Entanglement Entropy for Probe Branes
 The Leading Backreaction

Han-Chih Chang
University of Washington, Seattle

November 6, 2013

Work with Andreas Karch [arXiv:1307.5325]
Oxford String Theory Group Seminar

Outline

- Entanglement Entropy - Review
- Introduction
- Holographic Entanglement Entropy - Ryu-Takayanagi Prescription
- Probe Brane Physics - Review
- Holographic Entanglement Entropy for Probe Branes
- Naive Ansatz for Toy-Models
- "Not-So-Naive-After-All": Coincidence with Some Top-Down Models
- Concrete Examples
- Conclusion

Introduction of Entanglement Entropy

- Entanglement Entropy

Introduction of Entanglement Entropy

- Entanglement Entropy

Given a constant time slice of QFT, split the Cauchy surface into two disjoint regions, $D=A \cup B$, with the common boundary $\Sigma=\partial A=\partial B$, the entangling surface.

Constant time slice

Introduction of Entanglement Entropy

- Entanglement Entropy

Given a constant time slice of QFT, split the Cauchy surface into two disjoint regions, $D=A \cup B$, with the common boundary $\Sigma=\partial A=\partial B$, the entangling surface.

Constant time slice

- Integrating out degrees of freedom in region B $\rightarrow \rho_{A} \equiv \operatorname{Tr}_{B}\left[\rho_{A \cup B}\right]$

Introduction of Entanglement Entropy

- Entanglement Entropy

Given a constant time slice of QFT, split the Cauchy surface into two disjoint regions, $D=A \cup B$, with the common boundary $\Sigma=\partial A=\partial B$, the entangling surface.

Constant time slice

- Integrating out degrees of freedom in region B $\rightarrow \rho_{A} \equiv \operatorname{Tr}_{B}\left[\rho_{A \cup B}\right]$
- Calculate associated von Neumann entropy
$\rightarrow S_{E E} \equiv-\operatorname{Tr}_{A}\left[\rho_{A} \log \left(\rho_{A}\right)\right]$

Introduction of Entanglement Entropy: "Replica"

- "Replica trick" for calculating Entanglement entropy

$$
S_{n-\text { Renyi }} \equiv \frac{1}{1-n} \log \operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right] \xrightarrow{n \rightarrow 1} S_{E E}
$$

Introduction of Entanglement Entropy: "Replica"

- "Replica trick" for calculating Entanglement entropy

$$
S_{n-\text { Renyi }} \equiv \frac{1}{1-n} \log \operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right] \xrightarrow{n \rightarrow 1} S_{E E}
$$

- Construct the vacuum wavefunction:

$$
|\Omega\rangle:\langle\psi(x) \mid \Omega\rangle
$$

Introduction of Entanglement Entropy: "Replica"

- "Replica trick" for calculating Entanglement entropy

$$
S_{n-\text { Renyi }} \equiv \frac{1}{1-n} \log \operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right] \xrightarrow{n \rightarrow 1} S_{E E}
$$

- Construct the vacuum wavefunction:

$$
|\Omega\rangle:\langle\psi(x) \mid \Omega\rangle=\int_{t \rightarrow-\infty}^{\left.\phi(x, t)\right|_{t=0}=\psi(x)} \mathbb{D}[\phi] e^{-S[\phi]}
$$

Introduction of Entanglement Entropy: "Replica"

- "Replica trick" for calculating Entanglement entropy

$$
S_{n-\text { Renyi }} \equiv \frac{1}{1-n} \log \operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right] \xrightarrow{n \rightarrow 1} S_{E E}
$$

- Construct the vacuum wavefunction:

$$
|\Omega\rangle:\langle\psi(x) \mid \Omega\rangle=\int_{t \rightarrow-\infty}^{\left.\phi(x, t)\right|_{t=0}=\psi(x)} \mathbb{D}[\phi] e^{-S[\phi]}
$$

- Trace out region B:

$$
\begin{aligned}
\rho_{A} & =\operatorname{Tr}_{B}|\Omega\rangle\langle\Omega| \\
\left\langle\psi_{A, 2}\right| \rho_{A}\left|\psi_{A, 1}\right\rangle & =\int \mathbb{D}[\phi]_{\substack{\phi\left(x \in A, t=0^{+}\right)=\psi_{A, 2}(x) \\
l_{\left(x \in A, t=0^{-}\right)=\psi_{A, 1}(x)}}} \cdot e^{-S[\phi]}
\end{aligned}
$$

Introduction of Entanglement Entropy: "Replica"

$$
" S_{n-\text { Renyi }} \equiv \frac{1}{1-n} \log \operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right]^{\prime \prime}
$$

- Raise ρ_{A} to the n-th power, and trace in the end:

$$
\begin{gathered}
\operatorname{Tr}_{A}\left[\rho_{A}{ }^{n}\right]=\int \mathbb{D}\left[\phi_{A, 1} \cdots \phi_{A, n}\right]\left\langle\psi_{A, 1}\right| \rho_{A}\left|\psi_{A, 2}\right\rangle\left\langle\psi_{A, 2}\right| \rho_{A}\left|\psi_{A, 3}\right\rangle \cdots \\
\left\langle\psi_{A, n}\right| \rho_{A}\left|\psi_{A, 1}\right\rangle
\end{gathered}
$$

(b)

1
${ }^{1}$ Ryu and Takayanagi 2006[1], Calabrese and Cardy 2004[2]

Introduction of Entanglement Entropy: Ryu-Takayanagi Prescription

- Ryu and Takayanagi 2006[1]: " Just the horizon entropy of a surface that minimal extended from Σ "

$$
\left.S_{E E} \xrightarrow{R \& T} \operatorname{Min}_{\gamma_{A}} \frac{\operatorname{Area}\left(\gamma_{A}\right)}{4 G}\right|_{\partial \gamma_{A}=\Sigma}
$$

${ }^{2}$ Nishiokaa, Ryu and Takayanagi[3]

Introduction of Entanglement Entropy: Ryu-Takayanagi Prescription

- Ryu and Takayanagi 2006[1]: " Just the horizon entropy of a surface that minimal extended from Σ "

$$
\left.S_{E E} \xrightarrow{R \& T} \operatorname{Min}_{\gamma_{A}} \frac{\operatorname{Area}\left(\gamma_{A}\right)}{4 G}\right|_{\partial \gamma_{A}=\Sigma}
$$

No rigorous proof, but reproduced known results, ex.
Calabrese\&Cardy[2].
${ }^{2}$ Nishiokaa, Ryu and Takayanagi[3]

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

- $\Sigma \equiv S^{d-2} \rightarrow \mathcal{D}$, the whole causal development thereof

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

- $\Sigma \equiv S^{d-2} \rightarrow \mathcal{D}$, the whole causal development thereof
- Sphere is special!! Conformal Mapping: $\mathcal{D} \rightarrow \mathcal{H}=R_{t} \times H^{d-1}$

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

- "KMS": $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega_{d-2}^{2}$

$$
\begin{aligned}
& t=R \frac{\sinh (\tau / R)}{\cosh u+\cosh (\tau / R)}, \\
& r=R \frac{\sinh u}{\cosh u+\cosh (\tau / R)}
\end{aligned}
$$

$$
d s^{2}=\Omega^{2}\left[-d \tau^{2}+R^{2}\left(d u^{2}+\sinh ^{2} u d \Omega_{d-2}^{2}\right)\right]
$$

with $\Omega=(\cosh u+\cosh (\tau / R))^{-1}$.

- $\rho_{A} \xrightarrow{\text { CFT }} \rho_{\mathcal{D}} \equiv U^{-1} \rho_{A} U$.

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

- "KMS": $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega_{d-2}^{2}$

$$
\begin{aligned}
& t=R \frac{\sinh (\tau / R)}{\cosh u+\cosh (\tau / R)} \\
& r=R \frac{\sinh u}{\cosh u+\cosh (\tau / R)}
\end{aligned}
$$

$$
d s^{2}=\Omega^{2}\left[-d \tau^{2}+R^{2}\left(d u^{2}+\sinh ^{2} u d \Omega_{d-2}^{2}\right)\right]
$$

with $\Omega=(\cosh u+\cosh (\tau / R))^{-1}$.

