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Linear resistivity in the cuprates

● The strange metal state of the high-Tc cuprate superconductors 
has weird transport properties.

● The most famous is that its resistivity is linear in temperature.

● Why? There is a non-trivial IR fixed point.
It is not a Fermi liquid. What is it?

● Taking inspiration from holography,
I will describe a very simple mechanism 
which produces a resistivity like this.
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Linear resistivity from holography

● Consider the classical theory of gravity with action

● This has a charged black brane solution which can be uplifted to 
a solution of 11D supergravity. Like the cuprate strange metals, it 
has an entropy linear in T. 

● Introducing a random distribution of impurities or a periodic 
lattice in this state produces a resistivity which is approximately 
linear in T. Anantua, Hartnoll, Martin, Ramirez (2012)

see e.g. Gubser, Rocha 0911.2898



  

How can this be realistic?

● How can they possibly be related? A priori, this field theory looks 
totally unrelated to the cuprates.

● The mechanism which produces a linear resistivity is independent 
of many details of the field theory. 

● It does not require holography.  It can be understood from 
general principles of strongly interacting quantum critical states. 

● The holographic state is just an example of where this 
mechanism is at work. This is not so dissimilar to the role of 
holography in understanding the QGP.



  

Outline of the talk

● Resistivity in states with an almost conserved momentum

● Momentum dissipation rate from dynamics near black brane 
horizon

● Momentum dissipation rate from hydrodynamics

● Linear resistivity from hydrodynamics



  

Slow momentum dissipation I

● DC transport properties, like the resistivity, tell us about the late 
time response of a system to an external source.

● In theories where long-lived quasiparticles carry the current, the 
quasiparticle decay rate controls the resistivity.

● If there are no long-lived quasiparticles (e.g. in a strongly 
interacting quantum critical theory), the current intrinsically 
wants to decay quickly.

● But in a system with perfect translational invariance, momentum 
is conserved. If the current carries momentum, it cannot decay. 
Therefore



  

Slow momentum dissipation II

● Suppose, in a system like this, translational invariance is broken 
in a weak way so that momentum dissipates slowly.

● This will cause the current to decay slowly at a rate controlled by 
the momentum dissipation rate

● As translational invariance is broken weakly, the momentum 
dissipation rate      can be calculated perturbatively.

● Suppose we turn on a lattice i.e. a spatially periodic source for 
an operator in the IR 



  

Slow momentum dissipation III

● At leading order, the rate at which momentum dissipates into 
the lattice is determined by the spectral weight in the 
translationally invariant system

● This tells us the number of low energy degrees of freedom of 
the system at the lattice momentum     . It is these that will 
couple to the lattice, once it is turned on.

● If a spatially random source for an operator is turned on,

Hartnoll, Hofman  (2012)

Hartnoll et. al. (2007)
Hartnoll, Herzog  (2008)



  

Slow momentum dissipation: summary

● If we have a charged state in which the only long-lived quantity is 
the momentum, the resistivity is proportional to the momentum 
dissipation rate.

● At leading order, this is determined by properties of the 
translationally invariant state.

● Although this is independent of holography, it is applicable to 
some of the field theory states described by holography.

● In these cases, we can use holography to calculate the response 
functions that control the momentum dissipation rate and 
resistivity.



  

Holography: gravitational solution

● Using these tools, it was found that the state dual to the charged 
black brane solution to the Einstein-Maxwell-Dilaton theory

has                     when coupled to periodic, or spatially random, 
sources of charge density or energy density.   

● The relevant gravitational solution is

Anantua, Hartnoll, Martin, Ramirez (2012)



  

IR geometry of charged black brane

● The near horizon geometry is conformal to                      . In the 
usual classification of near-horizon geometries, it has

● It is similar to the near-horizon                         geometry of              
                   . The main difference is that this state has entropy 

●                   means local quantum criticality in the field theory: the 
low energy physics is approximately momentum-independent.

● Greens functions of fields in this IR geometry have the generic 
form



  

Spectral functions from gravity

● Linear perturbations of the energy density         and charge 
density       are irrelevant in the IR: spatially periodic or random 
sources will cause momentum to dissipate slowly.

● The Greens functions can, in principle, be obtained from a 
matching calculation

● The matching does not have to be done explicitly. At low T, the 
leading dissipative term is proportional to the IR Greens function



  

Linear resistivity from disorder

● The momentum dissipation rate due to neutral or charged 
disorder is:

● The homogeneous (k=0) mode dominates the integral at low 
temperatures. 

● This gives a DC resistivity                  because an analysis of mass 
terms in the near horizon geometry shows that the scaling 
dimension of         and       is 

● Finite momentum contributions to          are small and give 
logarithmic corrections to          :

Anantua, Hartnoll, Martin, Ramirez (2012)



  

Linear resistivity from a lattice

● The momentum dissipation rate due to a neutral or charged 
lattice is:

● Provided the lattice momentum is of the order of the chemical 
potential (or less), there is an approximately linear DC resistivity 

● Again, it is because the finite k corrections to the dimension are 
small e.g.   

Anantua, Hartnoll, Martin, Ramirez (2012)



  

Brief summary of these results

● Without reference to holography, we can summarise why this 
state has a linear resistivity:

● A lattice or random disorder causes momentum to dissipate 
slowly.

● The dissipation rate is determined by the two-point functions of  
        and       in the translationally invariant, locally critical state.

