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Introduction to Entanglement Entropy:

Classical statistical entropy:

Generalization to quantum mechanics:

Density matrix:

Von Neumann entropy:

pure state

mixed state

thermal system



  

Entanglement entropy:

Decompose system into two pieces A and B

Reduced density matrix:

A B

(trace over states in B)

(trace over remaining states A)

Full Hilbert space

Properties (at zero temperature):

Complementarity:

Subadditivity:



  

The      expansion of entanglement entropy takes specific form

d=1+2:

● Constant contribution,      , gives 
measure of long range entanglement

● Sources of long range entanglement
● topological order
● massless states

(assuming rotational and parity symmetry) Grover, Turner, Vishwanath: 1108.4038

● F-theorem: evidence from entanglement entropy
Casini, Huerta: 1202.5650

● In the case

1+2-dimensions:



  

1+1-dimensional CFTs:

● Conformal anomaly

● Entanglement entropy – integrate out a segment of length 

central charge

● c-theorem: c decreases monotonically along RG-flows
Zamolodchikov: 
JETP Lett. 43, 730-732 (1986)

● Can interpret c as a measure of the number of degrees of freedom

short distance cutoff

Holzhey, Larsen, Wilczek: hep-th/9403108
Calabrese, Cardy: 0905:4013



  

1+3-dimensional CFTs:

● Conformal anomaly

● Entanglement entropy – integrate out a volume with surface area 

central charges

● a-theorem: a decreases monotonically along RG-flows

Komargodski, Schwimmer: 1107.3987

Euler characteristic Weyl invariant

Solodukhin: 0802.3117



  

impose conformally invariant 
boundary conditions, B

● Interpreted as a “ground state 
degeneracy”,      , associated with 
boundary

● Can view boundary conditions as a boundary 
state        (by exchanging space and time)

● Boundary entropy

● g-theorem: the value of        must decrease under boundary RG-flow

Cardy: Nucl Phys B324 581 
Affleck, Ludwig: Phys. Rev. Lett. 67 161

Boundary CFT in 1+1-dimensions:

● When system has a boundary, there is a 
novel contribution to partition function, 
which is independent of the size of the 
system

● Degeneracy given by overlap of boundary state 
and vacuum state

Friedan, Konechny: hep-th/0312197



  

● Example: 2D Ising model at critical point (free fermions)

two invariant boundary conditions

Free spins: Fixed spins:

● Can also introduce an entropy associated with a defect or interface

● Related to boundary entropy by folding trick



  

(Alternatively, you can 
compute      with free 
boundary conditions)

Can use entanglement entropy to compute boundary entropy



  

How to generalize boundary entropy to higher dimensions?

● Cannot swap space and time to interpret boundary conditions as a 
state

● We can try to use entanglement entropy

● Do these quantities depend on the regularization scheme?
● Is there an analogue of the g-theorem?
● Is there shape dependence?

Difficult to study entanglement entropy analytically...

Make use of holography



  

AdS/CFT:

open string

closed string

horizon

D3-brane throat:

Probe D3-brane:

closed string



  

●           has a 1+3d boundary at z=0 and the “field theory lives on the boundary”

Closed strings propagating on                  

N=4 SYM in 4-dimensions

● Parameter map:

● Parameters:

Metric on                      :

● Parameters:



  

AdS/CFT correspondence:

(Closed strings propagating on                  ) = (N=4 SYM in 4-dimensions)

● gravity approximation 

● scalar degree of freedom

● scalar mass

● dilaton

● axion

● strong 't Hooft coupling

● scalar operator

● operator dimension

● Lagrangian

● topological term

Duality map

● Symmetry map:

gravity gauge theory

conformal symmetry of N=4 SYMisometry of

● partition function

● generating functional

● fundamental string

● partition function

● generating functional

● Wilson loop



  

Holographic Entanglement Entropy:

Ryu and Takayangi proposal:

Field theory Holographic dual

Entanglement entropy is given by the area of a minimal surface (co-
dimension-2) whose boundary is fixed to be the entangling surface

Newton's constant

Area of minimal surface

Ryu, Takayangi – hep-th/0603001

Inspired by Bekenstein-Hawking entropy 
formula for black holes:

Casini, Huerta, Myers – 1102.0040
Lewkowycz, Maldacena – 1304.4926

Evidence for conjecture given in:



  

Example:                   

Perturbative solution:

● Consider spherical entangling surface
● Minimal area whose boundary is 

entangling surface
● Parameterize by   
● Problem has spherical symmetry
● Need to determine

Minimize area:

Focus on         :



  

Extract central charge, agrees with 
field theory computation!

● Area is divergent
● Introduce cutoff surface as a regulator
● Natural cutoff surface defined by 

Example:                   



  

Generalization to interfaces, defects and boundaries:

Strategy: ● Consider spherical entangling surface
● Universal solution which minimizes area
● Cutoff prescription
● Determine universal terms

boundary

defect/interface

defect/interface

bulk region

defect/interface region

bulk region

boundary

boundary region

bulk region

Field theory

Gravity dual



  

          slicing of         

Slicing coordinates:

In general a conformal interface will reduce the symmetry:

boundary
boundary is decomposed 
into three pieces:

left:
middle:
right:



  

General structure:

boundary

1+2-dim region

1+3-dim region 1+3-dim region

(FG-patch) (FG-patch)

          slicing         

● Interface reduces conformal symmetry:

interface/defect

● Metric is required to be asymptotically           as                 



  

● Parameterize surface by: 
● For spherical entangling surface, problem has spherical symmetry
● Need to determine:

universal solution: integration constant

Minimal area surface:



  

Regularization:

start with divergent area

introduce 
cutoff surface

III

II

I

choice of cutoff surface is not unique!

