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“Hasn't it occurred to you to suspect that behind that Mondrian
could a Viera da Silva reality start?” Hopscotch, J. Cortazar.
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Gravity in M with AdS boundary conditions

)

Field Theory that lives on OM

» Access to strongly coupled regime, include T, p, etc

» Limitations: it's a conjecture, large N limit, only generic
features (bottom-up), hard to implement (top-down).

» examples: superconductors, QGP, non-relativistic FT, etc.

» Motivation from condensed matter to study gravitational
systems [AdS, hairy black holes, etc]
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Intro2: RN black hole

Gravitational solutions < states of the field theory, e.g. pure AdS
is the vacuum of the CFT.

Finite T: BH solution; finite p charged BH

d 2
ds? = *f(r)dt2+L+r2(dX2+dy2)
f(r)
r=0 f=r2_ Mo ,ujrﬁ
4 r2

A:u(lf@)dt

r

;

boundary
r = co
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Compute conductivity at non-zero charge density: J =cE

Turn on §A, = a,(r)e™™t, couples to §gs (but can be eliminated)
ax(r) = a0 + %a&l) +... Ey = iwa) (J) = 2
(1)
dx
U(w) = 7iwa)(<0)

Ingoing bc's for retarded 2-pt ay ~ (r — ro)~™/47T

For small w,



Intro3: Conductivity cont'd

Consequence of translational invariance of the background.



Intro3: Conductivity cont'd

Consequence of translational invariance of the background.

Finite p, apply a constant E, charge carriers can't dissipate p.



Intro3: Conductivity cont'd

Consequence of translational invariance of the background.
Finite p, apply a constant E, charge carriers can't dissipate p.

In more realistic situations, p dissipates due to break translation
invariance (lattice).



Intro3: Conductivity cont'd

Consequence of translational invariance of the background.
Finite p, apply a constant E, charge carriers can't dissipate p.

In more realistic situations, p dissipates due to break translation
invariance (lattice).

Studied in holography introducing a hol. lattice [Horowitz, Santos,
Tong] and breaking diff inv in the bulk (MG) [Vegh]



Intro3: Conductivity cont'd

Consequence of translational invariance of the background.
Finite p, apply a constant E, charge carriers can't dissipate p.

In more realistic situations, p dissipates due to break translation
invariance (lattice).

Studied in holography introducing a hol. lattice [Horowitz, Santos,
Tong] and breaking diff inv in the bulk (MG) [Vegh]

Goal here: present a simple model of momentum relaxation in the
holographic setup.
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Theory with scalar operator O and U(1) current
V(T = vipl0(0) + Fi(J;)

Basic idea: turn on sources (provided vevs are non-zero)

Holographically, consider g, v, A,,

dp?
ds® = pp + = p (géo) + ...+ p Tij 4 ... )dx! dxd

A= (A(.O) 4 p92A 4 )dX

0 7
¥ = p® w” N e
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Ward identity cont'd

Then, the variation of the on-shell action reads
55, — / /g [ Tiy5g® + (0)50!® + ()50
e - + (06w + (J1)6

(Thocmy (O oy (J) x A
Ward identity is asympt. eom (bulk diff inv)

Generically, spatially dependent sources introduce explicit
anisotropies and non-homogeneities (solve PDE’s)

Take 1 o< x with mi = 0 makes bulk geometry homogeneous, can
arrange more than one scalar to have isotropy. Makes use of the
shift symmetry ¥; — ¥ + ¢;.
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0= M g 22( 1/’/) 4 X

I
Take the ansatz

dr? d—2 |
L—&—r2(53bdx‘3dxb, A=pu <1 _lo dt, 1 = a,x?,
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The model

d—1

50_/F[R 2/\—32(81/;,) iF2] d?+ix

Take the ansatz

dr? d—2
ds® = —f(r)dt2+Trr)+r25abande, A= (1 - ri dt, ;= apx?,

Find the solution [Bardoux, Caldarelli, Charmousis, '12]

o mo  (d=2rs 2(d=2) S -
2(d—2)  ri 27" 2(d—1) 2@ d—1

provided
523 . &b = 042531;, Va, b. (1)



The model cont'd

2

2 d—
I ,
+r28.dx%dx?,  A=p <1 - rf;_2> dt, = anpx?,

dr

ds® = —f(r)dt*+ 5

Geometry is isotropic and homogenous but solution is not.



