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The Result

Things a black hole horizon knows about:

Temperature

Entropy s = A
4G

Shear Viscosity (sometimes) η = s
4π

[Son, Starinets, Policastro]

We will add DC conductivities

(
σ T α
T ᾱ κ̄

)



Charge transport in real materials

eV
ω

σ

Drude peak

Incoherent metal

Mott insulator

Materials with charged d.o.f. can be

Coherent metals with a well defined Drude peak
Insulators
Incoherent conductors of electricity

Interactions expected to become important in the incoherent
phase → Possible description in AdS/CFT?



The Cuprates

The Cuprates are real life example of :

Incoherent transport

Anomalous scaling of conductivity and Hall angle with T
[Blake, AD]

σB=0
DC ∝ T−1, θH ∝ T−2



Electrons as a soup

Recent evidence for high
viscosity in strongly
interacting electrons.
[1508.00836],[1509.04165],
[1509.05691]

Hydrodynamics accurate in the high T , momentum (quasi-)
conserving regime
[Hartnoll, Kovtun, Muller, Sachdev]

Incoherent transport is away from this limit



Electrons as a soup

Macroscopic effects of viscosity
[1509.05691]
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vj∇jvi + 2 η∇j∇(j v i) −∇ip = −g, ∇ivi = 0

vz = (g/4η) (R2 − ρ2)
⇒ σDC ≈ R2/η

btw This is a Stoke’s flow



Drude Model

Put the lattice back!

Lattice scattering (Drude physics)

Average momentum obeys

〈ṗ〉 = qE − 1

τ
〈p〉 ⇒ σ =

nq2

m

τ

1− ıωτ
⇒ σDC ≈ τ ≈ lm

Microscopically σ = GJJ(ω)/(ıω)



Viscosity vs Lattice Scattering

Don’t need quasi-particles to have
Drude physics.
Coherent metals arise when mo-
mentum relaxation is slow with
dominant pole on imaginary axis.
[Hartnoll, Hofman]
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Fourier/Ohm law

We have electric currents J i and a thermal current
Qi = −T it − µJ i

Transport coefficients are packaged in Ohm/Fourier law

(
J
Q

)
=

(
σ αT
ᾱT κ̄T

)(
E

−(∇T )/T

)

With ∇T a temperature gradient



Setup

In D = 4 Einstein-Maxwell with AdS asymptotics:

LEM = R− 1

4
FµνF

µν + 12

ds24 = −U(r) dt2 + U(r)−1 dr2 + r2
(
dx21 + dx22

)
A = a(r) dt

Background black hole has temperature T , energy E, pressure P ,
entropy s and charge q.



Setup

Introduce periodic lattice (deformation) on the boundary

Focus on simple black hole topologies

More general statements
[AD, Gauntlett, Griffin, Melgar]



Setup

Deform by chemical potential µ0 and magnetic field B

Hold at finite temperature T

Introduce periodic sources that can relax momentum:

Local chemical potential ∇µ

Local temperature ∇T

Magnetic impurities

Local stress + rotation

Probe with external electric field ∇δµ = E and thermal
gradient −∇δT/T = ζ to extract conductivities



RG/Holographic picture

, HSV, ... ?

I Charge dominated RG flows, translations restored in IR →
Coherent transport

II Lattice dominated RG flows, translations broken in IR →
Incoherent transport
[AD, Hartnoll] [AD, Gauntlett]



Conductivity from Q-lattices [AD, Gauntlett]
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Can model Metal - Insulator transitions

Similar story for inhomogeneous lattices
[Rangamani, Rozali, Smyth]



Currents At Equilibrium

For homogeneous systems we have T0, µ0, ~B0, ...

First consider hydrodynamic limit

Weakly break translations µ0 → µ0 + δµ(x),
~B0 → ~B0 + δ ~B(x), T → T + δµ(x)

In hydrodynamic limit, magnetization becomes local

δ ~M = ∂µ ~M0 δµ(x) + ∂T ~M0 δT (x) + · · ·

⇒ Presence of local magnetization currents

~J = ~∇× δ ~M

Similar for heat currents



Currents At Equilibrium



Currents At Equilibrium

In the non-hydrodynamic limit k = ∂t is a symmetry

Lk ∗ J = 0⇒ ik(d ∗ J) + d(ik ∗ J) = 0

d(ik ∗ J) = 0

Assuming Rt ×MD−1 topology

ik ∗ J = d ∗DM + ω

with ω harmonic. Currents relax∫
CD−2

ik ∗ J = 0⇒ ω = 0⇒ J i = ∂j(
√
gD−1M

ij)

Similarly for the heat current

Qi = T iµk
µ − kµAµJ i = ∂j(

√
gD−1M

ij
T )



DC conductivities from BH horizons

Bulk theory is Einstein-Maxwell

Consider E/M charged, static black branes

ds2 = −UG (dt+ χ)2 +
F

U
dr2 + ds2(Σd)

