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Hydrodynamics and Heavy Ion Collision

• Hydro describes well flow data for different species

LONG-RANGE TWO-PARTICLE CORRELATIONS ELLIPTIC FLOW

ORIGIN OF cos(2∆φ) TERM: ELLIPTIC FLOW

Typical picture:

ψRP

ψPP

dN
dY d2pT

∝ 1 + 2v2 cos 2(φ− ψRP) + 2v4 cos 4(φ− ψRP) + . . .

v2 ≡ �cos 2(φ− ψRP)� ∝ ε ≡ �y2� − �x2�
�y2�+ �x2�

MATHEW LUZUM (IPHT) TRIANGULAR FLOW HIC10 — 31 AUGUST 2010 8 / 24
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Flow and Viscosity in Relativistic Heavy Ion Collisions 36

 (GeV)NNs

1 10 210 310 410

2v

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

ALICE
ATLAS
CMS
STAR
PHOBOS
PHENIX
NA49
CERES
E877
EOS
E895
FOPI

p
t
[GeV/c]p

t
[GeV/c]

Figure 8: (a) Integrated elliptic flow at 2.76 TeV (126) in the 20–30% centrality class compared

with results from lower energies taken at similar centralities. (b) The v2(pT ) for pions and protons

measured by STAR compared to hydrodynamic calculations with different eccentricities and η/s

(109).
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Figure 9: (a) The centrality dependence of vn{2} from 2.76ATeV Pb+Pb collisions measured

by ALICE (102) compared to viscous hydrodynamic model calculations (71). (b) Comparison of

vn(pT ) for the same collision system at 20−30% centrality from ATLAS (133) with hydrodynamical

calculations, using both a constant average and a temperature dependent η/s (71).

Song, Bass, Heinz and Hirano 2011

A very good liquid

strongly coupled!

ε depends on the model for nuclear density

xwsh
a± = x1± − x2± (0.14)

xwsh
r± =

x1± + x2±

2
(0.15)

GR(ŵ) = − lim
z→0

R2

2πl2s

(πT )3

ẑ
F−w(ẑ)∂ẑFŵ(ẑ) (0.16)

q̂ = q̂pQCD (0.17)

q̂ = 10 q̂pQCD (0.18)

∂µT
µν = 0 (0.19)

T µν = (�+ p) uµuν + pgµν + ηΠµν (0.20)

η

s
∼

1

4π
(0.21)

�ne
inΨn =

�
rneinφ

�

�rn�
(0.22)

vn ∝ �n (0.23)

1 < 4π
η

s
< 2.5 (0.24)

2

(Policastro, Son, Starinets 01)
predicted by AdS/CFT!

(Son,Bass, Heinz, Hirano, Shen 11)
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(Transverse) Fluctuations

Fluid dynamics of initial density fluctuations 

Fig from M.Luzum, arXiv:1107.0592 

•  Fluid dynamics maps initial spatial eccentricities onto measured vn  
•  3+1 D viscous hydro reproduces v2,v3,v4,v5 in pT and centrality 

B. Schenke, MUSIC, .QM2012 • Large event by event fluctuations ⇒ non-trivial hydro response
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(impact parameter)

• Large event by event fluctuations ⇒ non-trivial hydro response

• Hydro + initial condition models can describe data

• New program to extract viscosities. 

➤ Focus on constraining initial state



Jorge Casalderrey-Solana
Oxford Holography Seminar 19-11-13

Flow in p-Pb!
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• Flow effects are large!
➤  v2 smaller than PbPb (different shape)

➤  v3 same as in PbPb (same fluctuations)
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Flow in p-Pb!
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• Flow effects are large!
➤  v2 smaller than PbPb (different shape)

➤  v3 same as in PbPb (same fluctuations)

• Hydrodynamics predicts both these flows!

despite of smaller system ⇒ larger gradients
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Initial Conditions and the CGC
THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

x+x−

CGC
J− J+

E ,B

LO: � =
1
2

�
�E

2
+ �B

2�

� �� �
Classical
color fields

DµF
µν = Jν

����
Color sources

on the light cone

[KRASNITZ, VENUGOPALAN (1998)]

