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The Result

Things a black hole horizon knows about:

m Temperature

m Entropy 5§ = %

m Shear Viscosity (sometimes) n= 1

[Son, Starinets, Policastro]

m We will add DC conductivities < g



Charge transport in real materials

Drude peak
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m Materials with charged d.o.f. can be

m Coherent metals with a well defined Drude peak
m Insulators
m Incoherent conductors of electricity

m Interactions expected to become important in the incoherent
phase — Possible description in AdS/CFT?



The Cuprates
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The Cuprates are real life example of :
m Incoherent transport

m Anomalous scaling of conductivity and Hall angle with T’
[Blake, AD]
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Electrons as a soup

Potential a.u.
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Recent evidence for high
viscosity in strongly
interacting electrons.
[1508.00836],[1509.04165],
[1509.05691]
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m Hydrodynamics accurate in the high 7', momentum (quasi-)
conserving regime

[Hartnoll, Kovtun, Muller, Sachdev]

m Incoherent transport is away from this limit



Electrons as a soup

m Macroscopic effects of viscosity

[1500.05691]
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btw This is a Stoke's flow



Drude Model

Put the lattice back!
m Lattice scattering (Drude physics)
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m Average momentum obeys
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m Microscopically 0 = G jj(w)/(w)



Viscosity vs Lattice Scattering

Don't need quasi-particles to have
Drude physics.

Coherent metals arise when mo-
mentum relaxation is slow with Re w
dominant pole on imaginary axis. 7
[Hartnoll, Hofman]
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Fourier/Ohm law

m We have electric currents J* and a thermal current
Qz — _th — Jt

m Transport coefficients are packaged in Ohm/Fourier law

m With VT a temperature gradient



Setup

In D = 4 Einstein-Maxwell with AdS asymptotics:

1
Loy =R~ FuF* + 12

ds? = —U(r)dt* + U(r) " dr? 4 2 (dw% + dm%)
A=a(r)dt

= 1

Background black hole has temperature 1", energy F, pressure P,
entropy s and charge ¢.



Setup

=i

m Introduce periodic lattice (deformation) on the boundary
m Focus on simple black hole topologies

m More general statements
[AD, Gauntlett, Griffin, Melgar]



Setup

Deform by chemical potential pp and magnetic field B

m Hold at finite temperature T’

Introduce periodic sources that can relax momentum:

m Local chemical potential Vi
m Local temperature VT
m Magnetic impurities

m lLocal stress + rotation

m Probe with external electric field Vou = E and thermal
gradient —V07T'/T = ( to extract conductivities



RG/Holographic picture

I\ /I {7

AdSy x R?, HSV, ...

| Charge dominated RG flows, translations restored in IR —
Coherent transport

[l Lattice dominated RG flows, translations broken in IR —
Incoherent transport
[AD, Hartnoll] [AD, Gauntlett]



Conductivity from Q-lattices [AD, Gauntlett]
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m Can model Metal - Insulator transitions

m Similar story for inhomogeneous lattices
[Rangamani, Rozali, Smyth]



Currents At Equilibrium

m For homogeneous systems we have Ty, o, B%,
m First consider hydrodynamic limit

m Weakly break translations po — po + op(x),

® In hydrodynamic limit, magnetization becomes local
SM = 8, Mo dpu(x) + dp Mo 6T () + - --
= Presence of local magnetization currents
J =V x M

Similar for heat currents






Currents At Equilibrium

In the non-hydrodynamic limit £ = 9, is a symmetry

LrxJ=0=ir(dxJ)+d(ix*xJ)=0
d(ip % J) =0

Assuming R; x Mp_1 topology
ip*xJ =d*xp M +w
with w harmonic. Currents relax
/ irxJ=0=w=0=J =0;(/gp_1M")
Cp—2
Similarly for the heat current

Q' =T k" — k* AT = 9;(\/ap_1 M)



