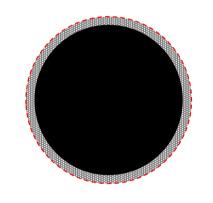
$$ds^{2} = -\left(1 - \left(\frac{r_{0}}{r}\right)^{D-3}\right)dt^{2} + \frac{dr^{2}}{1 - \left(\frac{r_{0}}{r}\right)^{D-3}} + r^{2}d\Omega_{D-2}$$

$$\left(\frac{r}{r_0}\right)^{D-3} = \cosh^2 \rho$$
 finite
$$t_{near} = \frac{D}{2r_0} t$$
 as $D \to \infty$



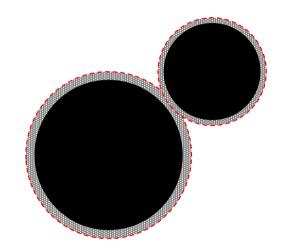
Soda 1993 Grumiller et al 2002

Physics at ~ r_0/D close to the horizon is *not* trivial



Perfect absorption of waves with $\lambda \sim r_0/D$ $\omega \sim D/r_0$

"Near-horizon" dynamics



Not an exact solution Non-trivial interaction

"Near-horizon" dynamics

Near-horizon universality

2d string bh = near-horizon geometry of all neutral non-extremal bhs

rotation = local boost (along horizon) cosmo const = 2d bh mass-shift

Large D Effective Theory

Solve near-horizon equations

integrate-out short-distance dynamics

 \rightarrow Boundary conds for far-zone fields

Long-distance effective theory

Black hole perturbations 🗸

all analytic

Scattering

Quasinormal modes

Ultraspinning instability

Holographic superconductors

Full non-linear GR 🗸

General theory of static black holes: Soap-film theory

Black droplets

simple ODE

Non-uniform black strings

BH perturbations: How accurate?

Small expansion parameter: $\frac{1}{D-3}$

not quite good for $D = 4 \dots$

BH perturbations: How accurate?

Small expansion parameter: $\frac{1}{D-3}$

not quite good for $D = 4 \dots$

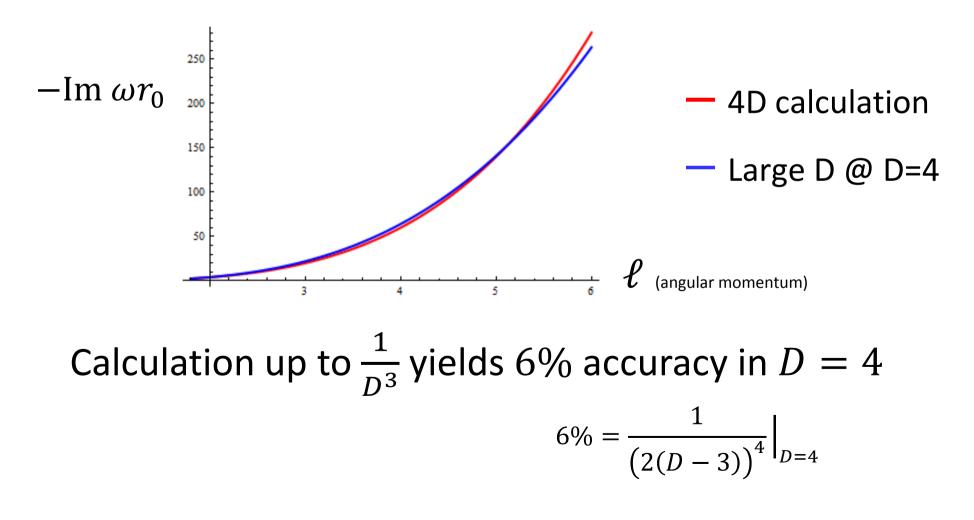
But it seems to be
$$\frac{1}{2(D-3)}$$

not *so* bad in D = 4, if we can compute higher orders

(in AdS:
$$\frac{1}{2(D-1)}$$
)