THOMAS EPELBAUM The onset of hydrodynamical flow in high energy heavy ion collisions 3 / 15

• Small x partons ⇒ Saturation physics
➤  Typical size of partons 1/Qs  (perturbative scale)

➤  Large occupation numbers 1/αs(Qs) ⇒ classical fields

• Phenomenologically:

ts =
Cp
T

(

E√
λT

)1/3

(0.1)

Cq ≈ 0.5 (0.2)

Cg ≈
1

21/3
Cq ≈

(

CF

CA

)1/3

Cq (0.3)

dE

dt
∼

1√
t− ts

(0.4)

dE

dt
= −

(

CR

CF

)1/3

αL
E5/3T 4/3

i

E(t)
(0.5)

dE

dt
= −

CR

CF
αC T 2 (0.6)

QLHC
s ∼ 3− 4GeV (0.7)

dE

dt
= CRπα

2
sT

2

(

1 +
nf

6

)

log

(

4ET

µD

)

(0.8)

dp

dt
= −µD p (0.9)

γ <

(

M√
λ

)2

(0.10)

dE

dt
= −

CR

CF
αHE(t)T (0.11)

AJ =
pT1 − pT2

pT1 + pT2

(0.12)

1

Albacete, Dumitru, Fujii, Nara 12

➤    Not terribly perturbative, still room for strong coupling effects
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Shock Collisions at Different Energies

Holographic collision of two gaussian shocks

ρ: maximum energy density 

ω: width of the gaussian  

μ: energy per transverse area 
 proxy for shock energy ω~ 1/E

ε∕ρ4 ε∕ρ4

ρt

ρz

ρt

ρz

(Chesler & Yaffe 11)
(Albacete, Kovchegov and Taliotis 08, 

Grumiller & Romatschke 08)
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Low Energy Shocks
ε∕ρ4

ρt

ρz
3ΔPL/ε

ρz

ρz

➤ The shocks merge and stall

➤  No propagation in light-cone

 ➤ Dynamics well approximated 
by  viscous hydrodynamics
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High energy shocks
ε∕ρ4

ρt

ρz
3ΔPL/ε

ρz

ρz

➤ Shocks pass through each other

➤ Disturbed remnant shocks  do 
not behave hydrodynamically

Transparency

➤ Some energy remains in the 
light-cone

➤ They decay after the collision

➤ Hydrodynamic plasma is formed 
in the central rapidity region
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A Dynamical Cross Over
ε∕ρ4

ρt

ρz

ε∕ρ4

ρt

ρz
3ΔPL/ε 3ΔPL/ε

ρz

ρzρz

ρz
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Landau vs Bjorken

Fluid Dynamics for Relativistic Nuclear Collisions 31
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Fig. 11. The Landau model for nuclear collisions. See text for details.

waves which travel into the slab with sound velocity. Therefore, they will meet
at the center of the slab (here chosen to be the origin z = 0) at a time L/cs. For
times t > L/cs, these waves overlap and the solution becomes more complicated.
In a region near the light cone, the solution will remain a Riemann rarefaction
wave, therefore we term this region the Riemann region. In the center where
the Riemann rarefaction waves overlap, however, the solution is no longer a
simple wave (indeed, only two regions of constant flow have to be connected
by a simple wave [18], for two simple waves no such theorem exists). For c2

s =

34 Dirk H. Rischke

z if compared at the same proper time τ = t
√

1 − v2 =
√

t2 − z2. (Such curves of
constant τ describe hyperbola in space-time.) Thus, the initial thermodynamic
state of all fluid elements is the same at the same proper time τ0.
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! !0
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Fig. 13. The Bjorken model for nuclear collisions. See text for details.

If the longitudinal velocity profile is enforced by the scaling argument, the
fluid-dynamical solution simplifies in fact considerably. To see this, change the
variables t, z in the conservation laws for one-dimensional longitudinal motion
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Fig. 13. The Bjorken model for nuclear collisions. See text for details.