- $\rho_{A} \xrightarrow{\text { CFT }} \rho_{\mathcal{D}} \equiv U^{-1} \rho_{A} U$.
- The same von Neumann entropy $\Rightarrow S_{E E}=S_{T h}$

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

This provides a non-trivial check with RT-prescription:

$$
S_{E E} \stackrel{C H M!}{=} S_{T h}
$$

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

This provides a non-trivial check with RT-prescription:

$$
S_{E E} \stackrel{C H M!}{=} S_{T h} \stackrel{\text { Witten! }}{=} S_{\text {Horizon }}
$$

CFT and Special Spherical Entangling Surfaces Casini Huerta and Myers 2011 [4]

This provides a non-trivial check with RT-prescription:

$$
S_{E E} \stackrel{C H M!}{=} S_{T h} \stackrel{\text { Witten! }}{=} S_{\text {Horizon }}
$$

The Ryu-Takayanagi prescription gives the same result

Further Progress

- Jensen and O'Bannon 2013[5]: Extending for any dCFT/BCFT, using the most general metric respecting the reduced conformal symmetry \rightarrow conformal probe brane systems.

Further Progress

- Jensen and O'Bannon 2013[5]: Extending for any dCFT/BCFT, using the most general metric respecting the reduced conformal symmetry \rightarrow conformal probe brane systems.
- Lewkowycz and Maldacena 2013[6] provide an alternative argument for the Ryu-Takayanagi prescription.

Probe Branes Physics

- The original system of N_{c} D3 brane dynamics/ $N=4 U\left(N_{c}\right)$ SYM theory only has adjoint field content.

Probe Branes Physics

- The original system of N_{c} D3 brane dynamics/ $N=4 U\left(N_{c}\right)$ SYM theory only has adjoint field content.
- Karch and Katz 2002 [7]: the lack of fundamental matter content thereof can be fixed by inserting N_{f} probe branes, and a chosen separation of scale, to decouple the gauge field on the probe brane worldvolume, and introduce the fundamental matter content.

$$
\begin{aligned}
S_{\text {bulk }} & =\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{-g}\left(R+\mathcal{L}_{\text {bulk }}\right) \\
S_{\text {probe }} & =T_{0} \int d^{n+1} z \sqrt{-g_{l}} \mathcal{L}_{\text {probe }}\left(\mathcal{L}_{\text {probe }}=1+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{\text {bulk }} & =\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{-g}\left(R+\mathcal{L}_{\text {bulk }}\right) \\
S_{\text {probe }} & =T_{0} \int d^{n+1} z \sqrt{-g_{l}} \mathcal{L}_{\text {probe }}\left(\mathcal{L}_{\text {probe }}=1+\ldots\right)
\end{aligned}
$$

- Separation of Scale: $\frac{L^{d-1}}{16 \pi G_{N}} \gg T_{0} L^{n+1} \gg 1$
- L, curvature radius of background geometry, due to the choice of $\mathcal{L}_{\text {bulk }}$.
- $G_{N} \sim O\left(N_{c}^{2}\right)$, Newton's constant
- $T_{0} \sim O\left(N_{c}\right)$, Probe brane tension
- $t_{0} \equiv 16 \pi G_{N} T_{0} L^{n-d+2}$

$$
\begin{aligned}
S_{\text {bulk }} & =\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{-g}\left(R+\mathcal{L}_{\text {bulk }}\right) \\
S_{\text {probe }} & =T_{0} \int d^{n+1} z \sqrt{-g_{l}} \mathcal{L}_{\text {probe }}\left(\mathcal{L}_{\text {probe }}=1+\ldots\right)
\end{aligned}
$$

- Separation of Scale: $\frac{L^{d-1}}{16 \pi G_{N}} \gg T_{0} L^{n+1} \gg 1$
- L, curvature radius of background geometry, due to the choice of $\mathcal{L}_{\text {bulk }}$.
- $G_{N} \sim O\left(N_{c}^{2}\right)$, Newton's constant
- $T_{0} \sim O\left(N_{c}\right)$, Probe brane tension
- $t_{0} \equiv 16 \pi G_{N} T_{0} L^{n-d+2}$

However, the CFT dual is not known explicitly.

Probe Branes Physics: N_{f} vs. N_{c}

The top-down bulk sector is more complicated:

- $A d S_{5} \times S^{5}$ metric with N_{c} RR flux
- $N=4 U\left(N_{c}\right) S Y M$

The top-down bulk sector is more complicated:

- $A d S_{5} \times S^{5}$ metric with N_{c} RR flux
- $N=4 U\left(N_{c}\right) S Y M$

Various top-down probe sectors are possible, ex. D3/D7:

- $A d S_{5} \times S^{3}$-submanifold
- extra $N=2$ hypermultiplet

For D-brane probes, $S_{\text {probe }}$ has the form of the Dirac-Born-Infeld(DBI) action, as well as the Wess-Zumino term:

- $T_{0} \int d^{n+1} z \sqrt{-\operatorname{det}\left(g_{I}+2 \pi \alpha^{\prime} F\right)} \cdots$

The top-down bulk sector is more complicated:

- $A d S_{5} \times S^{5}$ metric with N_{c} RR flux
- $N=4 U\left(N_{c}\right) S Y M$

Various top-down probe sectors are possible, ex. D3/D7:

- $A d S_{5} \times S^{3}$-submanifold
- extra $N=2$ hypermultiplet

For D-brane probes, $S_{\text {probe }}$ has the form of the Dirac-Born-Infeld(DBI) action, as well as the Wess-Zumino term:

- $T_{0} \int d^{n+1} z \sqrt{-\operatorname{det}\left(g_{I}+2 \pi \alpha^{\prime} F\right)} \cdots$

Nonetheless, We will show the result for bottom-ups are the same as for top-downs!

Holographic Entanglement Entropy for the Probe Brane

 SystemA priori, with "the Ryu-Takayanagi prescription" + " $S_{\text {bulk }}+$ $S_{\text {probe }}{ }^{\prime \prime}=\cdots$

Holographic Entanglement Entropy for the Probe Brane System

A priori, with "the Ryu-Takayanagi prescription" + " $S_{\text {bulk }}+$ $S_{\text {probe }} "=\cdots$

- Solve the new background metric backreacted by the presence of probe branes.

Holographic Entanglement Entropy for the Probe Brane System

A priori, with "the Ryu-Takayanagi prescription" + " $S_{\text {bulk }}+$ $S_{\text {probe }}=\cdots$

- Solve the new background metric backreacted by the presence of probe branes.
- Re-solve the new minimal surface within this metric.

Holographic Entanglement Entropy for the Probe Brane System

A priori, with "the Ryu-Takayanagi prescription" + " $S_{\text {bulk }}+$ $S_{\text {probe }}{ }^{\prime \prime}=\cdots$

- Solve the new background metric backreacted by the presence of probe branes.
- Re-solve the new minimal surface within this metric.
- Find its area!

Holographic Entanglement Entropy for the Probe Brane System

A priori, with "the Ryu-Takayanagi prescription" + " $S_{b u l k}+$ $S_{\text {probe }}{ }^{\prime \prime}=\cdots$

- Solve the new background metric backreacted by the presence of probe branes.
- Re-solve the new minimal surface within this metric.
- Find its area!

A posteriori, these are very difficult.

A Simple Double Integral

The philosophy/utility of probe brane limit \Rightarrow ignoring $\mathcal{O}\left(t_{0}^{2}\right)$

- the leading order backreaction on metric \rightarrow the leading order change of minimal area?
- $T_{\text {probe }}^{\mu \nu}=\left.\frac{2}{\sqrt{-g_{1}}} \frac{\delta\left(\sqrt{-g_{1}} \mathcal{L}_{\text {probe }}\right)}{\delta g_{\mu \nu}}\right|_{x^{\mu} \rightarrow x_{\rho}^{\mu}\left(z^{i}\right)}$
- $(\delta g)_{\mu \nu}=\left(8 \pi G_{N} T_{0}\right) \int d^{n+1} z \sqrt{g_{l}} G_{\mu \nu \rho \sigma} T_{\text {probe }}^{\rho \sigma}$

A Simple Double Integral

The philosophy/utility of probe brane limit \Rightarrow ignoring $\mathcal{O}\left(t_{0}^{2}\right)$

- the leading order backreaction on metric \rightarrow the leading order change of minimal area?
- $T_{\text {probe }}^{\mu \nu}=\left.\frac{2}{\sqrt{-g_{1}}} \frac{\delta\left(\sqrt{-g_{1}} \mathcal{L}_{\text {probe }}\right)}{\delta g_{\mu \nu}}\right|_{x^{\mu} \rightarrow x_{\rho}^{\mu}\left(z^{i}\right)}$
- $(\delta g)_{\mu \nu}=\left(8 \pi G_{N} T_{0}\right) \int d^{n+1} z \sqrt{g_{l}} G_{\mu \nu \rho \sigma} T_{\text {probe }}^{\rho \sigma}$
$G_{\mu \nu \rho \sigma}$: the Green's function for linearized Einstein gravity:
- static background, Euclidean signature.
- regular inside the bulk, vanishing on the boundary.