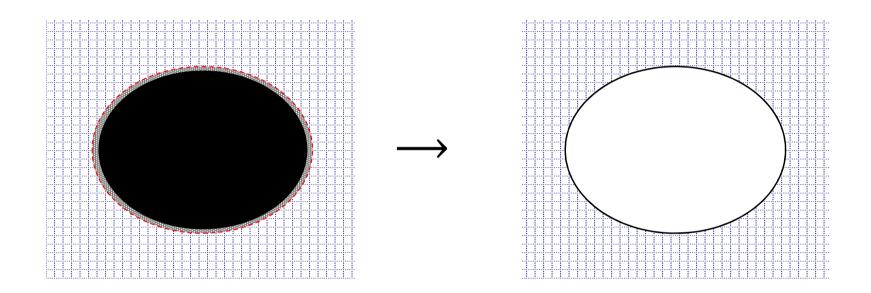
Quite accurate

Quasinormal frequency in D = 4 (vector-type)

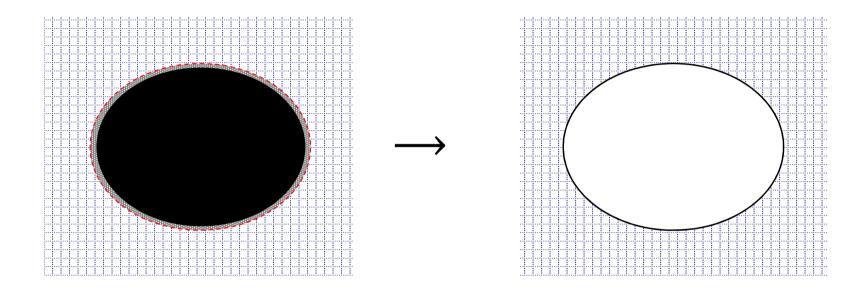


Fully non-linear GR @ large D

Large-D \Rightarrow neat separation bh / background



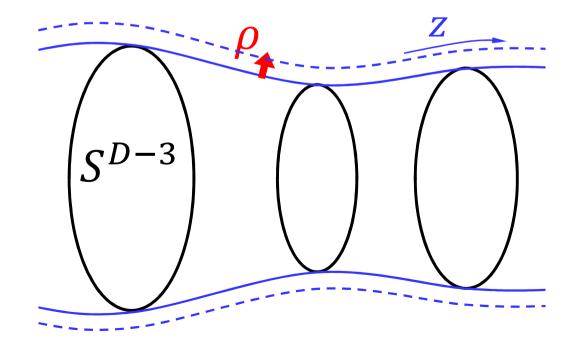
Replace bh → surface in background What eqs determine this surface?



Derive them by solving Einstein's eqs in near-horizon zone

Gradient hierarchy

 \perp Horizon: $\partial_{\rho} \sim D$ \parallel Horizon: $\partial_{z} \sim 1$

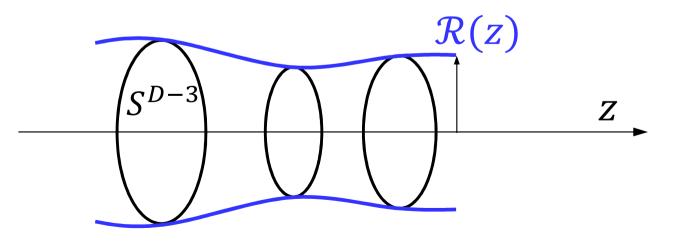


Einstein 'momentum-constraint' in ρ :

$$\sqrt{-g_{tt}}K = \text{const}$$

K = mean curvature of 'horizon surface'

$$ds^{2}\Big|_{h} = g_{tt}(z)dt^{2} + dz^{2} + \mathcal{R}^{2}(z)d\Omega_{D-3}$$



Soap-film equation (redshifted)

