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Part 1: Holographic Transport 
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DC conductivity diverges!
Hartnoll



• To get finite DC conductivity need to have 
momentum dissipation. 

• Break translational invariance of boundary 
theory weakly using irrelevant operator.

At ! µ+ �cos(kLx)

Horowitz, Santos & Tong

Solve very complicated PDEs!



Numerical Conductivity 
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Result for resistivity agrees with memory matrix 
prediction
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• Make progress by working perturbatively 
in lattice strength

• Simplest thing is to add a background 
scalar lattice on top of the RN solution

Analytic Conductivity 

• To leading order can ignore the 
backreaction on the metric and gauge field 
backgrounds.

MB, Tong and Vegh



• At leading order the conductivity calculation 
simplifies enormously. 

• In radial gauge              we need only 
consider 

• The novel ingredient is scalar perturbation

• This is simply the phonon mode of the 
lattice
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• After eliminating        equations take the 
form
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• These are the nothing but the perturbations 
equations of massive gravity with a radially 
dependent graviton mass

Connection with Massive Gravity

MB and Tong



• Surprise is the existence of a massless mode 
even at finite density.

• Whenever you have massless mode you can 
use the Iqbal/Liu trick to show the 
membrane conductivity            is constant.            

• Evaluating at the horizon gives
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Universal Conductivity 

MB and Tong
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AdS2 ⇥R2

�0 ⇠ ⇠��O(kL)

⇠h ⇠ T�1

⇢ ⇠ T 2�O(kL)

• Zero temperature near horizon geometry 
is

• At finite temperature the geometry 
terminates at                giving a resistivity

• Key result is that resistivity is determined 
by value of the graviton mass at the 
horizon

Locally Critical Scaling

MB, Tong and Vegh



Related Work
• Can break momentum conservation in 

other (simpler) ways:

Massive Gravity
Linear Axions
Q-lattices

� ⇠ kx

�1 ⇠ sin(kLx) �2 ⇠ cos(kLx)

• In these models our method gives the 
exact DC conductivity in terms of horizon 
data.

• Can use a similar approach to calculate 
thermal and electrothermal conductivity.

Vegh, Davison
Andrade and Withers,
Gouteraux

Donos and Gauntlett

Donos and Gauntlett



Part II: The Hall Angle



Drude model 
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A puzzle... 
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The strange metal experiments seem to imply different 
scattering times for electric and Hall currents.   

Anderson
Coleman, Schofield & 

Tsvelik



Q-Lattices
• Can use ‘Q-lattices’ to obtain analytic expression 

for transport even when momentum dissipation is 
strong.

• Build lattices out of two complex scalar fields

�1 ! kx �2 ! ky

Donos and Gauntlett

 2 ⇠ �ei�2 1 ⇠ �ei�1

• Stress tensor is homogeneous: can study exactly 
using ODEs.



DC Transport

�DC =


Z(�) +

4⇡Q2

k2�(�)s

�

rh

↵̄ =


4⇡Q

k2�(�)

�

rh

Z(�)|rh•           is a new term that did not appear in 
our perturbative lattice calculation.

• Compare with the electrothermal 
conductivity

• Hence           corresponds to excitations 
that carry a current but no momentum.

Z(�)|rh

Donos and Gauntlett



Weak Coupling Intuition

J
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P
x

Holes Particles

• This is analogous to what happens at 
`charge-conjugation symmetric’ critical 
points.  

• Hence we define
�ccs = Z(�)|rh

Sachdev and Damle



DC Conductivity

• At finite density there are two additive 
contributions to the conductivity - `Inverse 
Matthiessen Law’.

• In holography,         is present even at low 
energies. This is not true for weakly 
coupled particles at finite density.
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Hall angle
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Hall angle

✓H ⇠ BQ
E + P ⌧L



Hall angle

Holes Particles

B

No analogous term to 

MB and Donos
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• Weak momentum dissipation - 

• Strong momentum dissipation  - 

⌧L ! 1

⌧L ! 0
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2BQ
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can now get different scalings!

reproduces Drude-like results.
c.f.

 Hartnoll & 
Hofman etc

�DC = �ccs



Comments

• Story can be applied more generally than to 
the specific lattice models studied here e.g.  
to hydro, probe branes.

• Would be exciting to understand whether 
mechanism can be applied to the cuprates or 
other experimental systems. 

• Supports recent suggestion that strange 
metals are governed by incoherent transport.

 Karch

�ccs ⇠ 1/T
�diss ⇠ 1/T 2

�DC ⇠ 1/T + 1/T 2

✓H ⇠ 1/T 2
=)

 Hartnoll



`` Over broad regions of doping, the two kinds of 
relaxation rates, the one for the conductivity and the 
one for the Hall rotation, seem to add as inverses: 
Conductivity is proportional to 1/ T + 1/ T 2—that is, it 
obeys an anti-Matthiessen law.’’        

P. W. Anderson - Physics Today



Thank you!