A Simple Double Integral

The embedding $x_{M}^{\mu}=X_{M}^{\mu}\left(w^{a}\right)$ is solved from the following "action":

- $S_{\text {min }} \equiv \frac{1}{4 G_{N}} \int d^{d-1} w \sqrt{\gamma}$
- $\left.T_{\text {min }}^{\mu \nu} \equiv \frac{2}{\sqrt{-\gamma}} \frac{\delta\left(\sqrt{-\gamma} \mathcal{L}_{\text {min }}\right)}{\delta g_{\mu \nu}}\right|_{x^{\mu} \rightarrow X_{M}^{\mu}\left(w^{a}\right)}$

A Simple Double Integral

The embedding $x_{M}^{\mu}=X_{M}^{\mu}\left(w^{a}\right)$ is solved from the following "action":

- $S_{\text {min }} \equiv \frac{1}{4 G_{N}} \int d^{d-1} w \sqrt{\gamma}$
- $\left.T_{\text {min }}^{\mu \nu} \equiv \frac{2}{\sqrt{-\gamma}} \frac{\delta\left(\sqrt{-\gamma} \mathcal{L}_{\text {min }}\right)}{\delta g_{\mu \nu}}\right|_{x^{\mu} \rightarrow X_{M}^{\mu}\left(w^{\alpha}\right)}$
$\left.\Delta S_{\min } \xrightarrow{R \& T} \frac{1}{4 G_{N}} \int d^{d-1} w \sqrt{\gamma}\left(\frac{T_{\min }^{\mu \nu}}{2}(\delta g)_{\mu \nu}+\frac{\delta \mathcal{L}_{\text {min }}}{\delta x_{M}^{\mu}} \delta x_{M}^{\mu}\right)\right|_{\text {on-shell }}$

A Simple Double Integral

The embedding $x_{M}^{\mu}=X_{M}^{\mu}\left(w^{a}\right)$ is solved from the following "action":

- $S_{\text {min }} \equiv \frac{1}{4 G_{N}} \int d^{d-1} w \sqrt{\gamma}$
- $\left.T_{\text {min }}^{\mu \nu} \equiv \frac{2}{\sqrt{-\gamma}} \frac{\delta\left(\sqrt{-\gamma} \mathcal{L}_{\text {min }}\right)}{\delta g_{\mu \nu}}\right|_{X^{\mu} \rightarrow X_{M}^{\mu}\left(w^{\mathrm{a}}\right)}$
$\left.\Delta S_{\min } \xrightarrow{R \& T} \frac{1}{4 G_{N}} \int d^{d-1} w \sqrt{\gamma}\left(\frac{T_{\min }^{\mu \nu}}{2}(\delta g)_{\mu \nu}+\frac{\delta \mathcal{L}_{\text {min }}}{\delta x_{M}^{\mu}} \delta x_{M}^{\mu}\right)\right|_{\text {on-shell }}$
$\Rightarrow \Delta S_{A}=\left.\left(\pi T_{0}\right) \int\left(d^{d-1} w \sqrt{\gamma}\right)\left(d^{n+1} z \sqrt{g_{I}}\right)\left(T_{\text {min }}^{\mu \nu} G_{\mu \nu \rho \sigma} T_{\text {probe }}^{\rho \sigma}\right)\right|_{\text {on-shell }}$

Complications Due to Other Bulk Background

The $\mathcal{O}\left(t_{0}\right)$ part of δg is included. How about $\mathcal{O}\left(t_{0}\right)$ part of other bulk fields, $\delta \Phi_{\text {bulk }}$? Do they contribute any $\mathcal{O}\left(t_{0}\right)$ part of δg ?

Complications Due to Other Bulk Background

The $\mathcal{O}\left(t_{0}\right)$ part of δg is included. How about $\mathcal{O}\left(t_{0}\right)$ part of other bulk fields, $\delta \Phi_{\text {bulk }}$? Do they contribute any $\mathcal{O}\left(t_{0}\right)$ part of δg ?

- $\Phi_{\text {bulk }} \sim \frac{1}{N}, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{b u l k}\right)^{2}$
- stress tensor $=N^{2}\left(\Phi_{\text {bulk }}\right)^{2} \sim O(1)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N^{2}}$

Complications Due to Other Bulk Background

The $\mathcal{O}\left(t_{0}\right)$ part of δg is included. How about $\mathcal{O}\left(t_{0}\right)$ part of other bulk fields, $\delta \Phi_{\text {bulk }}$? Do they contribute any $\mathcal{O}\left(t_{0}\right)$ part of δg ?

- $\Phi_{\text {bulk }} \sim \frac{1}{N}, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{b u l k}\right)^{2}$
- stress tensor $=N^{2}\left(\Phi_{\text {bulk }}\right)^{2} \sim O(1)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N^{2}}$

Secondary backreaction is subleading?...

Complications Due to Other Bulk Background

The $\mathcal{O}\left(t_{0}\right)$ part of δg is included. How about $\mathcal{O}\left(t_{0}\right)$ part of other bulk fields, $\delta \Phi_{\text {bulk }}$? Do they contribute any $\mathcal{O}\left(t_{0}\right)$ part of δg ?

- $\Phi_{\text {bulk }} \sim \frac{1}{N}, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{b u l k}\right)^{2}$
- stress tensor $=N^{2}\left(\Phi_{\text {bulk }}\right)^{2} \sim O(1)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N^{2}}$

Secondary backreaction is subleading?... Misleadingly, for we assume there is no background $\Phi_{\text {bulk }}$ turned on!

Real Complications Due to Other Bulk Background

With background $\Phi_{\text {bulk }}$ turned on:

- $\Phi_{\text {bulk }} \sim 1, \delta \Phi_{\text {bulk }} \sim 1, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{\text {bulk }}+\delta \Phi_{\text {bulk }}\right)^{2}$
- stress tensor $=\ldots+N^{2}\left(\Phi_{\text {bulk }} \times \delta \Phi_{\text {bulk }}\right) \sim O(N)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N}$.

Real Complications Due to Other Bulk Background

With background $\Phi_{\text {bulk }}$ turned on:

- $\Phi_{\text {bulk }} \sim 1, \delta \Phi_{\text {bulk }} \sim 1, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{\text {bulk }}+\delta \Phi_{\text {bulk }}\right)^{2}$
- stress tensor $=\ldots+N^{2}\left(\Phi_{\text {bulk }} \times \delta \Phi_{\text {bulk }}\right) \sim O(N)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N}$!

Examples include:

- D3/D5 with no D5 worldvolume gauge field F turned on: $C_{4} \wedge F$.
- D3/D7 with no D7 worldvolume gauge field $F \wedge F$ turned on: $C_{4} \wedge F \wedge F$.

Real Complications Due to Other Bulk Background

With background $\Phi_{\text {bulk }}$ turned on:

- $\Phi_{\text {bulk }} \sim 1, \delta \Phi_{\text {bulk }} \sim 1, G \sim \frac{1}{N^{2}}$
- IIB action $=\frac{1}{G}\left(\Phi_{\text {bulk }}+\delta \Phi_{\text {bulk }}\right)^{2}$
- stress tensor $=\ldots+N^{2}\left(\Phi_{\text {bulk }} \times \delta \Phi_{\text {bulk }}\right) \sim O(N)$
- $\delta g \sim G\left(T_{\mu \nu}\right) \sim \frac{1}{N}$!

Examples include:

- D3/D5 with no D5 worldvolume gauge field F turned on: $C_{4} \wedge F$.
- D3/D7 with no D7 worldvolume gauge field $F \wedge F$ turned on: $C_{4} \wedge F \wedge F$.

