A simple holographic model of momentum relaxation

Tomás Andrade (Durham U)

January 28th, 2014, Oxford
in collaboration with Ben Withers (Southampton)

"Hasn't it occurred to you to suspect that behind that Mondrian could a Viera da Silva reality start?" Hopscotch, J. Cortázar.

Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.
Gravity in M with AdS boundary conditions
I
Field Theory that lives on ∂M

Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.

Gravity in M with AdS boundary conditions

$$
\Uparrow
$$

Field Theory that lives on ∂M

- Access to strongly coupled regime, include T, ρ, etc

Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.

Gravity in M with AdS boundary conditions

$$
\Uparrow
$$

Field Theory that lives on ∂M

- Access to strongly coupled regime, include T, ρ, etc
- Limitations: it's a conjecture, large N limit, only generic features (bottom-up), hard to implement (top-down).

Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.
Gravity in M with AdS boundary conditions

Field Theory that lives on ∂M

- Access to strongly coupled regime, include T, ρ, etc
- Limitations: it's a conjecture, large N limit, only generic features (bottom-up), hard to implement (top-down).
- examples: superconductors, QGP, non-relativistic FT, etc.

Intro1: AdS/CMT

Use AdS/CFT to understand condensed matter systems.
Gravity in M with AdS boundary conditions

Field Theory that lives on ∂M

- Access to strongly coupled regime, include T, ρ, etc
- Limitations: it's a conjecture, large N limit, only generic features (bottom-up), hard to implement (top-down).
- examples: superconductors, QGP, non-relativistic FT, etc.
- Motivation from condensed matter to study gravitational systems [AdS, hairy black holes, etc]

Intro2: RN black hole

Gravitational solutions \Leftrightarrow states of the field theory, e.g. pure AdS is the vacuum of the CFT.

Intro2: RN black hole

Gravitational solutions \Leftrightarrow states of the field theory, e.g. pure AdS is the vacuum of the CFT.

Finite T : BH solution; finite ρ charged BH

Intro2: RN black hole

Gravitational solutions \Leftrightarrow states of the field theory, e.g. pure AdS is the vacuum of the CFT.

Finite T : BH solution; finite ρ charged BH

Intro3: Conductivity

Compute conductivity at non-zero charge density: $J=\sigma E$

Intro3: Conductivity

Compute conductivity at non-zero charge density: $J=\sigma E$
Turn on $\delta A_{x}=a_{x}(r) e^{-i \omega t}$, couples to $\delta g_{t x}$ (but can be eliminated)

Intro3: Conductivity

Compute conductivity at non-zero charge density: $J=\sigma E$
Turn on $\delta A_{x}=a_{x}(r) e^{-i \omega t}$, couples to $\delta g_{t x}$ (but can be eliminated)

$$
\begin{gathered}
a_{x}(r)=a_{x}^{(0)}+\frac{1}{r} a_{x}^{(1)}+\ldots \quad E_{x}=i \omega a_{x}^{(0)} \quad\left\langle J^{x}\right\rangle=a_{x}^{(1)} \\
\sigma(\omega)=\frac{a_{x}^{(1)}}{i \omega a_{x}^{(0)}}
\end{gathered}
$$

Intro3: Conductivity

Compute conductivity at non-zero charge density: $J=\sigma E$
Turn on $\delta A_{x}=a_{x}(r) e^{-i \omega t}$, couples to $\delta g_{t x}$ (but can be eliminated)

$$
\begin{gathered}
a_{x}(r)=a_{x}^{(0)}+\frac{1}{r} a_{x}^{(1)}+\ldots \quad E_{x}=i \omega a_{x}^{(0)} \quad\left\langle J^{x}\right\rangle=a_{x}^{(1)} \\
\sigma(\omega)=\frac{a_{x}^{(1)}}{i \omega a_{x}^{(0)}}
\end{gathered}
$$

Ingoing bc 's for retarded 2-pt $\mathrm{a}_{x} \approx\left(r-r_{0}\right)^{-i \omega / 4 \pi T}$

Intro3: Conductivity

Compute conductivity at non-zero charge density: $J=\sigma E$
Turn on $\delta A_{x}=a_{x}(r) e^{-i \omega t}$, couples to $\delta g_{t x}$ (but can be eliminated)

$$
\begin{gathered}
a_{x}(r)=a_{x}^{(0)}+\frac{1}{r} a_{x}^{(1)}+\ldots \quad E_{x}=i \omega a_{x}^{(0)} \quad\left\langle J^{x}\right\rangle=a_{x}^{(1)} \\
\sigma(\omega)=\frac{a_{x}^{(1)}}{i \omega a_{x}^{(0)}}
\end{gathered}
$$

Ingoing bc 's for retarded 2-pt $\mathrm{a}_{x} \approx\left(r-r_{0}\right)^{-i \omega / 4 \pi T}$
For small ω,

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Intro3: Conductivity cont'd

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Consequence of translational invariance of the background.