DC conductivities from BH horizons

m Bulk theory is Einstein-Maxwell

m Consider E/M charged, static black branes

F
ds®> = —UG (dt + x)? + i dr? + ds*(2q)
A = a; (dt + x) + a; dz°
dsQ(Ed) = gi;(r, $)dZL‘id:Ej

m Asymptotically, r — oo

U—r?, F—1
a(r,z) = p(z), a;(r,z) = a;(x)
G — G(z), 9i5(r, z) = r?gi;(z), xi(r,z) = Xi(T)

m Local u, B, T, mag impurities, surface forces



DC conductivities from BH horizons

For the perturbation write

5(ds?) = 8gu (1, x)datdz” — 2tGU;dtdx’
0A = day(r, z)dx" — tE;dzt + ta,(dat

E(x%) and ((2°) are closed forms

( is boundary temperature gradient

m F is boundary electric field

Count functions:

m g — 3 (d+2)(d+3) — (d+2) functions
m A, = (d+2)— 1 functions



Radial Hamiltonian

m Imagine radial foliation by hypersurfaces e.g. normal to 0,

m Radial evolution Hamiltonian is sum of constraints

HaTz/NH+NMH“+Dg+b.t.

m At infinity they yield Ward identities
Vi (T)=F" (J,),  V,(J*)=0,  (T*,)=anom

m Meaningful but not closed system without hydro



DC conductivities from BH horizons

N ni 87’
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m Projection of metric h,, and gauge field b, on r = ¢ surface
m Conjugate momentum densities 7#¥ and 7* with respect to 0,

m “Evolution” equations

_5Har o 0Hp,
huy - omTHY ’ i - 6huu
SHp, .. OH,,

"= T T T G,



DC conductivities from BH horizons

m And constraints

1,
Hz/ ZDutuu - §fup.7p =0
G =D,j* =0

m With t* = (—h)_1/2 T and jH = (_h)—1/2 P

m Continuity equations on the surface



DC conductivities from BH horizons

Examine constraints close to the horizon

m Impose infalling conditions

m Define
v; = _591'(7?)’ = &Lgo) ,
(0)

0gyy ©) gid (0)
p= —47TTG( o) —dg (O)V InG




DC conductivities from BH horizons

Constraints on the horizon give
H' = Vo'=0
G= Viw+Vi(FOh) 441 Vel = —v,E
W= 2V'Viu +a)Viw—V;p
+ 47T dxg-?) v’ + F(Q) (Viw + a(o)/zvj’ + FO) k)
= 47T ¢ — o\ E; — FYE

m Solve for a Stokes flow on the curved black hole horizon
m Closed system of equations in d dimensions
m Nowhere made hydro assumptions!

m Related (?7) work
[Damour][Thorne, Price][Eling, Oz][Bredberg, Keeler, Lysov, Strominger]



DC conductivities from BH horizons

Electric Current
Define

Ji — \/ng’LT‘

m At 7 — oo gives field theory current densities J’_

m Anywhere in the bulk

0rJ" = 0; (V=gF"") + V=g F
9;Jt = J;



DC conductivities from BH horizons

Heat Current
Let £ = O0; and define

G = -2Vl —gleprloa, 1 (¢ —0) FH
and
Q' = /=gG"
m At 7 — oo gives field theory heat current densities
Qb = — (0T") — p (6.J°)
m Anywhere in the bulk

0,Q' = 0; (V=9G") + 2v/=gGY¢; + V=g ZF B
9,Q" =2Q'¢; + J'E;



DC Conductivities from BH horizons

For the background (E; = (; = 0) we have
JéoB)i _ (r)j_]w(B)z‘j7 ng)i _ (%M}B)U

with the magnetizations

MY (z) = —/ drv/=g F, M (z) :—/ dr/—g G
T T+

ais

satisfying
8;JB¥ =0, 8, =0

and giving and no fluxes!



DC Conductivities from BH horizons

Back to perturbations we write...
JL —J(0)+8M — M5B ”C
5 B)ij
QLo = Qlgy + MY — MBI g; — 2 MM,

The “transport components” of the currents are then
[Cooper, Halperin, Ruzin]

T =Jlop % = Q)
Important point is
0iJ% =0, 0iQ4 =

= Meaningful to examine fluxes through d — 1 cycles!



