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Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.

Gravity in M with AdS boundary conditions
m

Field Theory that lives on ∂M

I Access to strongly coupled regime, include T , ρ, etc

I Limitations: it’s a conjecture, large N limit, only generic
features (bottom-up), hard to implement (top-down).

I examples: superconductors, QGP, non-relativistic FT, etc.

I Motivation from condensed matter to study gravitational
systems [AdS, hairy black holes, etc]
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Intro2: RN black hole
Gravitational solutions ⇔ states of the field theory, e.g. pure AdS
is the vacuum of the CFT.

Finite T : BH solution; finite ρ charged BH

boundary
    r = ∞

r = 0

ds2 = −f (r)dt2+
dr2

f (r)
+r2(dx2+dy2)

f = r2 − m0

r
+
µ2

4

r2
0

r2

A = µ
(

1− r0
r

)
dt
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Intro3: Conductivity

Compute conductivity at non-zero charge density: J = σE

Turn on δAx = ax(r)e−iωt , couples to δgtx (but can be eliminated)

ax(r) = a
(0)
x +

1

r
a

(1)
x + . . . Ex = iωa

(0)
x 〈Jx〉 = a

(1)
x

σ(ω) =
a

(1)
x

iωa
(0)
x

Ingoing bc’s for retarded 2-pt ax ≈ (r − r0)−iω/4πT

For small ω,

σ(ω) ≈ µ2

r0

(
δ(ω) +

i

ω

)
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Intro3: Conductivity cont’d

σ(ω) ≈ µ2

r0

(
δ(ω) +

i

ω

)

Consequence of translational invariance of the background.

Finite ρ, apply a constant E , charge carriers can’t dissipate p.

In more realistic situations, p dissipates due to break translation
invariance (lattice).

Studied in holography introducing a hol. lattice [Horowitz, Santos,
Tong] and breaking diff inv in the bulk (MG) [Vegh]

Goal here: present a simple model of momentum relaxation in the
holographic setup.
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Ward identity

Theory with scalar operator O and U(1) current

∇i 〈T ij〉 = ∇jψ(0)〈O〉+ F ij〈Ji 〉

Basic idea: turn on sources (provided vevs are non-zero)

Holographically, consider gµν , ψI , Aµ,

ds2 =
dρ2

ρ2
+

1

ρ2
(g

(0)
ij + . . .+ ρdτij + . . .)dx idx j

A = (A
(0)
i + . . .+ ρd−2Ãi + . . .)dx i

ψI = ρ∆−ψ
(0)
I + . . .+ ρ∆+ψ̃I + . . .
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Ward identity cont’d

Then, the variation of the on-shell action reads

δSren =

∫
∂M

√
−g (0)

[
1

2
〈T ij〉δg (0)

ij + 〈OI 〉δψ
(0)
I + 〈J i 〉δA(0)

i

]

〈T ij〉 ∝ τij 〈OI 〉 ∝ ψ̃I 〈J i 〉 ∝ Ãi

Ward identity is asympt. eom (bulk diff inv)

Generically, spatially dependent sources introduce explicit
anisotropies and non-homogeneities (solve PDE’s)

Take ψ ∝ x with m2
ψ = 0 makes bulk geometry homogeneous, can

arrange more than one scalar to have isotropy. Makes use of the
shift symmetry ψI → ψI + cI .
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Ward identity is asympt. eom (bulk diff inv)

Generically, spatially dependent sources introduce explicit
anisotropies and non-homogeneities (solve PDE’s)

Take ψ ∝ x with m2
ψ = 0 makes bulk geometry homogeneous, can

arrange more than one scalar to have isotropy. Makes use of the
shift symmetry ψI → ψI + cI .