Intro3: Conductivity cont'd

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Consequence of translational invariance of the background.
Finite ρ, apply a constant E, charge carriers can't dissipate p.

Intro3: Conductivity cont'd

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Consequence of translational invariance of the background.
Finite ρ, apply a constant E, charge carriers can't dissipate p.
In more realistic situations, p dissipates due to break translation invariance (lattice).

Intro3: Conductivity cont'd

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Consequence of translational invariance of the background.
Finite ρ, apply a constant E, charge carriers can't dissipate p.
In more realistic situations, p dissipates due to break translation invariance (lattice).

Studied in holography introducing a hol. lattice [Horowitz, Santos, Tong] and breaking diff inv in the bulk (MG) [Vegh]

Intro3: Conductivity cont'd

$$
\sigma(\omega) \approx \frac{\mu^{2}}{r_{0}}\left(\delta(\omega)+\frac{i}{\omega}\right)
$$

Consequence of translational invariance of the background.
Finite ρ, apply a constant E, charge carriers can't dissipate p.
In more realistic situations, p dissipates due to break translation invariance (lattice).

Studied in holography introducing a hol. lattice [Horowitz, Santos, Tong] and breaking diff inv in the bulk (MG) [Vegh]

Goal here: present a simple model of momentum relaxation in the holographic setup.

Outline

Outline

- Ward identity for $\nabla_{i}\left\langle T^{i j}\right\rangle$

Outline

- Ward identity for $\nabla_{i}\left\langle T^{i j}\right\rangle$
- The model

Outline

- Ward identity for $\nabla_{i}\left\langle T^{i j}\right\rangle$
- The model
- (Finite) DC conductivity

Outline

- Ward identity for $\nabla_{i}\left\langle T^{i j}\right\rangle$
- The model
- (Finite) DC conductivity
- Comparison with Massive Gravity

Outline

- Ward identity for $\nabla_{i}\left\langle T^{i j}\right\rangle$
- The model
- (Finite) DC conductivity
- Comparison with Massive Gravity
- Conclusions

Ward identity

Theory with scalar operator O and $U(1)$ current

$$
\nabla_{i}\left\langle T^{i j}\right\rangle=\nabla^{j} \psi^{(0)}\langle O\rangle+F^{i j}\left\langle J_{i}\right\rangle
$$

Basic idea: turn on sources (provided vevs are non-zero)

Ward identity

Theory with scalar operator O and $U(1)$ current

$$
\nabla_{i}\left\langle T^{i j}\right\rangle=\nabla^{j} \psi^{(0)}\langle O\rangle+F^{i j}\left\langle J_{i}\right\rangle
$$

Basic idea: turn on sources (provided vevs are non-zero)
Holographically, consider $g_{\mu \nu}, \psi_{l}, A_{\mu}$,

$$
\begin{gathered}
d s^{2}=\frac{d \rho^{2}}{\rho^{2}}+\frac{1}{\rho^{2}}\left(g_{i j}^{(0)}+\ldots+\rho^{d} \tau_{i j}+\ldots\right) d x^{i} d x^{j} \\
A=\left(A_{i}^{(0)}+\ldots+\rho^{d-2} \tilde{A}_{i}+\ldots\right) d x^{i} \\
\psi_{I}=\rho^{\Delta_{-}} \psi_{l}^{(0)}+\ldots+\rho^{\Delta_{+}} \tilde{\psi}_{I}+\ldots
\end{gathered}
$$

Ward identity cont'd

Then, the variation of the on-shell action reads

$$
\delta S_{r e n}=\int_{\partial M} \sqrt{-g^{(0)}}\left[\frac{1}{2}\left\langle T^{i j}\right\rangle \delta g_{i j}^{(0)}+\left\langle O_{I}\right\rangle \delta \psi_{l}^{(0)}+\left\langle J^{i}\right\rangle \delta A_{i}^{(0)}\right]
$$