If the longitudinal velocity profile is enforced by the scaling argument, the
fluid-dynamical solution simplifies in fact considerably. To see this, change the
variables t, z in the conservation laws for one-dimensional longitudinal motion

➤ Landau model:  All energy is stopped + hydro explosion

(predicts a gaussian distribution in rapidity)

➤ Bjorken: matter produced at all rapidities

Boost invariant flow

Fluid rapidity = space time rapidity

t=! Cosh(ηst) 
z=! Sinh(ηst) 
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Landau vs Bjorken

2.1 General characteristics of heavy ion collisions 13
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Figure 2.6 a) Chemical potential extracted from thermal fits at different

center of mass energies [56]. b) The number of protons minus number of

antiprotons per unit rapidity for central heavy ion collisions [132]. This

net proton number decreases with increasing center of mass energy from√
s = 5 GeV (at the AGS collider at BNL), via

√
s = 17 GeV (at the

SPS collider at CERN) to
√

s = 200 GeV (at RHIC). (For each collision

energy, yp indicates the rapidity of a hypothetical proton that has the same

velocity after the collision as it did before.)

gas stops changing. Experimentalists can measure the abundance of more

than a dozen hadron species, and it turns out that all the ratios among

Baryons are not stopped
(Bjorken)
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VII. COMPARISON OF LANDAU HYDRODYNAMICS WITH EXPERIMENTAL RAPIDITY

DISTRIBUTIONS

We would like to compare the modified distribution with the Landau distribution and experimental
distributions for central AuAu collisions at various energies [13, 14, 15]. We can evaluate a few
quantities to get an idea of the differences. Consider collisions at

√
sNN = 200 GeV. The beam

rapidity yb is yb = 5.36, and the logarithm of the Lorentz contraction factor is L = 4.67. The
difference between yb and L is substantial and leads to different shapes of the rapidity distributions
as one observes in Fig. 6.
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dN
/d

y

!
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!
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K+(x4)
K -(x4)
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exp{ " yb
2 - y2 } 

exp{ " L2 - y2 } 

exp{ - y2/2L } 

FIG. 6: Comparison of experimental rapidity distribution with theoretical distribution in the form of dN/dy ∝ exp{
p

y2
b − y2}

(solid curves), Landau’s distribution dN/dy ∝ exp{
p

L2 − y2} (dashed-dot curves), and the Gaussian dN/dy ∝ exp{−y2/2L}
(dashed curves) for produced particles with different masses. Data are from [13] for AuAu collisions at

√
s

NN
= 200 GeV.

Fig. 6 gives the theoretical and experimental rapidity distributions for π+, π−, K+, K−, p, and p̄
[13]. The solid curves in Fig. 6 are the results for

√
sNN = 200 GeV from the modified distribution

Eq. (6.12) with the yb parameter, whereas the dashed curves are the Landau distribution of Eq.
(1.5), dN/dy ∝ exp{

√

L2 − y2} with the L parameter. The theoretical distributions for different
types of particles have been obtained by keeping the functional forms of the distribution and fitting
a normalization constant to match the experimental data. We observe that Landau rapidity distri-
butions are significantly narrower than the experimental rapidity distributions, whereas the modified
distribution Eq. (6.12) gives theoretical results that agree better with experimental data.

As a further comparison, we show theoretical distributions calculated with the Gaussian distri-
bution of Eq. (1.3) as the dashed curves. We find that except for the region of large rapidities,
the Gaussian distributions is a good representation of the modified Landau distribution. The close
similarity between the modified distribution (6.12) and the Gaussian distribution (1.3) explains the
puzzle mentioned in the Introduction. The Gaussian distribution and the original Landau distribu-
tion are different distributions. Past successes of the Gaussian distribution in explaining experimental
rapidity data [13, 14, 15] arises, not because it is an approximation of the original Landau distribu-
tion (1.5), but because it is in fact close to the modified Landau distribution (6.12) that derives its
support from a careful re-examination of Landau hydrodynamics.