A = at (dt+ χ) + ai dx
i

ds2(Σd) = gij(r, x)dxidxj

Asymptotically, r →∞

U → r2, F → 1

at(r, x)→ µ(x), ai(r, x)→ ai(x)

G→ Ḡ(x), gij(r, x)→ r2ḡij(x), χi(r, x)→ χ̄i(x)

Local µ, B, T , mag impurities, surface forces



DC conductivities from BH horizons

For the perturbation write

δ(ds2) = δgµν(r, x)dxµdxν − 2tGUζidtdx
i ,

δA = δaµ(r, x)dxµ − tEidxi + tatζidx
i

E(xi) and ζ(xi) are closed forms

ζ is boundary temperature gradient

E is boundary electric field

Count functions:

gµν → 1
2 (d+ 2) (d+ 3)− (d+ 2) functions

Aµ → (d+ 2)− 1 functions



Radial Hamiltonian

Imagine radial foliation by hypersurfaces e.g. normal to ∂r

Radial evolution Hamiltonian is sum of constraints

H∂r =

∫
N H+NµHµ +D G + b.t.

At infinity they yield Ward identities

∇µ 〈Tµν〉 = Fµν 〈Jν〉 , ∇µ 〈Jµ〉 = 0, 〈Tµµ〉 = anom

Meaningful but not closed system without hydro



DC conductivities from BH horizons

Projection of metric hµν and gauge field bµ on r = ε surface

Conjugate momentum densities πµν and πµ with respect to ∂r

“Evolution” equations

ḣµν =
δH∂r

δπµν
, π̇µν = −δH∂r

δhµν

ḃµ =
δH∂r

δπµ
, π̇µ = −δH∂r

δbµ



DC conductivities from BH horizons

And constraints

Hν =Dµt
µ
ν −

1

2
fνρj

ρ = 0

G =Dµj
µ = 0

With tµν = (−h)−1/2 πµν and jµ = (−h)−1/2 πµ.

Continuity equations on the surface



DC conductivities from BH horizons

Examine constraints close to the horizon

Impose infalling conditions

Define

vi ≡ −δg(0)it , w ≡ δa(0)t ,

p ≡ −4πT
δg

(0)
rt

G(0)
− δg(0)it g

ij
(0)∇j lnG(0)



DC conductivities from BH horizons

Constraints on the horizon give

Ht ⇒ ∇ivi = 0

G ⇒ ∇2w +∇i(F (0)i
kv
k) + vi∇ia(0)t = −∇iEi

Hj ⇒ 2∇i∇(i vj) + a
(0)
t ∇jw −∇j p

+ 4πT dχ
(0)
ji v

i + F
(0)
ji (∇iw + a

(0)
t vi + F i(0)k v

k)

= −4πT ζj − a(0)t Ej − F (0)
ji E

i

Solve for a Stokes flow on the curved black hole horizon

Closed system of equations in d dimensions

Nowhere made hydro assumptions!

Related (?) work
[Damour][Thorne, Price][Eling, Oz][Bredberg, Keeler, Lysov, Strominger]



DC conductivities from BH horizons

Electric Current

Define

J i =
√
−gF ir

At r →∞ gives field theory current densities J i∞

Anywhere in the bulk

∂rJ
i = ∂j

(√
−gF ji

)
+
√
−g F ij ζj

∂iJ
i = J iζi



DC conductivities from BH horizons

Heat Current

Let k = ∂t and define

Gµν = −2∇[µkν] − k[µF ν]σAσ − 1
2 (φ− θ) Fµν

and

Qi =
√
−gGir

At r →∞ gives field theory heat current densities

Qi∞ = −
〈
δT it

〉
− µ

〈
δJ i
〉

Anywhere in the bulk

∂rQ
i = ∂j

(√
−gGji

)
+ 2
√
−gGijζj +

√
−gZF ijEj

∂iQ
i = 2Qiζj + J iEi



DC Conductivities from BH horizons

For the background (Ei = ζi = 0) we have

J (B)i
∞ = ∂jM

(B)ij , Q(B)i
∞ = ∂jM

(B)ij
T

with the magnetizations

M ij(x) = −
∫ ∞
r+

dr
√
−g F ij , M ij

T (x) = −
∫ ∞
r+

dr
√
−g Gij

satisfying

∂iJ
(B)i
∞ = 0, ∂iQ

(B)i
∞ = 0

and giving and no fluxes!



DC Conductivities from BH horizons

Back to perturbations we write...

J i∞ = J i(0) + ∂jM
ij −M (B)ijζj

Qi∞ = Qi(0) + ∂jM
ij
T −M

(B)ijEj − 2M
(B)ij
T ζj

The “transport components” of the currents are then
[Cooper, Halperin, Ruzin]

J i∞ = J i(0), Qi∞ = Qi(0)

Important point is

∂iJ i∞ = 0, ∂iQi∞ = 0

⇒ Meaningful to examine fluxes through d− 1 cycles!