Ward identity cont'd

Then, the variation of the on-shell action reads

$$
\begin{gathered}
\delta S_{r e n}=\int_{\partial M} \sqrt{-g^{(0)}}\left[\frac{1}{2}\left\langle T^{i j}\right\rangle \delta g_{i j}^{(0)}+\left\langle O_{l}\right\rangle \delta \psi_{I}^{(0)}+\left\langle J^{i}\right\rangle \delta A_{i}^{(0)}\right] \\
\left\langle T^{i j}\right\rangle \propto \tau_{i j} \quad\left\langle O_{I}\right\rangle \propto \tilde{\psi}_{I} \quad\left\langle J^{i}\right\rangle \propto \tilde{A}_{i}
\end{gathered}
$$

Ward identity is asympt. eom (bulk diff inv)

Ward identity cont'd

Then, the variation of the on-shell action reads

$$
\begin{gathered}
\delta S_{r e n}=\int_{\partial M} \sqrt{-g^{(0)}}\left[\frac{1}{2}\left\langle T^{i j}\right\rangle \delta g_{i j}^{(0)}+\left\langle O_{l}\right\rangle \delta \psi_{l}^{(0)}+\left\langle J^{i}\right\rangle \delta A_{i}^{(0)}\right] \\
\left\langle T^{i j}\right\rangle \propto \tau_{i j} \quad\left\langle O_{l}\right\rangle \propto \tilde{\psi}_{l} \quad\left\langle J^{i}\right\rangle \propto \tilde{A}_{i}
\end{gathered}
$$

Ward identity is asympt. eom (bulk diff inv)
Generically, spatially dependent sources introduce explicit anisotropies and non-homogeneities (solve PDE's)

Ward identity cont'd

Then, the variation of the on-shell action reads

$$
\begin{gathered}
\delta S_{r e n}=\int_{\partial M} \sqrt{-g^{(0)}}\left[\frac{1}{2}\left\langle T^{i j}\right\rangle \delta g_{i j}^{(0)}+\left\langle O_{l}\right\rangle \delta \psi_{l}^{(0)}+\left\langle J^{i}\right\rangle \delta A_{i}^{(0)}\right] \\
\left\langle T^{i j}\right\rangle \propto \tau_{i j} \quad\left\langle O_{l}\right\rangle \propto \tilde{\psi}_{l} \quad\left\langle J^{i}\right\rangle \propto \tilde{A}_{i}
\end{gathered}
$$

Ward identity is asympt. eom (bulk diff inv)
Generically, spatially dependent sources introduce explicit anisotropies and non-homogeneities (solve PDE's)

Take $\psi \propto x$ with $m_{\psi}^{2}=0$ makes bulk geometry homogeneous, can arrange more than one scalar to have isotropy. Makes use of the shift symmetry $\psi_{l} \rightarrow \psi_{l}+c_{l}$.

The model

$$
S_{0}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{2} \sum_{l}^{d-1}\left(\partial \psi_{l}\right)^{2}-\frac{1}{4} F^{2}\right] d^{d+1} x
$$

The model

$$
S_{0}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{2} \sum_{l}^{d-1}\left(\partial \psi_{l}\right)^{2}-\frac{1}{4} F^{2}\right] d^{d+1} x
$$

Take the ansatz

$$
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} \delta_{a b} d x^{a} d x^{b}, \quad A=\mu\left(1-\frac{r_{0}^{d-2}}{r^{d-2}}\right) d t, \quad \psi_{I}=\alpha_{l a} x^{a},
$$

The model

$$
S_{0}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{2} \sum_{l}^{d-1}\left(\partial \psi_{l}\right)^{2}-\frac{1}{4} F^{2}\right] d^{d+1} x
$$

Take the ansatz
$d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} \delta_{a b} d x^{a} d x^{b}, \quad A=\mu\left(1-\frac{r_{0}^{d-2}}{r^{d-2}}\right) d t, \quad \psi_{I}=\alpha_{l a} x^{a}$,
Find the solution [Bardoux, Caldarelli, Charmousis, '12]

$$
f=r^{2}-\frac{\alpha^{2}}{2(d-2)}-\frac{m_{0}}{r^{d-2}}+\frac{(d-2) \mu^{2}}{2(d-1)} \frac{r_{0}^{2(d-2)}}{r^{2(d-2)}}, \quad \alpha^{2} \equiv \frac{1}{d-1} \sum_{a=1}^{d-1} \vec{\alpha}_{a} \cdot \vec{\alpha}_{a}
$$

provided

$$
\begin{equation*}
\vec{\alpha}_{a} \cdot \vec{\alpha}_{b}=\alpha^{2} \delta_{a b} \quad \forall a, b . \tag{1}
\end{equation*}
$$