The model cont'd

2 2 dr? 2 a g b rSFQ e a
ds® = —f(r)dt +m+r dapdx?dx®, A=p 17@ dt, ) = ax?,

Geometry is isotropic and homogenous but solution is not.

Use rotational residual symmetry to set oy, = &, Solution is
fully characterized by y, o and

2 _ 2,2
Tt (g d=2707Y
47 2/’0 2(d—1)r0



The model cont'd

2

2 d—
r ‘
+r28,pdx?dx?, A= 1 <1 - :1_2> dt, 1 = ax?,

dr

ds® = —f(r)dt*+ 5

Geometry is isotropic and homogenous but solution is not.

Use rotational residual symmetry to set oy, = &, Solution is
fully characterized by y, o and

2 _ 2,2
Tt (g d=2707Y
47 2/’0 2(d—1)r0

Mechanism for dissipation? solution has (O;) = 0 and F,-j(-o) =0, so
Vi(T¥) = 0. Linearized fluctuations

0:6(Ps) = aa6(0)) + SFL) (Jg) (2)



Holographic Q-lattices

Similar construction by [Donos+Gauntlett], which uses U(1) of a
complex scalar, ¢ — e**¢.

Break translational invariance by ¢ = e (r), but T, is indep.
of x so the problem reduces to ODE's.
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DC conductivity

Key idea: massless mode = conserved quantity, express the DC
conductivity in terms of ry.

6A, = e “ta (r), 0gx = € “Thu(r) v = e “x(r)

2 (7 ) () =3
X X X
One finds det M = 0. Diagonalize mass matrix by A1, As.

M +w?X\; =0 = MN=0 at w=0

.-
oDc(r) = lim UD(:(OO) = 0pC

w—0 fWA1

r

can show op(r) = 0! So

2
opc = opc(ro) = r§ 3 <1 + (d — 2)2Z2> .
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Optical conductivity

Can also compute 0 = o(w) numerically. Drude physics for small w

0DC

o= —"
1— jwr

R
Imo

8.0 02 04 06 08 10 12 14 _6.0 02 04 06 08 10 12 14
w/p w/p

(a) (b)

Figure : The different curves correspond to, from top to bottom,
a/pw=0.1,1.0,2.0.
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Massive gravity

Break bulk diffeo inv. to break translational inv. on OM.

Generically yields ghosts, but [de Rham, Gabadadze, Tolley, '10]
argues that it's ok

o= [ V78 {R ] (o TS +an#9e}] dx.

KHOK®, = gl f, = diag(0,0, F, F)

ds®> = —f/\//(;(r)dt2+

+r?(dx?+dy?), A=ypu (1 — r—f) dt,

fme(r)
2,2
fi — 2 2 70
me(r) = r"—mj r 4r2”°

same as our model with o? = 2m§.

MG _ _ours
Drude at small w, o7 = 03¢
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Consider shear modes ~ e~ @t +kx(r)
08rys 08ty, 08xy, OAy
Can find master fields

5gry ~ q)i? q)g_? 5gty ~ q)O, 6gxy ~ q)]_, 5Ay ~ Cbi

2,2 2,2
2 r'w 5 KrG . pro B
ri(foL) + ( ra ke — 2 + rCi) oL =0,

1 2 s/ w?
W(f for) t

f , kw
b0 + rj(C+f¢+ + C_rCD_) — m

®; =0,

$; =0.
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In our model: 1 = ax, 1 = ay
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2 2 2,2
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Massive gravity cont'd

In our model: 1 = ax, 1 = ay

(5gry7 6gty7 5ng7 6Ay7 6w2

Introduce master fields as before and get

2 2 2,2
20 ey’ rw 2 My MO
fo — k* — — (NS

f(i)+<f r2+rCﬁ:>i 0,

1 5 w? (k2 +a?)
7r2f(l’ fq)/l), + (f2 - 7[’2)( q)l = 0,

f kw
q>0 + ﬁ(C+rq>+ + C,I’d),), — mq)l =0.

Same equation for ® so the electrical conductivities coincide!

The thermal conductivity ~ dgy, differs.
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Conclusions

» model of momentum relaxation with a diff invariant £ and
simple matter content. diff invariance broken by bc's.

> relevant BH is analytic and ¢ can be computed using ODE's.

> (jj) = (/) mc, which suggests that MG is not related to lattice
physics. Intuition for this agreement? Stuckelberg fields.

» embedding in string theory?

> include HSC, spatially modulated phases, ...