We compare theoretical distributions with the π− rapidity distribution for collisions at various
energies. The solid curves in Fig. 7 are the results from the modified distribution Eq. (6.12) with

Gaussian profile in rapidity
(Landau)

(C-Y Wong 09)
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Non-Boost Invariant Initial Conditions

➤ Gaussian rapidity profile

➤ Low energies: expected from Landau hydrodynamics

➤ High energies: relatively mild increase of width

εloc(τ,η)∕ εloc(τ,η=0)

ρτ

ρηst ρηst

ρτ

εloc(τ,η)∕ εloc(τ,η=0)
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Non-Boost Invariant Initial Conditions

➤ Gaussian rapidity profile

➤ Low energies: expected from Landau hydrodynamics

➤ High energies: relatively mild increase of width

εloc(τ,η)∕ εloc(τ,η=0)

ρτ

ρηst ρηst

ρτ

εloc(τ,η)∕ εloc(τ,η=0)

(subsequent time evolution well described by Bjorken like flow)
Chesler & Yaffe 13
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Surprisingly Hydrodynamic

ρt ρt

ε∕3ρ4

PT∕ρ4

PL∕ρ4

➤ Good hydrodynamic behavior from very early on

➤ Energetic shocks: Plasma develops after thyd=1/πThyd =0.87/μ
➤ Very large viscous corrections! Hydrodynamization

➤ Early behavior of pressures due to vanishing initial ε

Chesler & Yaffe, Wu & Romatschke, Heller, Janik & Witaszczyk, 
Heller, Mateos, van der Schee, Trancanelli
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Surprisingly Hydrodynamic

PL/ε
PT/ε

ρt ρt

➤ Good hydrodynamic behavior from very early on

➤ Energetic shocks: Plasma develops after thyd=1/πThyd =0.87/μ
➤ Very large viscous corrections! Hydrodynamization

➤ Early behavior of pressures due to vanishing initial ε

Chesler & Yaffe, Wu & Romatschke, Heller, Janik & Witaszczyk, 
Heller, Mateos, van der Schee, Trancanelli
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Towards p-A: Longitudinal Coherence
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➤ In the center of mass of the “nucleus-nucleon” collision
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Towards p-A: Longitudinal Coherence

➤ Midd rapidity region independent of collision system
➤ Maximum at y=0 and symmetric w.r.t center of mass
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Absence of Longitudinal Coherence
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Absence of Longitudinal Coherence

➤ Sensitivity to the colliding system

➤ Asymmetric distribution for asymmetric systems
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Holography and Physics at T-Scale

➤ Coherent response depends on longitudinal structure

➤ Structures of size < 1/ πThyd are not resolved by the 
collision dynamics

➤ Structures of size < 1/ πThyd act incoherently

ε⁄µ4 ε⁄µ4

zµ zµ

tµ tµ
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Holography and Physics at T-Scale

➤ Holography provides a simple picture!

ε⁄µ4 ε⁄µ4

zµ zµ

tµ tµ

zµ zµ tµtµ

AH⁄µ2 AH⁄µ2
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Qualitative Expectation

(Steinberg 07)
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Qualitative Expectation

➤ Unfair comparison:

11/18/13 5:55 PMPseudorapidity - Wikipedia, the free encyclopedia

Page 1 of 3http://en.wikipedia.org/wiki/Pseudorapidity

Pseudorapidity values shown on a
polar plot. In particle physics, an
angle of zero is usually along the
beam axis, and thus particles with
high pseudorapidity values are
generally lost, escaping through the
space in the detector along with the
beam.

As angle increases from zero,
pseudorapidity decreases from
infinity.

Pseudorapidity
From Wikipedia, the free encyclopedia

In experimental particle physics, pseudorapidity, , is a commonly
used spatial coordinate describing the angle of a particle relative to
the beam axis. It is defined as

where  is the angle between the particle momentum  and the beam
axis.[1] Inversely,

In terms of the momentum, the pseudorapidity variable can be
written as

where  is the component of the momentum along the beam axis.
In the limit where the particle is travelling close to the speed of light,
or in the approximation that the mass of the particle is nearly zero,
pseudorapidity is numerically close to the experimental particle
physicist's definition of rapidity,

This differs slightly from the definition of rapidity in special
relativity, which uses  instead of . However, pseudorapidity
depends only on the polar angle of its trajectory, and not on the
energy of the particle.