Codimension-0 Toy Model: Spacetime filling branes

Toy Model Setup:

- $S=\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{g}\left(R+\frac{d(d-1)}{L^{2}}\right)$
- $A d S_{d+1}(L)$-metric: $d s^{2}=\frac{L^{2}}{\left(x^{0}\right)^{2}} \delta_{\mu \nu} d x^{\mu} d x^{\nu}$
- $S_{\text {probe }}=-T_{0} \int d^{n+1} z \sqrt{g_{l}}$

Codimension-0 Toy Model: Spacetime filling branes

Toy Model Setup:

- $S=\frac{1}{16 \pi G_{N}} \int d^{d+1} x \sqrt{g}\left(R+\frac{d(d-1)}{L^{2}}\right)$
- $A d S_{d+1}(L)$-metric: $d s^{2}=\frac{L^{2}}{\left(x^{0}\right)^{2}} \delta_{\mu \nu} d x^{\mu} d x^{\nu}$
- $S_{\text {probe }}=-T_{0} \int d^{n+1} z \sqrt{g_{l}}$

Codimension-0/Spacetime filling branes, $n=d$: The fully backreacted metric is given as $\operatorname{AdS} S_{d+1}(L) \rightarrow A d S_{d+1}(I)$, with

- $I=L\left(1+\frac{t_{0}}{2 d(d-1)}\right)$
-

$$
(\delta g)_{\mu \nu}=\frac{t_{0} L^{2}}{d(d-1)} \frac{\delta_{\mu \nu}}{\left(x^{0}\right)^{2}}
$$

Codimension-1 Toy Model: Randall-Sundrum-type branes

Codimension-1/RS branes, $n=d-1$:

- Using Israel junction equation

$$
\left.\left(K_{i j}-g_{i j} K\right)\right|_{r-\epsilon} ^{r+\epsilon}=8 \pi G_{N} T_{i j}
$$

Codimension-1 Toy Model: Randall-Sundrum-type branes

Codimension-1/RS branes, $n=d-1$:

- Using Israel junction equation

$$
\left.\left(K_{i j}-g_{i j} K\right)\right|_{r-\epsilon} ^{r+\epsilon}=8 \pi G_{N} T_{i j}
$$

- The fully backreacted solution is

$$
\begin{aligned}
d s^{2} & =d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2} \\
t_{0} & =4(d-1) \tanh \left(\frac{c}{L}\right) \approx \frac{4(d-1) c}{L}
\end{aligned}
$$

Codimension-1 Toy Model: Randall-Sundrum-type branes

Codimension-1/RS branes, $n=d-1$:

- Using Israel junction equation

$$
\left.\left(K_{i j}-g_{i j} K\right)\right|_{r-\epsilon} ^{r+\epsilon}=8 \pi G_{N} T_{i j}
$$

- The fully backreacted solution is

$$
\begin{aligned}
d s^{2} & =d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2} \\
t_{0} & =4(d-1) \tanh \left(\frac{c}{L}\right) \approx \frac{4(d-1) c}{L}
\end{aligned}
$$

- $\delta g=-\frac{c}{L} \sinh \left(2 \frac{|r|}{L}\right) d s_{A d S_{d}}^{2}=$

$$
-\frac{t_{0}}{4(d-1)} \sinh \left(2 \frac{|r|}{L}\right) d s_{A d S_{d}}^{2}
$$

Codimension-1 Toy Model: Randall-Sundrum-type branes

Codimension-1/RS branes, $n=d-1$:

- Using Israel junction equation

$$
\left.\left(K_{i j}-g_{i j} K\right)\right|_{r-\epsilon} ^{r+\epsilon}=8 \pi G_{N} T_{i j}
$$

- The fully backreacted solution is

$$
\begin{aligned}
d s^{2} & =d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2} \\
t_{0} & =4(d-1) \tanh \left(\frac{c}{L}\right) \approx \frac{4(d-1) c}{L}
\end{aligned}
$$

- $\delta g=-\frac{c}{L} \sinh \left(2 \frac{|r|}{L}\right) d s_{A d S_{d}}^{2}=$

$$
-\frac{t_{0}}{4(d-1)} \sinh \left(2 \frac{|r|}{L}\right) d s_{A d S_{d}}^{2}
$$

- $(\delta g)=-\frac{L^{2} t_{0}}{2(d-1)\left(x^{0}\right)^{2}} \frac{\left|x_{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}\left(d \vec{x}^{2}+\frac{\left(x^{1} d x^{1}+x^{0} d x^{0}\right)^{2}}{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}\right)$

From Toy Models to Probe-Brane Models: Internal Space

How about top-downs? Much more complicated.

- D3/D5: $A d S_{4} \times S^{2}$ in $A d S_{5} \times S^{5}$
- D3/D7: $A d S_{5} \times S^{5}$ in $A d S_{5} \times S^{5}$

From Toy Models to Probe-Brane Models: Internal Space

How about top-downs? Much more complicated.

- D3/D5: $A d S_{4} \times S^{2}$ in $A d S_{5} \times S^{5}$
- D3/D7: $A d S_{5} \times S^{5}$ in $A d S_{5} \times S^{5}$

What about the change in the internal space metric?

From Toy Models to Probe-Brane Models: Internal Space

How about top-downs? Much more complicated.

- D3/D5: $A d S_{4} \times S^{2}$ in $A d S_{5} \times S^{5}$
- D3/D7: $A d S_{5} \times S^{5}$ in $A d S_{5} \times S^{5}$

What about the change in the internal space metric?

Assertion: irrelevant if focused on the $\mathcal{O}\left(t_{0}\right)$ of EE , due to:

- The background is a product manifold, $\mathcal{M} \times \mathcal{I}$
- The minimal surface is of a special codimensional-2 type.

From Toy Models to Probe-Brane Models: Internal Space

A simple example: the Green's function for a scalar field on the product manifold.

- $W G\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$

A simple example: the Green's function for a scalar field on the product manifold.

- $W G\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$
- On a product manifold: $W \rightarrow W^{S}+W^{\prime}$, with

$$
W \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)=\left(E_{m}+E_{n}\right) \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{\prime}\left(x_{l}\right)
$$

$$
W^{S} \psi_{m}^{S}\left(x_{S}\right)=E_{m} \psi_{m}^{S}\left(x_{S}\right)
$$

$$
W^{\prime} \psi_{n}^{\prime}\left(x_{l}\right)=E_{n} \psi_{n}^{\prime}\left(x_{l}\right)
$$

From Toy Models to Probe-Brane Models: Internal Space

A simple example: the Green's function for a scalar field on the product manifold.

- $W G\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$
- On a product manifold: $W \rightarrow W^{S}+W^{\prime}$, with $W \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)=\left(E_{m}+E_{n}\right) \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)$
$W^{S} \psi_{m}^{S}\left(x_{S}\right)=E_{m} \psi_{m}^{S}\left(x_{S}\right)$
$W^{\prime} \psi_{n}^{\prime}\left(x_{l}\right)=E_{n} \psi_{n}^{\prime}\left(x_{l}\right)$.
- $G\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{m}^{S}\left(x_{S}\right) \psi_{m}^{S}\left(x_{S}^{\prime}\right) \psi_{n}^{\prime}\left(x_{I}\right) \psi_{n}^{\prime}\left(x_{1}^{\prime}\right)}{E_{n}+E_{m}}$

From Toy Models to Probe-Brane Models: Internal Space

A simple example: the Green's function for a scalar field on the product manifold.

- $W G\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$
- On a product manifold: $W \rightarrow W^{S}+W^{\prime}$, with

$$
W \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)=\left(E_{m}+E_{n}\right) \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)
$$

$$
W^{S} \psi_{m}^{S}\left(x_{S}\right)=E_{m} \psi_{m}^{S}\left(x_{S}\right)
$$

$$
W^{\prime} \psi_{n}^{\prime}\left(x_{l}\right)=E_{n} \psi_{n}^{\prime}\left(x_{l}\right)
$$

- $G\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{m}^{S}\left(x_{S}\right) \psi_{m}^{S}\left(x_{S}^{\prime}\right) \psi_{n}^{\prime}\left(x_{l}\right) \psi_{n}^{\prime}\left(x_{l}^{\prime}\right)}{E_{n}+E_{m}}$

Therefore $G\left(x_{S}, x_{I}, x_{S}^{\prime}, x_{l}^{\prime}\right)$ only couples the same eigenmode between two different sources!

From Toy Models to Probe-Brane Models: Internal Space

A simple example: the Green's function for a scalar field on the product manifold.

- $W G\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$
- On a product manifold: $W \rightarrow W^{S}+W^{\prime}$, with

$$
W \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)=\left(E_{m}+E_{n}\right) \psi_{m}^{S}\left(x_{S}\right) \psi_{n}^{l}\left(x_{l}\right)
$$

$$
W^{S} \psi_{m}^{S}\left(x_{S}\right)=E_{m} \psi_{m}^{S}\left(x_{S}\right)
$$

$$
W^{\prime} \psi_{n}^{\prime}\left(x_{l}\right)=E_{n} \psi_{n}^{\prime}\left(x_{l}\right)
$$

- $G\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{m}^{S}\left(x_{S}\right) \psi_{m}^{S}\left(x_{S}^{\prime}\right) \psi_{n}^{\prime}\left(x_{I}\right) \psi_{n}^{\prime}\left(x_{l}^{\prime}\right)}{E_{n}+E_{m}}$

Therefore $G\left(x_{S}, x_{I}, x_{S}^{\prime}, x_{l}^{\prime}\right)$ only couples the same eigenmode between two different sources!
Therefore, if one is a constant in the internal space, forget about the non-constant term of another!