DC conductivities from BH horizons

m Solutions for v, w and p are uniquely fixed by sources E and ¢
m Then

J(io) = i <3iw +E + F(O)ijvj> + pot

QEO) =Ts viv s=4m 9(0)7 P = g(O) aEO)

m To find field theory currents J and Q% ineg. d=2
gh=[ar gk, 7= [ a7

m Conductivities determined by BH horizon data!



Hydro temptation

Meaningful quantities are

Q= vol;1 / \/9(0) ago), IS vol;1 / 47 | /9(0)

Very tempting to think of it as
Vﬂ)i =0
V26 4+ v' Vip + Vz‘(F( Vv ) =
2 ViVvg) + Xy Qigy + Fi Tl
=Ts((+T1V;0T) + p(Bj + Vjopu)

—V;E"

Tempting to see it as first order hydro

Can be misleading...

Lorentz + Coriolis force for electric and heat currents!



DC conductivities from BH horizons
Can show (strict) positivity of transport coefficients:
d4z/hO (zv%ﬁv )+ |Bi + Viw + FY UJP)
= / A%z (T5 Ei + Qlp)G:)
= = o4 oI T\ (E;
= (& Q) (@ijT R T> (@-)
In the absence of Killing vectors
Evgz(J) =2Vvj; =0, EvaEO) =0
m The eigenvalues are positive definite... No insulators at finite

T with regular BH horizons.

m In specific cases can come up with specific numbers for the
bound.

[Grozdanov, Lucas, Sachdev, Schalm]



DC conductivities from BH horizons

The same equation shows uniqueness of solution

m Need to show that only solution to homogeneous problem is
trivial

Set sources F; and (; to zero

Then only non-trivial solution for v* is a Killing vector

m In translationally invariant case these zero modes generate
boosted black branes

m Connected to infinity of conductivity



DC conductivities from BH horizons

Examples
m Can recover earlier results for e.g. Q-lattices and 1-dim lattices

m Perturbative, periodic lattices about AdS-RN black brane
Let A be the expansion parameter
The black hole horizon is a small expansion about flat space

Joyis = 905 + ARG + A2 + -
aﬁo) =a+ Aa() +)\2a(2) 4.

GO — foy+ A fay + -+

Solve Navier-Stokes perturbatively in A



DC conductivities from BH horizons

At leading order in A we find

Lt -1
= vJ = 1]
ozij:ozij:T\2 drp+ ..., Iﬁ}ij:vllﬂ'sT_i_”.
Lij' 4rp?

Where Lij = fH lij (h,(i),a(l)>

Consistent with memory matrix formalism
[Barkeshli,Hartnol,Mahajan]



DC conductivities from BH horizons

Can easily include neutral scalars in the action

£=v=3 (R-v(e)- 22 r - S0

i _ (005 (4 i (0)i ., j i
Joy =2 gy (8w+E +F ]U])—i-p’l)

Qioy = Tsv', s=4dr /G, p=/30 29 a

m Local change in expression for horizon electric “current
density”

m Local change in expression for horizon “charge density”



DC conductivities from BH horizons

Can easily include neutral scalars in the action

£=v=g (R-ve) - Z2 r - S007)

Vﬂ}i =0

Viw + ot Vip + Vi(F(O)iquk) = —V,E!

20 ViVup) + Xy Qlgy + Fii iy — V6O Vi Qi)
=Ts((+T1V;0T) + p(Ej + Vjw)

m Extra “friction” term in Navier-Stokes equation



Onsager relations

We can easily find the time reversed background bh horizons by
simply

Qo B R

m The transport coefficients of the new geometry are simply
related to the original ones through Onsager relations

G 8-G3

m If the background is symmetric under time reversal then these
reduce to a relation among the transport coefficients

m Non-obvious after subtracting magnetisation currents in the
UV theory. Proof relatively easy!



Summary / Outlook

m Holography is a tool to study transport in strongly coupled
systems

m No assumption of quasiparticles

m Understand better the physics of new ground states
[AD, Gauntlett][Withers]

m Fluid/gravity can be used to obtain (exact) DC thermoelectric
conductivities

m Connection with fluid/gravity beyond DC?

m Other applications? Disorder?
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