Ward identity cont’d

Then, the variation of the on-shell action reads

δSren =

∫
∂M

√
−g (0)

[
1

2
〈T ij〉δg (0)

ij + 〈OI 〉δψ
(0)
I + 〈J i 〉δA(0)

i

]

〈T ij〉 ∝ τij 〈OI 〉 ∝ ψ̃I 〈J i 〉 ∝ Ãi
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The model

S0 =

∫
M

√
−g

[
R − 2Λ− 1

2

d−1∑
I

(∂ψI )
2 − 1

4
F 2

]
dd+1x

Take the ansatz

ds2 = −f (r)dt2+
dr2

f (r)
+r2δabdx

adxb, A = µ

(
1− rd−2

0

rd−2

)
dt, ψI = αIax

a,

Find the solution [Bardoux, Caldarelli, Charmousis, ’12]

f = r2− α2

2(d − 2)
− m0

rd−2
+

(d − 2)µ2

2(d − 1)

r
2(d−2)
0

r2(d−2)
, α2 ≡ 1

d − 1

d−1∑
a=1

~αa · ~αa,

provided
~αa · ~αb = α2δab ∀a, b. (1)



The model

S0 =

∫
M

√
−g

[
R − 2Λ− 1

2

d−1∑
I

(∂ψI )
2 − 1

4
F 2

]
dd+1x

Take the ansatz

ds2 = −f (r)dt2+
dr2

f (r)
+r2δabdx

adxb, A = µ

(
1− rd−2

0

rd−2

)
dt, ψI = αIax

a,

Find the solution [Bardoux, Caldarelli, Charmousis, ’12]

f = r2− α2

2(d − 2)
− m0

rd−2
+

(d − 2)µ2

2(d − 1)

r
2(d−2)
0

r2(d−2)
, α2 ≡ 1

d − 1

d−1∑
a=1

~αa · ~αa,

provided
~αa · ~αb = α2δab ∀a, b. (1)



The model

S0 =

∫
M

√
−g

[
R − 2Λ− 1

2

d−1∑
I

(∂ψI )
2 − 1

4
F 2

]
dd+1x

Take the ansatz

ds2 = −f (r)dt2+
dr2

f (r)
+r2δabdx

adxb, A = µ

(
1− rd−2

0

rd−2

)
dt, ψI = αIax

a,

Find the solution [Bardoux, Caldarelli, Charmousis, ’12]

f = r2− α2

2(d − 2)
− m0

rd−2
+

(d − 2)µ2

2(d − 1)

r
2(d−2)
0

r2(d−2)
, α2 ≡ 1

d − 1

d−1∑
a=1

~αa · ~αa,

provided
~αa · ~αb = α2δab ∀a, b. (1)



The model cont’d

ds2 = −f (r)dt2+
dr2

f (r)
+r2δabdx

adxb, A = µ

(
1− rd−2

0

rd−2

)
dt, ψI = αIax

a,

Geometry is isotropic and homogenous but solution is not.

Use rotational residual symmetry to set αIa = δIaα. Solution is
fully characterized by µ, α and

T =
1

4π

(
dr0 −

α2

2r0
− (d − 2)2µ2

2(d − 1)r0

)
.

Mechanism for dissipation? solution has 〈OI 〉 = 0 and F
(0)
ij = 0, so

∇i 〈T ij〉 = 0. Linearized fluctuations

∂tδ〈Pa〉 = αaI δ〈OI 〉+ δF
(0)
at 〈Jt〉 (2)
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Holographic Q-lattices

Similar construction by [Donos+Gauntlett], which uses U(1) of a
complex scalar, φ→ e ikxφ.

Break translational invariance by φ = e ikxϕ(r), but Tµν is indep.
of x so the problem reduces to ODE’s.



DC conductivity
Key idea: massless mode ⇒ conserved quantity, express the DC
conductivity in terms of r0.

δAx = e−iωtax(r), δgtx = e−iωthtx(r) δψ1 = e−iωtχ(r)

L2

(
ax
χ′

)
+ ω2

(
ax
χ′

)
= M

(
ax
χ′

)
One finds detM = 0. Diagonalize mass matrix by λ1, λ2.

Π′ + ω2λ1 = 0 ⇒ Π′ = 0 at ω = 0

σDC (r) = lim
ω→0

−Π

iωλ1

∣∣∣∣
r

σDC (∞) = σDC

can show σ′DC (r) = 0! So

σDC = σDC (r0) = rd−3
0

(
1 + (d − 2)2µ

2

α2

)
.
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Optical conductivity

Can also compute σ = σ(ω) numerically.