Are there terms which do not depend on the regularization scheme?



  

start with divergent area

introduce 
cutoff surface

FG-coordinates:

● In regions I and III, impose cutoff:

● Background subtraction to define boundary/defect entropy
● Use same regularization scheme as background

● recall for                     we used
● In regions I and III we can use FG-coodinates

III

II

I

● In region II impose cutoff                  with           chosen so that cutoff 
surface is continuous 

Background subtraction:



  

Choice of cutoff surface is not unique:

two alternative regularization schemes

● simple regularization prescription:

● We show the existence of universal terms, which do not depend on the 
regularization scheme

the      are determined by FG-transformation



  

Result:

● Entanglement entropy:

● For even d, both          and       can be computed unambiguously

● For odd d,          can be computed unambiguously, while       depends on the 
choice of regulator

characterizes 1+2-
dimensional defect

characterizes 1+1-dimensional defect



  

Janus: a simple interface

Dielectric interface:

Topological interface:

Supergravity solutions constructed for both cases:
Bak, Gutperle, Hirano: hep-th/0304129 
D'Hoker, JE, Gutperle: 0705.0022



  

Janus solution:

Metric:

Dilaton:

Weierstrass function:

One parameter deformation of                    : 

Dilaton takes different values at dielectric interface

Use                 symmetry to map solution to one 
where the axion takes different values at topological interface



  

Janus: brane construction

open strings lead to massive matter

Fractional topological insulator, with 
massless edge states

Lift D7-brane out of page, integrate out 
massive fermions, flow to non-trivial infrared 
fixed point

step function

Maciejko, Qi, Karch, Zhang: 1004.3628
Hoyos-Badajoz, Jensen, Karch: 1007.3253

JE, O'Bannon, Tsatis, Wrase: 1210.0534



  

Dielectric interface: Topological interface:

Non-supersymmetric case:

Supersymmetric case:



  

D3-branes

D5-branes
NS5-branes

Near horizon region

Half-BPS defects:

Half-BPS defects can be constructed by introducing D5 and NS5 branes.



  

D5-branes: a conformal defect

3-5 strings lead to defect 
degrees of freedom

Ending D3-branes on D5-branes 
leads to a boundary CFT

Dual supergravity solutions are known
D'Hoker, JE, Gutperle: 0705.0022, 0705.0024  Aharony, Berdichevsky, Berkooz, Shamir:1106.1870

● N=4 SYM coupled to a 1+2d 
defect

● N=4 SYM coupled to a 1+2d 
boundary



  

●  Slice AdS5 x S5 into AdS4 x S2 x S2 slices which are fibered over a 2d base space Σ : 

●  5-branes preserve OSp(4|4,R) symmetry and therefore wrap AdS4 x S2 cycles

D5-branes

NS5-branes

Probe description:

 D5-branes and NS5-branes are orthogonal in the directions transverse to the D3-
branes and therefore wrap different S2's

 To preserve full SO(3) x SO(3), the transverse S2 must vanish at the probe locations

 In general 5-branes can have D3-brane charge dissolved into them

D3-branch charge determines the value of x they sit at

5-branes with 
D3-brane charge

5-branes with no 
D3-brane charge



  

Backreacted solutions:

 General solutions are parametrized by the choice of a Reimann surface Σ, possibly with 
boundary, and two functions               and             which are harmonic on Σ

Introduce auxiliary functions:

metric:

dilaton: three forms:

Regularity conditions: dual harmonic 
function

 Strategy: solve BPS equations after imposing SO(2,3) x SO(3) x SO(3) symmetry



  
Agrees with probe computation in the limit:  Jensen, O'Bannon:1309.4523 

Geometry given by:

Defect entropy:

D5-brane defect:



  

D5-brane boundary:

Geometry given by:

Defect entropy:



  

Monotonicity:

Since we are studying theories at their conformal fixed points, we cannot directly test 
monotonicity.  However we can compare two conformal fixed points, which are connected 
by an RG-flow.

● We consider moving           D5-branes out of the page
● This gives masses to          of the defect fields
● The conformal fixed point is then the same defect 

theory, but with                   defect fields

Writing the boundary entropy as                                         , we find

In 1+1 dimensions, the boundary entropy obeys a monotonicity condition under boundary 
RG-flows.  Does a similar condition hold for our 1+3 dimensional boundary entropy?

● We can also consider going onto the Higgs branch of the theory.  
● This corresponds to separating the D3-branes.   
● The conformal fixed point is the same defect theory, with a reduced gauge group.

In this case, the RG-flow is not a boundary RG-flow and we find that           can take either sign 



  

T[SU(N)]:

● Conjecture that these theories flow to non-trivial 3d CFT

● Dual supergravity solutions constructed, supporting conjecture 

Gaiotto, Witten: 0807.3720

Assel, Bachas, JE, Gomis: 1106.4253

● Agreement between CFT and gravity partition functions in large N limit

D3

D5NS5

Assel, JE, Yamazaki: 1206.2920 



  

T[SU(N)] as a defect
D3

D5NS5

reproduces:



  

Outlook:

● g-theorem?
● Are the universal terms we identified monotonic under RG-flow?
● Extend holographic proofs of c-theorem, F-theorem to the case 

of interfaces/defects/boundaries? 

● Surface superconductivity

● Holographic systems exhibit superconductivity
● Constant term indicates presence of long range entanglement 
● Do the defect/interfaces exhibit surface superconductivity?
● Relation to localized gravity... In progress with J. Indekeu

● Shape dependence?
● We worked with the special case of a spherical entangling surface
● How does the boundary entropy depend on the choice of surface?
● Do deformations of the entangling surface away from the 

defect/boundary modify the boundary entropy?
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