For the graviton propagator in a product manifold, the same thing happens:

$$
\begin{gathered}
G_{\mu \nu \rho \sigma}=\sum_{k=0}^{\infty} a_{k} h_{\mu \nu}^{k} h_{\rho \sigma}^{k}+\sum_{k=1}^{\infty} b_{k} V_{\mu \nu}^{k} V_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} c_{k} W_{\mu \nu}^{k} W_{\rho \sigma}^{k}+ \\
\sum_{k=0}^{\infty} d_{k} \chi_{\mu \nu}^{k} \chi_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} e_{k}\left[\chi_{\mu \nu}^{k} W_{\rho \sigma}^{k}+\leftrightarrow\right]
\end{gathered}
$$

From Toy Models to Probe-Brane Models: Internal Space

For the graviton propagator in a product manifold, the same thing happens:

$$
\begin{gathered}
G_{\mu \nu \rho \sigma}=\sum_{k=0}^{\infty} a_{k} h_{\mu \nu}^{k} h_{\rho \sigma}^{k}+\sum_{k=1}^{\infty} b_{k} V_{\mu \nu}^{k} V_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} c_{k} W_{\mu \nu}^{k} W_{\rho \sigma}^{k}+ \\
\sum_{k=0}^{\infty} d_{k} \chi_{\mu \nu}^{k} \chi_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} e_{k}\left[\chi_{\mu \nu}^{k} W_{\rho \sigma}^{k}+\leftrightarrow\right]
\end{gathered}
$$

Moreover, there is a term, such that both indices on the "spacetime" part, a scalar in the internal space:

$$
G_{\mu \nu \rho \sigma}\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{\mu \nu}^{m, S}\left(x_{S}\right) \psi_{\rho \sigma}^{m, S}\left(x_{S}^{\prime}\right) \psi_{n}^{\prime}\left(x_{1}\right) \psi_{n}^{\prime}\left(x_{1}^{\prime}\right)}{E_{n}+E_{m}}+\ldots
$$

From Toy Models to Probe-Brane Models: Internal Space

For the graviton propagator in a product manifold, the same thing happens:

$$
\begin{aligned}
G_{\mu \nu \rho \sigma}= & \sum_{k=0}^{\infty} a_{k} h_{\mu \nu}^{k} h_{\rho \sigma}^{k}+\sum_{k=1}^{\infty} b_{k} V_{\mu \nu}^{k} V_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} c_{k} W_{\mu \nu}^{k} W_{\rho \sigma}^{k}+ \\
& \sum_{k=0}^{\infty} d_{k} \chi_{\mu \nu}^{k} \chi_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} e_{k}\left[\chi_{\mu \nu}^{k} W_{\rho \sigma}^{k}+\leftrightarrow\right]
\end{aligned}
$$

Moreover, there is a term, such that both indices on the "spacetime" part, a scalar in the internal space:

$$
G_{\mu \nu \rho \sigma}\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{m \nu}^{m, S}\left(x_{S}\right) \psi_{\rho \cdot}^{m, S}\left(x_{j}^{\prime}\right) \psi_{n}^{\prime}\left(x_{1}\right) \psi_{n}^{\prime}\left(x_{1}^{\prime}\right)}{E_{n}+E_{m}}+\ldots
$$

Can we ignored those long dots?

From Toy Models to Probe-Brane Models: Internal Space

For the graviton propagator in a product manifold, the same thing happens:

$$
\begin{aligned}
G_{\mu \nu \rho \sigma} & =\sum_{k=0}^{\infty} a_{k} h_{\mu \nu}^{k} h_{\rho \sigma}^{k}+\sum_{k=1}^{\infty} b_{k} V_{\mu \nu}^{k} V_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} c_{k} W_{\mu \nu}^{k} W_{\rho \sigma}^{k}+ \\
& \sum_{k=0}^{\infty} d_{k} \chi_{\mu \nu}^{k} \chi_{\rho \sigma}^{k}+\sum_{k=2}^{\infty} e_{k}\left[\chi_{\mu \nu}^{k} W_{\rho \sigma}^{k}+\leftrightarrow\right]
\end{aligned}
$$

Moreover, there is a term, such that both indices on the "spacetime" part, a scalar in the internal space:

$$
G_{\mu \nu \rho \sigma}\left(x_{S}, x_{l}, x_{S}^{\prime}, x_{l}^{\prime}\right)=\sum_{n, m} \frac{\psi_{m \nu}^{m, S}\left(x_{S}\right) \psi_{\rho}^{m \rho} \rho_{E}^{S}\left(x_{S}^{\prime}\right) \psi_{n}^{\prime}\left(x_{1}\right) \psi_{n}^{\prime}\left(x_{1}^{\prime}\right)}{E_{n}+E_{m}}+\ldots
$$

Can we ignored those long dots? No
...A probe will leads to non-vanishing components of all modes:
vectors, tensors on the internal space....
"The codimensional-2 minimal surface is special!"

- "Minimal" $\rightarrow T_{\text {min }}^{\mu \nu}=\alpha_{0} \gamma^{a b} X_{, a}^{\mu} X_{, b}^{\nu}$,

From Toy Models to Probe-Brane Models: Internal Space

"The codimensional-2 minimal surface is special!"

- "Minimal" $\rightarrow T_{\text {min }}^{\mu \nu}=\alpha_{0} \gamma^{a b} X_{, a}^{\mu} X_{, b}^{\nu}$,
- "Minimal surface wrapping the internal space" \rightarrow all internal components of the stress tensor \sim the internal metric, and all mixed spacetime/internal components of $T_{\mu \nu}^{m i n}$ vanish.

From Toy Models to Probe-Brane Models: Internal Space

"The codimensional-2 minimal surface is special!"

- "Minimal" $\rightarrow T_{\text {min }}^{\mu \nu}=\alpha_{0} \gamma^{a b} X_{, a}^{\mu} X_{, b}^{\nu}$,
- "Minimal surface wrapping the internal space" \rightarrow all internal components of the stress tensor \sim the internal metric, and all mixed spacetime/internal components of $T_{\mu \nu}^{\min }$ vanish.
- "Codimensional-2" $\rightarrow T_{\mu}^{\mu}=(D-2) \alpha_{0}$

From Toy Models to Probe-Brane Models: Internal Space

"The codimensional-2 minimal surface is special!"

- "Minimal" $\rightarrow T_{\text {min }}^{\mu \nu}=\alpha_{0} \gamma^{a b} X_{, a}^{\mu} X_{, b}^{\nu}$,
- "Minimal surface wrapping the internal space" \rightarrow all internal components of the stress tensor \sim the internal metric, and all mixed spacetime/internal components of $T_{\mu \nu}^{m i n}$ vanish.
- "Codimensional-2" $\rightarrow T_{\mu}^{\mu}=(D-2) \alpha_{0}$

Therefore, for the trace reversed stress tensor,

$$
\tilde{T}_{\mu \nu}=T_{\mu \nu}-\frac{1}{D-2} g_{\mu \nu} T_{\rho}^{\rho}
$$

all internal components of $\tilde{T}_{\mu \nu}^{\min }$ vanish.

From Toy Models to Probe-Brane Models: Internal Space

"The codimensional-2 minimal surface is special!"

- "Minimal" $\rightarrow T_{\text {min }}^{\mu \nu}=\alpha_{0} \gamma^{a b} X_{, a}^{\mu} X_{, b}^{\nu}$,
- "Minimal surface wrapping the internal space" \rightarrow all internal components of the stress tensor \sim the internal metric, and all mixed spacetime/internal components of $T_{\mu \nu}^{\min }$ vanish.
- "Codimensional-2" $\rightarrow T_{\mu}^{\mu}=(D-2) \alpha_{0}$

Therefore, for the trace reversed stress tensor,

$$
\tilde{T}_{\mu \nu}=T_{\mu \nu}-\frac{1}{D-2} g_{\mu \nu} T_{\rho}^{\rho}
$$

all internal components of $\tilde{T}_{\mu \nu}^{m i n}$ vanish.
$R_{\mu \nu}=\tilde{T}_{\mu \nu} \rightarrow$
internal metric is not sourced from the minimal surface

From Toy Models to Probe-Brane Models: Internal Space

$T_{\text {min }}^{\mu \nu}$ does not source any metric perturbation

From Toy Models to Probe-Brane Models: Internal Space

$T_{\text {min }}^{\mu \nu}$ does not source any metric perturbation \rightarrow the internal components of $T_{\text {probe }}^{\mu \nu}$ have nothing to couple to!