Drude physics for small ω

σ =
σDC

1− iωτ

(a) (b)

Figure : The different curves correspond to, from top to bottom,
α/µ = 0.1, 1.0, 2.0.
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Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.

Generically yields ghosts, but [de Rham, Gabadadze, Tolley, ’10]
argues that it’s ok

IMG =

∫
M

√
−g
[
R − 2Λ− 1

4
F 2 + βm2([K]2 − [K2]) + αm2[K]

]
d4x .

KµαKαν = gµαfαν fµν = diag(0, 0,F ,F )

ds2 = −fMG (r)dt2+
dr2

fMG (r)
+r2(dx2+dy2), A = µ

(
1− r0

r

)
dt,

fMG (r) = r2 −m2
β −

m0

r
+
µ2r2

0

4r2
,

same as our model with α2 = 2m2
β.

Drude at small ω, σMG
DC = σoursDC
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Massive gravity cont’d

Consider shear modes ∼ e−iωt+ikxΦ(r)

δgry , δgty , δgxy , δAy

Can find master fields

δgry ∼ Φ±,Φ
′
1, δgty ∼ Φ0, δgxy ∼ Φ1, δAy ∼ Φ±

r2(f Φ′±)′ +

(
r2ω2

f
− k2 − µ2r2

0

r2
+
µr0
r

c±

)
Φ± = 0,

1

r2f
(r2f Φ′1)′ +

ω2

f 2
Φ1 = 0,

Φ0 +
f

r2
(c+rΦ+ + c−rΦ−)′ − kω

k2 + 2m2
β

Φ1 = 0.



Massive gravity cont’d

Consider shear modes ∼ e−iωt+ikxΦ(r)

δgry , δgty , δgxy , δAy

Can find master fields

δgry ∼ Φ±,Φ
′
1, δgty ∼ Φ0, δgxy ∼ Φ1, δAy ∼ Φ±

r2(f Φ′±)′ +

(
r2ω2

f
− k2 − µ2r2

0

r2
+
µr0
r

c±

)
Φ± = 0,

1

r2f
(r2f Φ′1)′ +

ω2

f 2
Φ1 = 0,

Φ0 +
f

r2
(c+rΦ+ + c−rΦ−)′ − kω

k2 + 2m2
β

Φ1 = 0.



Massive gravity cont’d

Consider shear modes ∼ e−iωt+ikxΦ(r)

δgry , δgty , δgxy , δAy

Can find master fields

δgry ∼ Φ±,Φ
′
1, δgty ∼ Φ0, δgxy ∼ Φ1, δAy ∼ Φ±

r2(f Φ′±)′ +

(
r2ω2

f
− k2 − µ2r2

0

r2
+
µr0
r

c±

)
Φ± = 0,

1

r2f
(r2f Φ′1)′ +

ω2

f 2
Φ1 = 0,

Φ0 +
f

r2
(c+rΦ+ + c−rΦ−)′ − kω

k2 + 2m2
β

Φ1 = 0.



Massive gravity cont’d

In our model: ψ1 = αx , ψ2 = αy

δgry , δgty , δgxy , δAy , δψ2

Introduce master fields as before and get

r2(f Φ′±)′ +

(
r2ω2

f
− k2 − µ2r2

0

r2
+
µr0
r

c±

)
Φ± = 0,

1

r2f
(r2f Φ′1)′ +

(
ω2

f 2
− (k2 + α2)

r2f

)
Φ1 = 0,

Φ0 +
f

r2
(c+rΦ+ + c−rΦ−)′ − kω

k2 + α2
Φ1 = 0.

Same equation for Φ± so the electrical conductivities coincide!

The thermal conductivity ∼ δgty differs.
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Conclusions

I model of momentum relaxation with a diff invariant L and
simple matter content. diff invariance broken by bc’s.

I relevant BH is analytic and σ can be computed using ODE’s.

I 〈jj〉 = 〈jj〉MG , which suggests that MG is not related to lattice
physics. Intuition for this agreement? Stuckelberg fields.

I embedding in string theory?

I include HSC, spatially modulated phases, ...
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