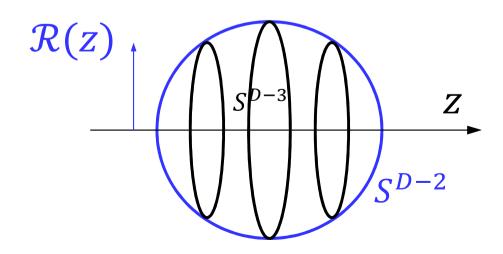
$$\sqrt{-g_{tt}}K = \text{const}$$

Valid up to NLO in 1/D (but *not* at NNLO)

Some applications

Soap bubble in Minkowski = Schw BH

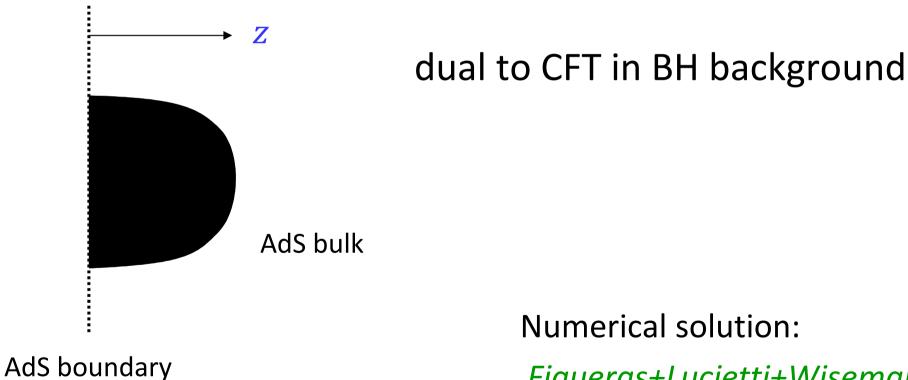
$$ds^{2} = -dt^{2} + dz^{2} + dr^{2} + r^{2} d\Omega_{D-3}$$
$$r = \mathcal{R}(z)$$
$$\sqrt{-g_{tt}}K = \text{const} \Rightarrow \mathcal{R'}^{2} + \mathcal{R}^{2} = 1$$