From Toy Models to Probe-Brane Models: Internal Space

$T_{\text {min }}^{\mu \nu}$ does not source any metric perturbation \rightarrow the internal components of $T_{p r o b e}^{\mu \nu}$ have nothing to couple to! \rightarrow Let's just "average them out"!

$$
T_{\mu \nu}^{\text {probe,eff }}=\int_{x_{I}} T_{\mu \nu}^{\text {probe }}
$$

From Toy Models to Probe-Brane Models: Internal Space

$T_{\text {min }}^{\mu \nu}$ does not source any metric perturbation \rightarrow the internal components of $T_{\text {probe }}^{\mu \nu}$ have nothing to couple to! \rightarrow Let's just "average them out"!

$$
T_{\mu \nu}^{\text {probe,eff }}=\int_{x_{I}} T_{\mu \nu}^{\text {probe }}
$$

- EE for D3/D7 $\left(A d S_{5} \times S^{5}\right) \stackrel{!}{\leftrightarrow}$ spacetime filling probe in $A d S_{5}$
- EE for D3/D5 $\left(A d S_{4} \times S^{2}\right) \stackrel{!}{\leftrightarrow}$ codim-1 probe in $A d S_{5}$

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.
- D'Hoker-Freedman-Mathur-Matusis-Rastelli, (arXiv:hep-th/9902042), the exact formula for any dimension.

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.
- D'Hoker-Freedman-Mathur-Matusis-Rastelli, (arXiv:hep-th/9902042), the exact formula for any dimension.
- D'Hoker-Freedman-Rastelli (arXiv:hep-th/9905049), the "Not-Even-Trying" method.

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.
- D'Hoker-Freedman-Mathur-Matusis-Rastelli, (arXiv:hep-th/9902042), the exact formula for any dimension.
- D'Hoker-Freedman-Rastelli (arXiv:hep-th/9905049), the "Not-Even-Trying" method.
- Double UV-divergence in the double integral!

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.
- D'Hoker-Freedman-Mathur-Matusis-Rastelli, (arXiv:hep-th/9902042), the exact formula for any dimension.
- D'Hoker-Freedman-Rastelli (arXiv:hep-th/9905049), the "Not-Even-Trying" method.
- Double UV-divergence in the double integral!
- The UV divergence in the z-integral: removed by a gauge choice.

Calculation Details: Propagator

To really carry out the calculation, there are some issues:

- The explicit form of $G^{\mu \nu \rho \sigma}(z, w)$ is required, for sure.
- D'Hoker-Freedman-Mathur-Matusis-Rastelli, (arXiv:hep-th/9902042), the exact formula for any dimension.
- D'Hoker-Freedman-Rastelli (arXiv:hep-th/9905049), the "Not-Even-Trying" method.
- Double UV-divergence in the double integral!
- The UV divergence in the z-integral: removed by a gauge choice.
- The remaining UV divergence in the w-integral: the physical short distance effect. \rightarrow A careful holographic regularization procedure is in order.

Calculation Details: HRG

- The induced metric on the chosen cutoff slice is changed due to the probe brane.

Calculation Details: HRG

- The induced metric on the chosen cutoff slice is changed due to the probe brane.
- A new cutoff surface is to be constructed such that $\gamma_{\Sigma^{\prime}}\left[g^{\prime}\right]=\gamma_{\Sigma}[g]$

Calculation Details: HRG

- The induced metric on the chosen cutoff slice is changed due to the probe brane.
- A new cutoff surface is to be constructed such that $\gamma_{\Sigma^{\prime}}\left[g^{\prime}\right]=\gamma_{\Sigma}[g]$

$$
\delta A=\left(A\left[g^{\prime}\right]_{\Sigma^{\prime}}-A[g]_{\Sigma}\right)_{\gamma_{\Sigma^{\prime}}\left[g^{\prime}\right]=\gamma_{\Sigma}[g]}
$$

Calculation Details: HRG

- The induced metric on the chosen cutoff slice is changed due to the probe brane.
- A new cutoff surface is to be constructed such that $\gamma_{\Sigma^{\prime}}\left[g^{\prime}\right]=\gamma_{\Sigma}[g]$

$$
\begin{aligned}
\delta A & =\left(A\left[g^{\prime}\right]_{\Sigma^{\prime}}-A[g]_{\Sigma}\right) \gamma_{\Sigma^{\prime}}\left[g^{\prime}\right]=\gamma_{\Sigma}[g] \\
& =\left(A[g+\delta g]_{\Sigma}-A[g]_{\Sigma}\right)+\left(A[g]_{\Sigma^{\prime}\left(g^{\prime} ; g, \Sigma\right)}-A[g]_{\Sigma}\right)
\end{aligned}
$$

$$
+O\left(t_{0}^{2}\right)
$$

Codimension-1 Randall-Sundrum type probe branes, or D3/D5 Probe Brane Systems

We investigate the following 2 cases in $A d S_{d+1}$:

- Spherical entangling surface bisected by the defect: the minimal surface is given by $R^{2}=w_{0}^{2}+w_{1}^{2}+\vec{w}^{2}=y^{2}+\vec{w}^{2}$,
- Strip entangling surface bisected by the defect: the minimal surface is given by $\frac{d x^{1}}{d w^{0}}=\frac{ \pm 1}{\sqrt{\left(\frac{L}{w^{0}}\right)^{2 d-2}-1}}$.

3
${ }^{3}$ Ryu and Takayanagi 2006[1]

Codimension-1 Randall-Sundrum type probe branes or D3/D5 Probe Brane Systems

Recall:

$$
\begin{aligned}
& S_{A}=\left.\left(\pi T_{0}\right) \int\left(d^{d-1} w \sqrt{\gamma}\right)\left(d^{n+1} z \sqrt{g l}\right)\left(T_{\min }^{\mu \nu} G_{\mu \nu \rho \sigma} T_{\text {probe }}^{\rho \sigma}\right)\right|_{\text {on-shell }} \\
& w_{0}^{*}=\frac{y}{\cosh r}=\epsilon \rightarrow \cosh r=\frac{y}{\epsilon}\left(1+c \frac{\sqrt{y^{2}-\epsilon^{2}}}{y}\right)
\end{aligned}
$$

- Using Israel junction equations, the exact solution in the $A d S_{d}$-slicing coordinates is:

$$
d s^{2}=d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2}
$$

with $t_{0}=4(d-1) \tanh \left(\frac{c}{L}\right) \approx \frac{4(d-1) c}{L}$.

- Changed to the Poincaré patch, it turns out to be:

$$
(\delta g)=-\frac{L^{2} t_{0}}{2(d-1)\left(x^{0}\right)^{2}} \frac{\left|x_{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}\left(d \vec{x}^{2}+\frac{\left(x^{1} d x^{1}+x^{0} d x^{0}\right)^{2}}{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}\right)
$$

Codimension-1 Randall-Sundrum type probe branes or D3/D5 Probe Brane Systems

Recall:

$$
\begin{aligned}
& S_{A}=\left.\left(\pi T_{0}\right) \int\left(d^{d-1} w \sqrt{\gamma}\right)\left(d^{n+1} z \sqrt{g l}\right)\left(T_{\min }^{\mu \nu} G_{\mu \nu \rho \sigma} T_{\text {probe }}^{\rho \sigma}\right)\right|_{\text {on-shell }} \\
& w_{0}^{*}=\frac{y}{\cosh r}=\epsilon \rightarrow \cosh r=\frac{y}{\epsilon}\left(1+c \frac{\sqrt{y^{2}-\epsilon^{2}}}{y}\right)
\end{aligned}
$$

- Using Israel junction equations, the exact solution in the $A d S_{d}$-slicing coordinates is:

$$
d s^{2}=d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2}
$$

with $t_{0}=4(d-1) \tanh \left(\frac{c}{L}\right) \approx \frac{4(d-1) c}{L}$.