In hadron collider physics, the rapidity (or pseudorapidity) is
preferred over the polar angle  because, loosely speaking, particle
production is constant as a function of rapidity. One speaks of the "forward" direction in a hadron collider
experiment, which refers to regions of the detector that are close to the beam axis, at high 

The rapidity as a function of pseudorapidity is given by

pseudo-rapidity

rapidity
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most non-trivial structure 
due to the transverse mass
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Qualitative Expectation
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The rapidity as a function of pseudorapidity is given by

most non-trivial structure 
due to the transverse mass

Careful analysis of LE data: consistent with a rapidity shift
ys=yc.o.m+0.3 (Steinberg 07)
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The Weak Coupling Picture

b

Q2s(A) Q2s(B)

πR2 Q2s(A)
dN
dy ∝
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The Weak Coupling Picture

b

Q2s(A) Q2s(B)

πR2 Q2s(B)
dN
dy ∝
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The Weak Coupling Picture

b

Q2s(A)= Q2s(B)

Q2s(A)= Q20 A eλ(Ya-y)

Q2s(B)= Q20 B eλ(Yb-y)

Choosing ylab=(Yb-Ya)/2

ymax=
yc.o.m

λ λ≈0.5
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The Weak Coupling Picture

b

Q2s(A)= Q2s(B)

Q2s(A)= Q20 A eλ(Ya-y)

Q2s(B)= Q20 B eλ(Yb-y)

Choosing ylab=(Yb-Ya)/2

ymax=
yc.o.m

λ λ≈0.5

LHC most central pPB yc.o.m=1.7
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Conclusions

➤ Shock wave collisions exhibit a dynamical cross over

➤  Low energy:  full stopping ⇒ Landau hydrodyanamics

➤  High energy: 

Transparency: energy propagation in the lightcone

Not-boost invariant initial conditions

➤ Longitudinal coherence on shock components

➤ Fluid c.o.m = collision c.o.m.

➤ Reflexion symmetric matter around the collision point

(near mid rapidity )
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Correlations
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Figure 5. Non-diagonal u-s correlator as a function of the temperature. The different symbols
correspond to different Nt values. The red curve is the continuum extrapolated result. The black
curve is the HRG model prediction. The dashed line indicates the ideal gas limit for this observable.

Hard Thermal and Dense Loop framework provides a non-vanishing value for this corre-

lation also at large temperatures [9]. We show our result in Fig. 5. χus
11 is non-zero in

the entire temperature range under study. It has a dip in the crossover region, where the

correlation between u and s quarks turns out to be maximal. It agrees with the HRG

model prediction in the hadronic phase. This correlation stays finite and large for a cer-

tain temperature range above Tc. A quantitative comparison between lattice results and

predictions for a purely partonic QGP state can give us information about bound states

survival above Tc [10].

Quadratic baryon number, electric charge and isospin fluctuations can be obtained

from the above partonic susceptibilities through Eqs. (2.7). We show our results for these

observables in Fig. 6 and in the left panel of Fig. 7. In the low-temperature, hadronic

phase we have a very good agreement with the HRG model predictions. In the crossover

region these quantities all show a rapid rise with temperature, in analogy with what already

observed for the light and strange quark susceptibilities. At large temperature they reach

approximately 90% of their respective ideal gas values. A comparison between all diagonal

susceptibilities, rescaled by their corresponding Stefan-Boltzmann limits, is shown in the

right panel of Fig. 7, from which it is evident that they all show similar features in

their temperature dependence, even if the temperature at which they rise is larger for the

strangeness and baryon number susceptibilities.

The baryon-strangeness correlator CBS defined in Eq. (2.8) was proposed long ago

[11] as a diagnostic for strongly interacting matter. It is supposed to be equal to one for

a non-interacting QGP, while it is temperature-dependent and generally smaller than one

in a hadronic system. We show our result for this observable in Fig. 8. At the smallest

– 9 –

Borsanyi et al.  1112.4416

�∆E� ∼ 20 GeV (0.7)

dN ∝ θ2
f τ 2

f (0.8)

τf ∼
1

ωθ2
f

(0.9)

e−(τ/τcoh)3 (0.10)

τcoh ∼
1

�
q̂θ2

qq

�1/3
(0.11)

q̂ =
�q2
⊥�
L

(0.12)