The model cont'd

$$
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} \delta_{a b} d x^{a} d x^{b}, \quad A=\mu\left(1-\frac{r_{0}^{d-2}}{r^{d-2}}\right) d t, \quad \psi_{l}=\alpha_{l a} x^{a},
$$

Geometry is isotropic and homogenous but solution is not.

The model cont'd

$d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} \delta_{a b} d x^{a} d x^{b}, \quad A=\mu\left(1-\frac{r_{0}^{d-2}}{r^{d-2}}\right) d t, \quad \psi_{I}=\alpha_{l a} x^{a}$,
Geometry is isotropic and homogenous but solution is not.
Use rotational residual symmetry to set $\alpha_{l a}=\delta_{l a} \alpha$. Solution is fully characterized by μ, α and

$$
T=\frac{1}{4 \pi}\left(d r_{0}-\frac{\alpha^{2}}{2 r_{0}}-\frac{(d-2)^{2} \mu^{2}}{2(d-1) r_{0}}\right) .
$$

The model cont'd

$d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} \delta_{a b} d x^{a} d x^{b}, \quad A=\mu\left(1-\frac{r_{0}^{d-2}}{r^{d-2}}\right) d t, \quad \psi_{I}=\alpha_{l a} x^{a}$,
Geometry is isotropic and homogenous but solution is not.
Use rotational residual symmetry to set $\alpha_{l a}=\delta_{l a} \alpha$. Solution is fully characterized by μ, α and

$$
T=\frac{1}{4 \pi}\left(d r_{0}-\frac{\alpha^{2}}{2 r_{0}}-\frac{(d-2)^{2} \mu^{2}}{2(d-1) r_{0}}\right) .
$$

Mechanism for dissipation? solution has $\left\langle O_{I}\right\rangle=0$ and $F_{i j}^{(0)}=0$, so $\nabla_{i}\left\langle T^{i j}\right\rangle=0$. Linearized fluctuations

$$
\begin{equation*}
\partial_{t} \delta\left\langle P_{a}\right\rangle=\alpha_{a l} \delta\left\langle O_{l}\right\rangle+\delta F_{a t}^{(0)}\left\langle J_{t}\right\rangle \tag{2}
\end{equation*}
$$

Holographic Q-lattices

Similar construction by [Donos+Gauntlett], which uses $U(1)$ of a complex scalar, $\phi \rightarrow e^{i k x} \phi$.

Break translational invariance by $\phi=e^{i k x} \varphi(r)$, but $T_{\mu \nu}$ is indep. of x so the problem reduces to ODE's.

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

$$
\delta A_{x}=e^{-i \omega t} a_{x}(r), \quad \delta g_{t x}=e^{-i \omega t} h_{t x}(r) \quad \delta \psi_{1}=e^{-i \omega t} \chi(r)
$$

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

$$
\begin{gathered}
\delta A_{x}=e^{-i \omega t} a_{x}(r), \quad \delta g_{t x}=e^{-i \omega t} h_{t x}(r) \quad \delta \psi_{1}=e^{-i \omega t} \chi(r) \\
L_{2}\binom{a_{x}}{\chi^{\prime}}+\omega^{2}\binom{a_{x}}{\chi^{\prime}}=M\binom{a_{x}}{\chi^{\prime}}
\end{gathered}
$$

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

$$
\begin{gathered}
\delta A_{x}=e^{-i \omega t} a_{x}(r), \quad \delta g_{t x}=e^{-i \omega t} h_{t x}(r) \quad \delta \psi_{1}=e^{-i \omega t} \chi(r) \\
L_{2}\binom{a_{x}}{\chi^{\prime}}+\omega^{2}\binom{a_{x}}{\chi^{\prime}}=M\binom{a_{x}}{\chi^{\prime}}
\end{gathered}
$$