● At low T, these are approximately proportional to T because        
and       have dimension                              .

● Generally, one finds power laws for locally critical states              



  

A different perspective

● Why do these correlators have a term which is approximately 
linear in T??? There is another way to understand it.

● We have learned a lot about the general principles of how 
charge and momentum are transported in holographic theories 
with translational invariance.

● These general principles appear to be true in real strongly 
interacting systems: they do not require the existence of a dual 
classical gravity description. 

● This highlights a simple mechanism that can produce linear 
resistivity and which may be at work in real systems.

RD, Schalm, Zaanen, 1311.2451



  

Some history

● The simplest case: a black brane dual to a neutral, thermal state.

● At long distances and low energies                 , these behave like 
hydrodynamic fluids with a minimal viscosity

● A small viscosity means that a fluid thermalises very quickly.
e.g. in a kinetic theory of quasiparticles,  

● It is not so surprising that a state with a holographic dual  forms 
a hydrodynamic state in a short time. 

Kovtun, Son, Starinets (2004)
Iqbal, Liu (2008)



  

Hydrodynamics

● Hydrodynamics is an effective theory, telling us what the 
collective properties of the system are at long distances and low 
energies.

● For a relativistic fluid with             ,

● At leading order in spatial derivatives, dissipation is controlled 
by two transport coefficients: shear viscosity      and “universal 
conductivity”        .

● Their values depend upon the specific microscopic theory



  

Greens functions from hydrodynamics

● These hydrodynamic equations tell us how the state will respond 
to small perturbations.

● They fix the form of the Greens functions at long distances and 
low energies e.g.

● The shear viscosity controls the rate at which momentum 
diffuses and the universal conductivity controls the rate at which 
charge diffuses.



  

Hydrodynamics of locally critical states I

● At long distances and low energies, hydrodynamics is a good 
approximate description of locally critical holographic states.

● Greens functions can be calculated by matching the IR Greens 
functions to the asymptotically AdS UV region.

● This can be done numerically or, in some cases, analytically.

● Unlike the neutral case, hydrodynamics is a good approximate 
description even at low temperatures, provided that 

see e.g.  Edalati, Jottar, Leigh  (2010),  RD, Parnachev  (2013)
               Tarrio  (2013) and others



  

Hydrodynamics of locally critical states II

● In the simplest case of RN-AdS, the matching can be done 
explicitly and analytically for some operators.

● Ignoring finite k corrections to         in the IR geometry, the 
correlation functions are just those of hydrodynamics, with 
certain values of the transport coefficients.

● These corrections are not important for the leading order 
resistivity in the presence of disorder or a lattice.

● The key point is that if a theory obeys hydrodynamics, the IR 
dimensions of operators are not random numbers: they are 
related to the transport coefficients. 

RD, Parnachev (2013)



  

Hydrodynamics of locally critical states III

● The T dependence of Greens functions in a hydro theory are 
controlled by the T dependence of the transport coefficients.

● We have replaced one aspect of microscopic physics (operator 
dimensions) with another: values of transport coefficients.

● This is a complimentary view of the same situation.

● It is advantageous for one reason: we can make an informed 
estimate of the size of one of these transport coefficients in 
general



  

Viscous contribution to resistivity

● There are many hydrodynamic contributions to the resistivity 
which will depend upon microscopic details of the theory.

● We will concentrate on the viscous term.

● A simple argument of why it exists is that momentum diffuses in 
a hydrodynamic liquid with diffusion constant                      .

● If translational invariance is broken over a length scale l, the time 
it takes for the momentum to dissipate is

+ analogous expressions 
for lattice deformations

neutral

charged



  

Resistivity = entropy

● The memory matrix calculation confirms this. It has also been 
observed by other methods e.g.  

● If a theory behaves like a hydrodynamic liquid with minimal 
viscosity down to the length scale over which impurities/the 
lattice are present, it will have a viscous contribution to its 
resistivity

provided that momentum is almost conserved.

● The locally critical states of holography obey this “entropy law”.

From 1011.3068 [cond-mat.mes-hall] 
by A. Andreev, S. Kivelson, B. Spivak



  

Fermi liquids

● Why do conventional metals not have                          ?

● These do not behave hydrodynamically at long times. The 
quasiparticle interaction rate is small:                 

● The corresponding viscosity is large: 

● This means it takes a long time                    for a Fermi liquid to 
equilibrate via interactions and form a hydrodynamic state.

● The electrons lose their momentum via interactions with the 
ionic lattice before the hydrodynamic state forms.



  

Cuprates

● Strong electronic interactions cause the formation of a 
hydrodynamic state with a minimal viscosity over a short time 
scale. This hydro description applies at distances ~           .

● Slow momentum-dissipating interactions then produce a 
resistivity                                        

● This requires a small length scale ~ 

● But there is no residual (T=0) resistivity as, in this limit, the 
electrons behave as a perfect fluid.

● This is radically different from FL theory: it should be testable.
work in progress....



  

Conclusions

● Strongly interacting quantum critical systems are highly 
collective states without long-lived quasiparticles. 

● Holography gives us examples of quantum critical states which 
behave like hydrodynamic fluids with a minimal viscosity.

● If a charged hydrodynamic state with minimal viscosity is weakly 
coupled to disorder/lattice, it will get a viscous contribution to 
its resistivity                         .

● This mechanism does not require holography. It may explain 
some of the strange transport properties of the strange metal 
phase of the high Tc cuprate superconductors.
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