DC conductivities from BH horizons

Solutions for vi, w and p are uniquely fixed by sources E and ζ
Then

J i(0) =
s

4π

(
∂iw + Ei + F (0)i

jv
j
)

+ ρ vi

Qi(0) = Ts vi, s = 4π
√
g(0), ρ =

√
g(0) a

(0)
t

To find field theory currents J̄ i∞ and Q̄i∞ in e.g. d = 2

J̄ 1
∞ =

∫
dx2 J 1

∞, J̄ 2
∞ =

∫
dx1 J 2

∞

Conductivities determined by BH horizon data!



Hydro temptation

Meaningful quantities are

Q = vol−1d

∫ √
g(0) a

(0)
t , S = vol−1d

∫
4π
√
g(0)

Very tempting to think of it as

∇ivi = 0

∇2δµ+ vi∇iρ+∇i(F (0)i
kv
k) = −∇iEi

2η∇i∇(i vj) + dχ
(0)
ji Q

i
(0) + F

(0)
ji J

i
(0)

= T s (ζj + T−1∇jδT ) + ρ (Ej +∇jδµ)

Tempting to see it as first order hydro

Can be misleading...

Lorentz + Coriolis force for electric and heat currents!



DC conductivities from BH horizons

Can show (strict) positivity of transport coefficients:

0 <

∫
ddx
√
h(0)

(
2∇(ivj)∇(ivj) + |Ei +∇iw + F

(0)
ij v

j |2
)

=

∫
ddx(J i(0)Ei +Qi(0)ζi)

=
(
Ēi ζ̄i

)( σij αij T
ᾱij T κ̄ij T

)(
Ēi
ζ̄i

)
In the absence of Killing vectors

Lvg(0)ij = 2∇(i v j) = 0, Lva(0)t = 0

The eigenvalues are positive definite... No insulators at finite
T with regular BH horizons.
In specific cases can come up with specific numbers for the
bound.
[Grozdanov, Lucas, Sachdev, Schalm]



DC conductivities from BH horizons

The same equation shows uniqueness of solution

Need to show that only solution to homogeneous problem is
trivial

Set sources Ei and ζi to zero

Then only non-trivial solution for vi is a Killing vector

In translationally invariant case these zero modes generate
boosted black branes

Connected to infinity of conductivity



DC conductivities from BH horizons

Examples

Can recover earlier results for e.g. Q-lattices and 1-dim lattices

Perturbative, periodic lattices about AdS-RN black brane
Let λ be the expansion parameter
The black hole horizon is a small expansion about flat space

g(0)ij = g δij + λh
(1)
ij + λ2 h

(2)
ij + · · ·

a
(0)
t = a+ λ a(1) + λ2 a(2) + · · ·

G(0) = f(0) + λ f(1) + · · ·

Solve Navier-Stokes perturbatively in λ



DC conductivities from BH horizons

At leading order in λ we find

αij = ᾱij =
L−1ij
λ2

4πρ+ . . . , κ̄ij =
L−1ij
λ2

4π sT + . . .

σij =
L−1ij
λ2

4πρ2

s
+ . . .

Where Lij =
∫
H lij

(
h
(1)
kl , a

(1)
)

Consistent with memory matrix formalism
[Barkeshli,Hartnol,Mahajan]



DC conductivities from BH horizons

Can easily include neutral scalars in the action

L =
√
−g

(
R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)

J i(0) = Z(0) s

4π

(
∂iw + Ei + F (0)i

jv
j
)

+ ρ vi

Qi(0) = Ts vi, s = 4π
√
g(0), ρ =

√
g(0) Z

(0) a
(0)
t

Local change in expression for horizon electric “current
density”

Local change in expression for horizon “charge density”



DC conductivities from BH horizons

Can easily include neutral scalars in the action

L =
√
−g

(
R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)

∇ivi = 0

∇2w + vi∇iρ+∇i(F (0)i
kv
k) = −∇iEi

2η∇i∇(i vj) + dχ
(0)
ji Q

i
(0) + F

(0)
ji J

i
(0) −∇jφ

(0)∇iφ(0)Qi(0)
= T s (ζj + T−1∇jδT ) + ρ (Ej +∇jw)

Extra “friction” term in Navier-Stokes equation



Onsager relations

We can easily find the time reversed background bh horizons by
simply

χ0
i → −χ

(0)
i , F

(0)
ij → −F

(0)
ij

The transport coefficients of the new geometry are simply
related to the original ones through Onsager relations(

σ̃ α̃
˜̄α ˜̄κ

)
=

(
σ α
ᾱ κ̄

)T

If the background is symmetric under time reversal then these
reduce to a relation among the transport coefficients

Non-obvious after subtracting magnetisation currents in the
UV theory. Proof relatively easy!



Summary / Outlook

Holography is a tool to study transport in strongly coupled
systems

No assumption of quasiparticles

Understand better the physics of new ground states
[AD, Gauntlett][Withers]

Fluid/gravity can be used to obtain (exact) DC thermoelectric
conductivities

Connection with fluid/gravity beyond DC?

Other applications? Disorder?
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