One finds $\operatorname{det} M=0$. Diagonalize mass matrix by λ_{1}, λ_{2}.

$$
\Pi^{\prime}+\omega^{2} \lambda_{1}=0 \quad \Rightarrow \quad \Pi^{\prime}=0 \quad \text { at } \quad \omega=0
$$

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

$$
\begin{gathered}
\delta A_{x}=e^{-i \omega t} a_{x}(r), \quad \delta g_{t x}=e^{-i \omega t} h_{t x}(r) \quad \delta \psi_{1}=e^{-i \omega t} \chi(r) \\
L_{2}\binom{a_{x}}{\chi^{\prime}}+\omega^{2}\binom{a_{x}}{\chi^{\prime}}=M\binom{a_{x}}{\chi^{\prime}}
\end{gathered}
$$

One finds $\operatorname{det} M=0$. Diagonalize mass matrix by λ_{1}, λ_{2}.

$$
\begin{array}{cc}
\Pi^{\prime}+\omega^{2} \lambda_{1}=0 \quad \Rightarrow & \Pi^{\prime}=0 \quad \text { at } \quad \omega=0 \\
\sigma_{D C}(r)=\left.\lim _{\omega \rightarrow 0} \frac{-\Pi}{i \omega \lambda_{1}}\right|_{r} \quad \sigma_{D C}(\infty)=\sigma_{D C}
\end{array}
$$

DC conductivity

Key idea: massless mode \Rightarrow conserved quantity, express the DC conductivity in terms of r_{0}.

$$
\begin{gathered}
\delta A_{x}=e^{-i \omega t} a_{x}(r), \quad \delta g_{t x}=e^{-i \omega t} h_{t x}(r) \quad \delta \psi_{1}=e^{-i \omega t} \chi(r) \\
L_{2}\binom{a_{x}}{\chi^{\prime}}+\omega^{2}\binom{a_{x}}{\chi^{\prime}}=M\binom{a_{x}}{\chi^{\prime}}
\end{gathered}
$$

One finds $\operatorname{det} M=0$. Diagonalize mass matrix by λ_{1}, λ_{2}.

$$
\begin{array}{cc}
\Pi^{\prime}+\omega^{2} \lambda_{1}=0 \quad \Rightarrow \quad \Pi^{\prime}=0 \quad \text { at } \quad \omega=0 \\
\sigma_{D C}(r)=\left.\lim _{\omega \rightarrow 0} \frac{-\Pi}{i \omega \lambda_{1}}\right|_{r} \quad \sigma_{D C}(\infty)=\sigma_{D C}
\end{array}
$$

can show $\sigma_{D C}^{\prime}(r)=0$! So

$$
\sigma_{D C}=\sigma_{D C}\left(r_{0}\right)=r_{0}^{d-3}\left(1+(d-2)^{2} \frac{\mu^{2}}{\alpha^{2}}\right) .
$$

Optical conductivity

Can also compute $\sigma=\sigma(\omega)$ numerically.

Optical conductivity

Can also compute $\sigma=\sigma(\omega)$ numerically. Drude physics for small ω

$$
\sigma=\frac{\sigma_{D C}}{1-i \omega \tau}
$$

(a)

(b)

Figure: The different curves correspond to, from top to bottom, $\alpha / \mu=0.1,1.0,2.0$.

Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.

Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.
Generically yields ghosts, but [de Rham, Gabadadze, Tolley, '10] argues that it's ok

$$
\begin{gathered}
I_{M G}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}+\beta m^{2}\left([\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right)+\alpha m^{2}[\mathcal{K}]\right] d^{4} x \\
\mathcal{K}^{\mu}{ }_{\alpha} \mathcal{K}^{\alpha}{ }_{\nu}=g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\operatorname{diag}(0,0, F, F)
\end{gathered}
$$

Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.
Generically yields ghosts, but [de Rham, Gabadadze, Tolley, '10] argues that it's ok

$$
\begin{gathered}
I_{M G}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}+\beta m^{2}\left([\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right)+\alpha m^{2}[\mathcal{K}]\right] d^{4} x . \\
\mathcal{K}^{\mu}{ }_{\alpha} \mathcal{K}^{\alpha}{ }_{\nu}=g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\operatorname{diag}(0,0, F, F) \\
d s^{2}=-f_{M G}(r) d t^{2}+\frac{d r^{2}}{f_{M G}(r)}+r^{2}\left(d x^{2}+d y^{2}\right), \quad A=\mu\left(1-\frac{r_{0}}{r}\right) d t \\
f_{M G}(r)=r^{2}-m_{\beta}^{2}-\frac{m_{0}}{r}+\frac{\mu^{2} r_{0}^{2}}{4 r^{2}}
\end{gathered}
$$

Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.
Generically yields ghosts, but [de Rham, Gabadadze, Tolley, '10] argues that it's ok

$$
\begin{gathered}
I_{M G}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}+\beta m^{2}\left([\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right)+\alpha m^{2}[\mathcal{K}]\right] d^{4} x . \\
\mathcal{K}^{\mu}{ }_{\alpha} \mathcal{K}^{\alpha}{ }_{\nu}=g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\operatorname{diag}(0,0, F, F) \\
d s^{2}=-f_{M G}(r) d t^{2}+\frac{d r^{2}}{f_{M G}(r)}+r^{2}\left(d x^{2}+d y^{2}\right), \quad A=\mu\left(1-\frac{r_{0}}{r}\right) d t \\
f_{M G}(r)=r^{2}-m_{\beta}^{2}-\frac{m_{0}}{r}+\frac{\mu^{2} r_{0}^{2}}{4 r^{2}}
\end{gathered}
$$

same as our model with $\alpha^{2}=2 m_{\beta}^{2}$.

Massive gravity

Break bulk diffeo inv. to break translational inv. on ∂M.
Generically yields ghosts, but [de Rham, Gabadadze, Tolley, '10] argues that it's ok

$$
\begin{gathered}
I_{M G}=\int_{M} \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}+\beta m^{2}\left([\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right)+\alpha m^{2}[\mathcal{K}]\right] d^{4} x . \\
\mathcal{K}^{\mu}{ }_{\alpha} \mathcal{K}^{\alpha}{ }_{\nu}=g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\operatorname{diag}(0,0, F, F) \\
d s^{2}=-f_{M G}(r) d t^{2}+\frac{d r^{2}}{f_{M G}(r)}+r^{2}\left(d x^{2}+d y^{2}\right), \quad A=\mu\left(1-\frac{r_{0}}{r}\right) d t \\
f_{M G}(r)=r^{2}-m_{\beta}^{2}-\frac{m_{0}}{r}+\frac{\mu^{2} r_{0}^{2}}{4 r^{2}}
\end{gathered}
$$

same as our model with $\alpha^{2}=2 m_{\beta}^{2}$.
Drude at small $\omega, \sigma_{D C}^{M G}=\sigma_{D C}^{\text {ours }}$

Massive gravity cont'd

Consider shear modes $\sim e^{-i \omega t+i k x} \Phi(r)$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}
$$

Massive gravity cont'd

Consider shear modes $\sim e^{-i \omega t+i k x} \Phi(r)$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}
$$

Can find master fields

$$
\delta g_{r y} \sim \Phi_{ \pm}, \Phi_{1}^{\prime}, \quad \delta g_{t y} \sim \Phi_{0}, \quad \delta g_{x y} \sim \Phi_{1}, \quad \delta A_{y} \sim \Phi_{ \pm}
$$

Massive gravity cont'd

Consider shear modes $\sim e^{-i \omega t+i k x} \Phi(r)$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}
$$

Can find master fields

$$
\begin{aligned}
\delta g_{r y} \sim \Phi_{ \pm}, \Phi_{1}^{\prime}, \quad \delta g_{t y} \sim \Phi_{0}, \quad \delta g_{x y} \sim \Phi_{1}, \quad \delta A_{y} & \sim \Phi_{ \pm} \\
r^{2}\left(f \Phi_{ \pm}^{\prime}\right)^{\prime}+\left(\frac{r^{2} \omega^{2}}{f}-k^{2}-\frac{\mu^{2} r_{0}^{2}}{r^{2}}+\frac{\mu r_{0}}{r} c_{ \pm}\right) \Phi_{ \pm} & =0 \\
\frac{1}{r^{2} f}\left(r^{2} f \Phi_{1}^{\prime}\right)^{\prime}+\frac{\omega^{2}}{f^{2}} \Phi_{1} & =0 \\
\Phi_{0}+\frac{f}{r^{2}}\left(c_{+} r \Phi_{+}+c_{-} r \Phi_{-}\right)^{\prime}-\frac{k \omega}{k^{2}+2 m_{\beta}^{2}} \Phi_{1} & =0
\end{aligned}
$$