- Changed to the Poincaré patch, it turns out to be:

$$
(\delta g)=-\frac{L^{2} t_{0}}{2(d-1)\left(x^{0}\right)^{2}} \frac{\left|x_{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}\left(d \vec{x}^{2}+\frac{\left(x^{1} d x^{1}+x^{0} d x^{0}\right)^{2}}{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}\right)
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\begin{gathered}
\sqrt{\gamma}=\left(\frac{\cosh r}{y}\right)^{d-2}\left(1-y^{2}\right)^{\frac{d-4}{2}} \operatorname{vol}_{d-3}^{S} \\
\frac{1}{2} \gamma^{a b} x_{, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}
\end{gathered}=-c \tanh r * \operatorname{Tr}\left[\mathbb{1}_{(d-2)}\right]=-c(d-2) \tanh r \quad ~ \$
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\begin{gathered}
\sqrt{\gamma}=\left(\frac{\cosh r}{y}\right)^{d-2}\left(1-y^{2}\right)^{\frac{d-4}{2}} v o I_{d-3}^{S} \\
\frac{1}{2} \gamma^{a b} x_{, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}=-c \tanh r * \operatorname{Tr}\left[\mathbb{1}_{(d-2)}\right]=-c(d-2) \tanh r \\
I_{1}=\frac{1}{4 G_{N}} V_{d-3}^{S} 2 \int_{\epsilon}^{1} d y \int_{1}^{\frac{y}{\epsilon}} d c_{r}\left[-c(d-2) c_{r}^{d-3}\right] \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}} \\
I_{2}=\frac{1}{4 G_{N}} V_{d-3}^{S} 2 \int_{\epsilon}^{1} d y \int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right.} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}} \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}}
\end{gathered}
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\sqrt{\gamma}=\left(\frac{\cosh r}{y}\right)^{d-2}\left(1-y^{2}\right)^{\frac{d-4}{2}} \operatorname{vol}_{d-3}^{S}
$$

$\frac{1}{2} \gamma^{a b} x_{, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}=-c \tanh r * \operatorname{Tr}\left[\mathbb{1}_{(d-2)}\right]=-c(d-2) \tanh r$

$$
\begin{aligned}
& I_{1}=\frac{1}{4 G_{N}} V_{d-3}^{S} 2 \int_{\epsilon}^{1} d y \int_{1}^{\frac{y}{\epsilon}} d c_{r}\left[-c(d-2) c_{r}^{d-3}\right] \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}} \\
& I_{2}=\frac{1}{4 G_{N}} V_{d-3}^{S} 2 \int_{\epsilon}^{1} d y \int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right) \\
& d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}} \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}} \\
& \Rightarrow \tilde{I} \equiv-c(d-2) \int_{1}^{\frac{y}{\epsilon}} d c_{r} c_{r}^{d-3}+\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}}\left(1+c \sqrt{1-\frac{e^{\frac{2}{2}}}{y^{2}}}\right) \\
& d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}
\end{aligned}
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\tilde{I} \equiv-c(d-2) \int_{1}^{\frac{y}{\epsilon}} d c_{r} c_{r}^{d-3}+\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right)} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}
$$

For the leading $c \sim t_{0}$ behavior, expand out the second term in a power series in c,

$$
\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right)} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}=c\left(\frac{y}{\epsilon}\right)^{d-2}+\mathcal{O}\left(c^{2}\right) \rightarrow \tilde{l}=c+\mathcal{O}\left(c^{2}\right)
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\tilde{I} \equiv-c(d-2) \int_{1}^{\frac{y}{\epsilon}} d c_{r} c_{r}^{d-3}+\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right)} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}
$$

For the leading $c \sim t_{0}$ behavior, expand out the second term in a power series in C,

$$
\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right) \quad d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}=c\left(\frac{y}{\epsilon}\right)^{d-2}+\mathcal{O}\left(c^{2}\right) \rightarrow \tilde{l}=c+\mathcal{O}\left(c^{2}\right)
$$

The probe contribution to the EE then becomes

$$
S_{A}=\frac{1}{2 G_{N}} V_{d-3}^{S} c \int_{\epsilon}^{1} d y \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}}=\frac{2 \pi T_{0}}{d-1} V_{d-2}^{H}
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

$$
\tilde{I} \equiv-c(d-2) \int_{1}^{\frac{y}{\epsilon}} d c_{r} c_{r}^{d-3}+\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right)} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}
$$

For the leading $c \sim t_{0}$ behavior, expand out the second term in a power series in c,

$$
\int_{\frac{y}{\epsilon}}^{\frac{y}{\epsilon}\left(1+c \sqrt{1-\frac{\epsilon^{2}}{y^{2}}}\right)} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{c_{r}^{2}-1}}=c\left(\frac{y}{\epsilon}\right)^{d-2}+\mathcal{O}\left(c^{2}\right) \rightarrow \tilde{I}=c+\mathcal{O}\left(c^{2}\right)
$$

The probe contribution to the EE then becomes

$$
S_{A}=\frac{1}{2 G_{N}} V_{d-3}^{S} c \int_{\epsilon}^{1} d y \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}}=\frac{2 \pi T_{0}}{d-1} V_{d-2}^{H}
$$

V_{d-2}^{H} is exactly the structure to expect from a conformal field theory is $d-1$ dimensions: the EE for the defect degrees of freedom has the same functional form as that of a CFT living on the defect!

Spherical Entanglement Entropy for Codimension-1 Probe Branes

we can actually obtain the complete solution to all order of t_{0} !

$$
\begin{aligned}
d s^{2} & =d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2} \\
t_{0} & =4(d-1) \tanh \left(\frac{c}{L}\right) \rightarrow c=\tanh ^{-1}\left(4 \pi G_{N} T_{0} /(d-1)\right)
\end{aligned}
$$

Spherical Entanglement Entropy for Codimension-1 Probe Branes

we can actually obtain the complete solution to all order of t_{0} !

$$
\begin{gathered}
d s^{2}=d r^{2}+\cosh ^{2}\left(\frac{|r|-c}{L}\right) d s_{A d S_{d}}^{2} \\
t_{0}=4(d-1) \tanh \left(\frac{c}{L}\right) \rightarrow c=\tanh ^{-1}\left(4 \pi G_{N} T_{0} /(d-1)\right) \\
S_{A}=\frac{1}{2 G_{N}} V_{d-3}^{S} \int_{0}^{-\operatorname{coshc}} d \bar{c}_{r} \frac{\bar{c}_{r}^{d-2}}{\sqrt{\bar{c}_{r}^{2}}-1} \int_{\epsilon}^{1} d y \frac{\left(1-y^{2}\right)^{\frac{d-4}{2}}}{y^{d-2}}=\frac{V_{d-2}^{H}}{2 G_{N}} F(c), \\
F(c)=\int_{0}^{\cosh c} d c_{r} \frac{c_{r}^{d-2}}{\sqrt{1-c_{r}^{2}}} \xrightarrow{c \rightarrow 0} c+\mathcal{O}\left(c^{2}\right) \\
S_{A} \rightarrow \frac{2 \pi T_{0}}{d-1} V_{d-2}^{H}+\mathcal{O}\left(T_{0}^{2}\right)
\end{gathered}
$$

Indeed our previous result is reproduced.

Strip Entanglement Entropy for Codimension-1 Probe Branes, A Glimpse

Strip Entanglement Entropy for Codimension-1 Probe Branes, A Glimpse

For the Strip Entangling Surface, bisected by the defect, with $U^{d-1}=\left\{\left(w^{0}, \vec{w}\right)\right\} \hookrightarrow A d S_{d+1}:$

$$
\frac{d x^{1}}{d w^{0}}=\frac{ \pm 1}{\sqrt{\left(\frac{L u}{w^{0}}\right)^{2 d-2}-1}}
$$

Strip Entanglement Entropy for Codimension-1 Probe Branes, A Glimpse

For the Strip Entangling Surface, bisected by the defect, with
$U^{d-1}=\left\{\left(w^{0}, \vec{w}\right)\right\} \hookrightarrow A d S_{d+1}:$

$$
\begin{gathered}
\frac{d x^{1}}{d w^{0}}=\frac{ \pm 1}{\sqrt{\left(\frac{L u}{w^{0}}\right)^{2 d-2}-1}} \\
\sqrt{\gamma}=\frac{L^{d-1}}{\left(w^{0}\right)^{d-1} \sqrt{1-\left(\frac{w^{0}}{L_{U}}\right)^{2 d-2}}} \rightarrow \frac{1}{\left(w^{0}\right)^{d-2} \sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}} \\
\left(\gamma^{a b} x_{,, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}\right)_{\vec{x} \text {-subspace }} \rightarrow \frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}} \operatorname{Tr}\left[\mathbb{1}_{d-2}\right]=\frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}(d-2)
\end{gathered}
$$