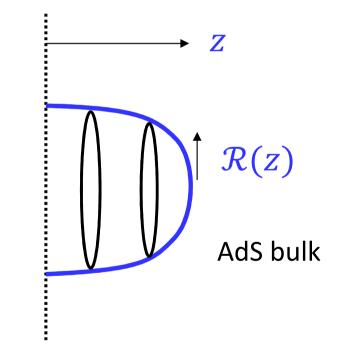
 $\Rightarrow \mathcal{R}(z) = \sin z$

Black droplets

Black hole at boundary of AdS



Figueras+Lucietti+Wiseman

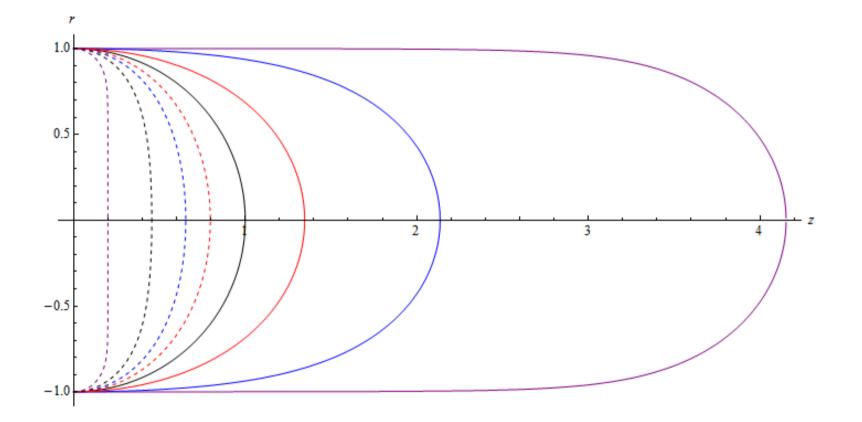


AdS boundary

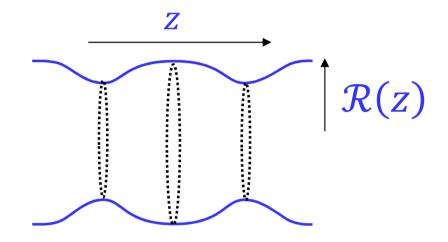
Numerical code

zmin=0.000001;
zmax=0.67;
r0=.5;
NDSolve[{r'[z] == -
$$\frac{z}{r[z]} = \frac{1 - \sqrt{r[z]^2 + z^2 (1 - r[z]^2)}}{1 - z^2}$$
, r[zmin] == r0}, r, {z, zmin, zmax}]

Black droplets

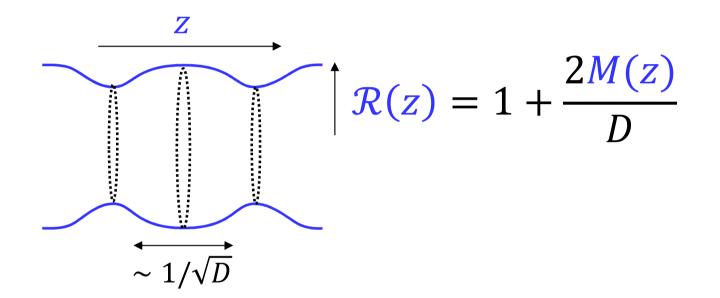


Non-uniform black strings



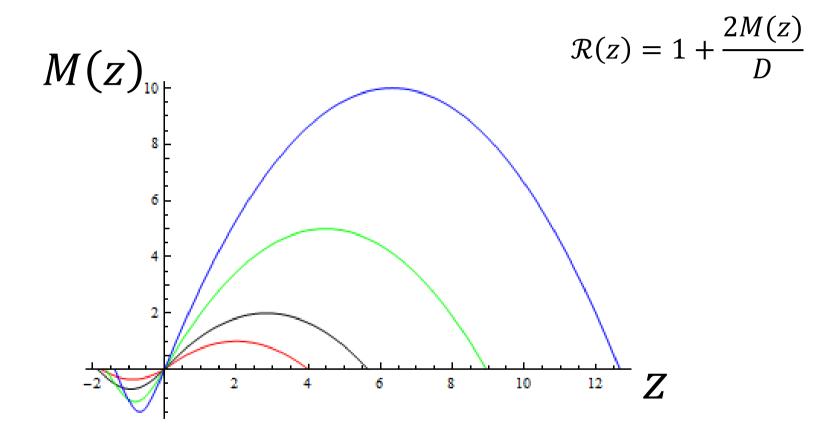
Numerical solution: Wiseman

Non-uniform black strings



K = const $\implies M''(z) + M'(z)^2 + M(z) = \text{const}$

Non-uniform black strings

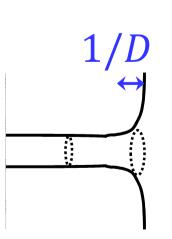


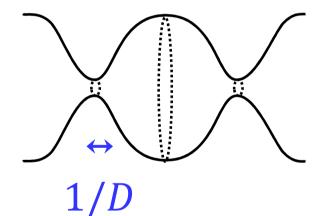
Limitations

1/D expansion breaks down when $\partial_z \sim D$

• Highly non-uniform black strings

• AdS black funnels





In progress

Extensions of $\sqrt{-g_{tt}} K = \text{const}$

Charged black holes Rotating black holes (Time-evolving black holes)

Conclusions

1/D: it works

(not obvious beforehand!)

Static black holes are soap bubbles

at large D (up to NLO)

Can we reformulate GR around D→∞, with black holes as basic (extended) objects?