Massive gravity cont'd

In our model: $\psi_{1}=\alpha x, \psi_{2}=\alpha y$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}, \quad \delta \psi_{2}
$$

Massive gravity cont'd

In our model: $\psi_{1}=\alpha x, \psi_{2}=\alpha y$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}, \quad \delta \psi_{2}
$$

Introduce master fields as before and get

$$
\begin{aligned}
r^{2}\left(f \Phi_{ \pm}^{\prime}\right)^{\prime}+\left(\frac{r^{2} \omega^{2}}{f}-k^{2}-\frac{\mu^{2} r_{0}^{2}}{r^{2}}+\frac{\mu r_{0}}{r} c_{ \pm}\right) \Phi_{ \pm} & =0 \\
\frac{1}{r^{2} f}\left(r^{2} f \Phi_{1}^{\prime}\right)^{\prime}+\left(\frac{\omega^{2}}{f^{2}}-\frac{\left(k^{2}+\alpha^{2}\right)}{r^{2} f}\right) \Phi_{1} & =0 \\
\Phi_{0}+\frac{f}{r^{2}}\left(c_{+} r \Phi_{+}+c_{-} r \Phi_{-}\right)^{\prime}-\frac{k \omega}{k^{2}+\alpha^{2}} \Phi_{1} & =0
\end{aligned}
$$

Massive gravity cont'd

In our model: $\psi_{1}=\alpha x, \psi_{2}=\alpha y$

$$
\delta g_{r y}, \quad \delta g_{t y}, \quad \delta g_{x y}, \quad \delta A_{y}, \quad \delta \psi_{2}
$$

Introduce master fields as before and get

$$
\begin{aligned}
r^{2}\left(f \Phi_{ \pm}^{\prime}\right)^{\prime}+\left(\frac{r^{2} \omega^{2}}{f}-k^{2}-\frac{\mu^{2} r_{0}^{2}}{r^{2}}+\frac{\mu r_{0}}{r} c_{ \pm}\right) \Phi_{ \pm} & =0 \\
\frac{1}{r^{2} f}\left(r^{2} f \Phi_{1}^{\prime}\right)^{\prime}+\left(\frac{\omega^{2}}{f^{2}}-\frac{\left(k^{2}+\alpha^{2}\right)}{r^{2} f}\right) \Phi_{1} & =0 \\
\Phi_{0}+\frac{f}{r^{2}}\left(c_{+} r \Phi_{+}+c_{-} r \Phi_{-}\right)^{\prime}-\frac{k \omega}{k^{2}+\alpha^{2}} \Phi_{1} & =0
\end{aligned}
$$

Same equation for $\Phi_{ \pm}$so the electrical conductivities coincide!
The thermal conductivity $\sim \delta g_{t y}$ differs.

Conclusions

Conclusions

- model of momentum relaxation with a diff invariant \mathcal{L} and simple matter content. diff invariance broken by bc's.

Conclusions

- model of momentum relaxation with a diff invariant \mathcal{L} and simple matter content. diff invariance broken by bc's.
- relevant BH is analytic and σ can be computed using ODE's.

Conclusions

- model of momentum relaxation with a diff invariant \mathcal{L} and simple matter content. diff invariance broken by bc's.
- relevant BH is analytic and σ can be computed using ODE's.
- $\langle j j\rangle=\langle j j\rangle_{M G}$, which suggests that MG is not related to lattice physics. Intuition for this agreement? Stuckelberg fields.

Conclusions

- model of momentum relaxation with a diff invariant \mathcal{L} and simple matter content. diff invariance broken by bc's.
- relevant BH is analytic and σ can be computed using ODE's.
- $\langle j j\rangle=\langle j j\rangle_{M G}$, which suggests that MG is not related to lattice physics. Intuition for this agreement? Stuckelberg fields.
- embedding in string theory?

Conclusions

- model of momentum relaxation with a diff invariant \mathcal{L} and simple matter content. diff invariance broken by bc's.
- relevant BH is analytic and σ can be computed using ODE's.
- $\langle j j\rangle=\langle j j\rangle_{M G}$, which suggests that MG is not related to lattice physics. Intuition for this agreement? Stuckelberg fields.
- embedding in string theory?
- include HSC, spatially modulated phases, ...