χus
11 ∝ �nuns� (0.13)

2

• Most thermodynamic properties are insensitive to the 
nature of the degrees of freedom

• However: strong correlations among flavor

➤ not compatible with an almost free gas of quarks and gluons
➤ consistent with strongly correlated flavor (JCS and D. Mateos 12)
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Quasi-Particles

25

Spectral functions weak and strong coupling

ρJJ(ω) =

� ∞

−∞
dteiωt �[J(t), J(0)]�

Weak Coupling

ωT

Quasi-Particles

Pair Continuum

∆ω ∼ 1
τc

ρJJ(ω)
ω

Width of peak set by collisional time scale 1
τc

∝ α2
s

QCD Lattice – Weak versus strong coupling how to tell?

• Lattice “measures” current-current correlation functions

ρJJ = �[J(t), J(0)]�

• Weakly coupled picture consists of two processes:

J(0) J(t)

Pair Production at High Frequency Quasi Particles Moving at Low frequency

J(0) J(t)
#1 #2

Duration that quasi-particles move set by the collisional time scale

τc ∼
1

α2
sT

QCD Lattice – Weak versus strong coupling how to tell?

• Lattice “measures” current-current correlation functions

ρJJ = �[J(t), J(0)]�

• Weakly coupled picture consists of two processes:

J(0) J(t)

Pair Production at High Frequency Quasi Particles Moving at Low frequency

J(0) J(t)
#1 #2

Duration that quasi-particles move set by the collisional time scale

τc ∼
1

α2
sT

1/τc ∼ g4

• Fishing for quasi-particles: conserved current correlator
narrow structures?
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FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /�Γ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /�Γ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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• Fishing for quasi-particles: conserved current correlator

• Lattice results (hard)
narrow structures?

➤ no clear quasi-particle peak (unlike pQCD)



IMFP 2013 J. Casalderrey-Solana May 20th 2012

Quasi-Particles

25

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

BW+continuum
free

ii( !" T

/T

!

"

#

$

%

&

'! '# '% ( ) "!

!!*+,!-'"!*+,!
!!*+,".&-'"!*+,!.&

/+0

1233

#445!$%!+

!*+

!"#$%&'()*+,&- ./01%*)2&3(41%"54&)46&0201%*"1)2&1546(1%"7"%8

!!!!"" # $#$!"%!""

!""!"" # $$!!#$
"!"$

"" % !!"$""
%
&

$#
!' % &" "" ()*+!"",# "!"!"!$#!"

9,0&5(*&:4,)%; 35*&%$0&,/01%*)2&3(41%"54

'"& !
'

%%&

'

#
! '

:4)28,",&53&%$0

,8,%0<)%"1&0**5*,

67489':268;<:4=8'=1':>3'
?<293'" ;=8:24@6:4=8

/<2A':>32B<?'?==C'5/+0D

EF.G2<<:38-'H.I.J47<27K4-'LJ'G$$M'5"NN!D'&(NO

"!"!$#!" #
!
' % &#!

!

"
!!

!$'!!!

"!%

0201%*"1)2&1546(1%"7"%8

EP+>32B<?'A4?3C:=8'2<:3'<8A'3?3;:24;<?';=8A6;:4Q4:RST-''

/.+.UI489-'VW'3:'<?.-'JHI)$'5#!""D'!$%&!%O

'

#
#
%%&
-

./0
!"!

!""!"$ '( # 1$ # "

"#

#"#( # ')2

18

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

0.0 0.1 0.2 0.3 0.4 0.5

!T 

T2GV(!T)/("qGV
free(!T))

2TcBW/#=1.098

#/2T=1.080
1.117
1.155

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

BW+continuum
free

$ii(%)/%T

%/T

FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /�Γ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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cBW /�Γ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=
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6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /�Γ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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and results obtained by varying �Γ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /�Γ,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW �χq

�Γ
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k � 0.05 at T � 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs � 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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• Fishing for quasi-particles: conserved current correlator

• Lattice results (hard)
narrow structures?

➤ no clear quasi-particle peak (unlike pQCD)
➤ some broad structure remains

comparable to Nc g2→∞ for SYM via AdS/CFT Teaney 06
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