Strip Entanglement Entropy for Codimension-1 Probe Branes, A Glimpse

For the Strip Entangling Surface, bisected by the defect, with
$U^{d-1}=\left\{\left(w^{0}, \vec{w}\right)\right\} \hookrightarrow A d S_{d+1}:$

$$
\begin{gathered}
\frac{d x^{1}}{d w^{0}}=\frac{ \pm 1}{\sqrt{\left(\frac{L u}{w^{0}}\right)^{2 d-2}-1}} \\
\sqrt{\gamma}=\frac{L^{d-1}}{\left(w^{0}\right)^{d-1} \sqrt{1-\left(\frac{w^{0}}{L_{U}}\right)^{2 d-2}}} \rightarrow \frac{1}{\left(w^{0}\right)^{d-2} \sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}} \\
\left(\gamma^{a b} x_{,, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}\right)_{\vec{x}-\text { subspace }} \rightarrow \frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}} \operatorname{Tr}\left[\mathbb{1}_{d-2}\right]=\frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}(d-2) \\
\left.\int_{\epsilon}^{1} \frac{\left(-2 \tilde{c}\left|x^{1}\right|\right)\left(d-2+\frac{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}\left(1+\frac{x^{1}\left(w^{0}\right)^{d-1}}{\left.\left.\sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}\right)^{2}\right)}\right.\right.}{\sqrt{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}}\right) \\
\frac{d w^{0}}{w^{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}} \frac{S_{\text {sub }}}{\operatorname{Vol}_{S p a n\{\vec{w}\}}^{d-2}}=\left(\frac{2 \tilde{c} x^{1}}{\sqrt{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}} \frac{1}{\left(w^{0}\right)^{d-2}}\right)_{w^{0} \rightarrow \epsilon}
\end{gathered}
$$

Strip Entanglement Entropy for Codimension-1 Probe Branes, A Glimpse

For the Strip Entangling Surface, bisected by the defect, with
$U^{d-1}=\left\{\left(w^{0}, \vec{w}\right)\right\} \hookrightarrow A d S_{d+1}:$

$$
\begin{aligned}
& \frac{d x^{1}}{d w^{0}}=\frac{ \pm 1}{\sqrt{\left(\frac{L_{u}}{w^{0}}\right)^{2 d-2}-1}} \\
& \sqrt{\gamma}=\frac{L^{d-1}}{\left(w^{0}\right)^{d-1} \sqrt{1-\left(\frac{w^{0}}{L_{U}}\right)^{2 d-2}}} \rightarrow \frac{1}{\left(w^{0}\right)^{d-2} \sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}} \\
& \left(\gamma^{a b} x_{, a}^{\mu} x_{, b}^{\nu} \delta g_{\mu \nu}\right)_{\vec{x} \text {-subspace }} \rightarrow \frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}} \operatorname{Tr}\left[\mathbb{1}_{d-2}\right]=\frac{-2 \tilde{c}\left|x^{1}\right|}{\sqrt{\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}}}(d-2) \\
& \int_{\epsilon}^{1} \frac{d w^{0}}{\left(w^{0}\right)^{d-2} \sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}} \frac{\left(-2 \tilde{c}\left|x^{1}\right|\right)\left(d-2+\frac{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}\left(1+\frac{x^{1}\left(w^{0}\right)^{d-1}}{\left.\left.\sqrt{\left(w^{0}\right)^{2}-\left(w^{0}\right)^{2 d}}\right)^{2}\right)}\right.\right.}{\sqrt{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}} \\
& \frac{S_{\text {sub }}}{\operatorname{Vol}_{\operatorname{Span}\{\vec{w}\}}^{d-2}}=\left(\frac{2 \tilde{c} x^{1}}{\sqrt{\left(x^{1}\right)^{2}+\left(w^{0}\right)^{2}}} \frac{1}{\left(w^{0}\right)^{d-2}}\right)_{w^{0} \rightarrow \epsilon} \\
& \Rightarrow \tilde{s}_{A}=\frac{(d-1) L_{U}^{d-2}}{\pi T_{0} L^{d}} \frac{S_{A}}{\operatorname{Vol}_{\operatorname{Span}\{\vec{w}\}}^{d-2}}=\frac{(d-1) L_{U}^{d-2}}{4 G_{N} \pi T_{0} L^{d}}\left(2.0 \tilde{c} \frac{L^{d-1}}{L_{U}^{d-2}}\right)=2.0 \quad \text {, for } d \in\{4,5,6,7\}
\end{aligned}
$$

Toy-2 Spacetime filling probe branes or D3/D7 Probe Brane Systems

- Recall the exact solution is just $A d S_{d+1}$ with a new curvature radius

$$
I=L\left(1+\frac{t_{0}}{2 d(d-1)}\right) \rightarrow(\delta g)_{\mu \nu}=\frac{t_{0} L^{2}}{d(d-1)} \frac{\delta_{\mu \nu}}{\left(x^{0}\right)^{2}} .
$$

Toy-2 Spacetime filling probe branes or D3/D7 Probe Brane Systems

- Recall the exact solution is just $A d S_{d+1}$ with a new curvature radius

$$
\begin{aligned}
I=L(1 & \left.+\frac{t_{0}}{2 d(d-1)}\right) \rightarrow(\delta g)_{\mu \nu}=\frac{t_{0} L^{2}}{d(d-1)} \frac{\delta_{\mu \nu}}{\left(x^{0}\right)^{2}} \\
S_{A} & =\frac{L^{d-1}}{4 G_{N}} V_{d-2}^{S} \int_{R / a}^{1} d y \frac{\left(1-y^{2}\right)^{(d-3) / 2}}{y^{d-1}} \\
& =\frac{L^{d-1}}{4 G_{N}} V_{d-1}^{H} \\
& \rightarrow \frac{I^{d-1}-L^{d-1}}{4 G_{N}} V_{d-1}^{H}=\frac{2 \pi T_{0}}{d} V_{d-1}^{H}+\mathcal{O}\left(t_{0}^{2}\right)
\end{aligned}
$$

Toy-2 Spacetime filling probe branes or D3/D7 Probe Brane Systems

- Recall the exact solution is just $A d S_{d+1}$ with a new curvature radius

$$
\begin{aligned}
I=L(1 & \left.+\frac{t_{0}}{2 d(d-1)}\right) \rightarrow(\delta g)_{\mu \nu}=\frac{t_{0} L^{2}}{d(d-1)} \frac{\delta_{\mu \nu}}{\left(x^{0}\right)^{2}} \\
S_{A} & =\frac{L^{d-1}}{4 G_{N}} V_{d-2}^{S} \int_{R / a}^{1} d y \frac{\left(1-y^{2}\right)^{(d-3) / 2}}{y^{d-1}} \\
& =\frac{L^{d-1}}{4 G_{N}} V_{d-1}^{H} \\
& \rightarrow \frac{I^{d-1}-L^{d-1}}{4 G_{N}} V_{d-1}^{H}=\frac{2 \pi T_{0}}{d} V_{d-1}^{H}+\mathcal{O}\left(t_{0}^{2}\right)
\end{aligned}
$$

This also agrees with our result, and the result from Jensen and O'Bannon.

Conclusion

- We propose an formula for probe brane systems, and we calculate the simplest examples of the toy models:
- spherical entangling surfaces,
- strip entangling surfaces,

Conclusion

- We propose an formula for probe brane systems, and we calculate the simplest examples of the toy models:
- spherical entangling surfaces,
- strip entangling surfaces, with perfect agreement with
- the Jensen-O'Bannon calculation (spheres);
- fully backreacted solution (toy-models).

Conclusion

- We propose an formula for probe brane systems, and we calculate the simplest examples of the toy models:
- spherical entangling surfaces,
- strip entangling surfaces, with perfect agreement with
- the Jensen-O'Bannon calculation (spheres);
- fully backreacted solution (toy-models).
- Various Phases are now under attack: topological phases, novel compressible quantum liquids...

Conclusion

- We propose an formula for probe brane systems, and we calculate the simplest examples of the toy models:
- spherical entangling surfaces,
- strip entangling surfaces, with perfect agreement with
- the Jensen-O'Bannon calculation (spheres);
- fully backreacted solution (toy-models).
- Various Phases are now under attack: topological phases, novel compressible quantum liquids...

Thank you very much for your attention!

R S．Ryu and T．Takayanagi，Holographic derivation of entanglement entropy from AdS／CFT，Phys．Rev．Lett． 96 （2006）181602，［hep－th／0603001］．
簀 P．Calabrese and J．L．Cardy，Entanglement entropy and quantum field theory，J．Stat．Mech． 0406 （2004）P06002， ［hep－th／0405152］．
－T．Nishioka，S．Ryu，and T．Takayanagi，Holographic Entanglement Entropy：An Overview，J．Phys．A42（2009） 504008，［arXiv：0905．0932］．
围 H．Casini，M．Huerta，and R．C．Myers，Towards a derivation of holographic entanglement entropy，JHEP 1105 （2011）036， ［arXiv：1102．0440］．
囦 K．Jensen and A．O＇Bannon，Holography，Entanglement Entropy，and Conformal Field Theories with Boundaries or Defects，arXiv：1309．4523．
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 1308 (2013) 090, [arXiv:1304.4926].

䡒 A. Karch and E. Katz, Adding flavor to AdS / CFT, JHEP 0206 (2002) 043, [hep-th/0205236].

