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Problem Set II

Elements of General Relativity (continued)

• Anti - de Sitter space

In Poincaré coordinates, the AdS metric is given by the line element

ds2 =
dz2 + dxµdx

µ

z2
, xµ =

(
x0, . . . , xd−2

)
. (1)

In this exercise, for xµ we consider the signature x · x = −x20 + x21 + . . .+ x2d−2.

Let us now consider something (naively) completely different: flat R2,d−1 spacetime
with signature (−,−,+, ...,+) and coordinates Y−1, Y0, . . . , Yd−1. Let us embed a
hyperboloid in this space-time as the set of points ~Y such that

~Y · ~Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + . . .+ Y 2
d−1 = −1 . (2)

We shall see that this hyperboloid is also a description of AdS.

1. Draw a two-dimensional sphere S2 in the three dimensional Euclidean space R3.

2. Draw the two-dimensional AdS2 in the three dimensional R2,1.

3. Verify that the following parametrization, known as the Poincaré coordinates,
solves the Hyperboloid constraint (2)

Y−1 =
1 + z2 + xµx

µ

2z

Yµ =
xµ
z
, µ = 0, . . . , d− 2 (3)

Yd−1 =
1− z2 − xµxµ

2z
.

4. Compute the line element ds2 = d~Y · d~Y in this parametrization. You should
find (1).
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5. Note that Y−1 + Yd−1 = 1
z > 0 in this parametrization. Therefore, the Poincaré

coordinates do not cover the full hyperboloid (2). Instead they cover only a
patch of it denoted as the Poincaré patch. Represent the Poincaré patch in the
two-dimensional hyperboloid drawn above. You can check your result by running

ContourPlot3D[x^2+y^2-z^2==1,{x,-4,4},{y,-4,4},{z,-4,4},ContourStyle->Blue

Mesh->False]~Show~ContourPlot3D[x^2+y^2-z^2==1.1,{x,-4,4},{y,-4,4},{z,-4,4},

RegionFunction->Function[{x,y,z},x+z<0],ContourStyle->Orange,Mesh->False]

6. Another very useful parametrization of the embedding coordinates Ya is

Y−1 = cosh ρ cos t

Y0 = cosh ρ sin t (4)

Yi = sinh ρΩi , i = 1, . . . , d− 1

where Ω2 = 1, that is Ω parametrizes a Sd−2 sphere. Verify that (4) does
solve the constraint (2). Note that this parametrization does cover the full
hyperboloid.

7. Show that the line element in this parametrization reads

ds2 = − cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2
Sd−2 . (5)

These are the so called global coordinates. We also encountered them in the
lectures. The boundary is R× Sd−2.

8. Given the parametrization (4) we have t ∼ t + 2π. From the point of view of
(5) this is physically quite unpleasant. Why?

9. There is a simple solution to the problem found in the previous point. We simply
do not identify t and t + 2π. That is, the space (4) will cover the hyperboloid
infinitely many times. Represent this many wrapping structure in the two di-
mensional hyperboloid drawn above. This is called the universal covering. To
check your result you can run

ParametricPlot3D[{Cosh[r]Cos[t]Exp[t/100],Sinh[r],Cosh[r]Sin[t]Exp[t/100]},

{t,0,6\[Pi]},{r,-2,2},PlotPoints->100,BoundaryStyle->Directive[Black,Thick]]

10. From now on we consider d > 2. Consider the change of variables tan r
2 = tanh ρ

2 .
Note that r ∈ [0, π/2] for ρ ∈ [0,∞]. Verify that

ds2 = sec2 r
[
−dt2 + dr2 + sin2 r dΩ2

Sd−2

]
(6)

11. We can drop the sec2 r prefactor in the previous metric to study its causal
structure, that is its Penrose diagram. Consider d = 3, that is AdS3 space time.
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Figure 1: Penrose diagram representation for AdS in global coordinates.

Then dΩ2
S1 = dφ2. We see that this spacetime can be nicely represented as a

cylinder. Draw this cylinder. Draw also the region corresponding to a single
cover of the hyperboloid.

12. The red region in figure 1 represents a Poincaré patch. Find the shape of the
yellow curves. How would you go about finding the precise form of the red
region? (An explanation is enough)

13. Consider a light ray sent from the middle of global AdS, that is for the center of
the cylinder at ρ = 0. Suppose it bounces back when it reaches the boundary.
How long does it take to get back to the center of AdS, ∆t =?

14. Geodesics of a massive particle can be found by minimizing L =
∫
dτgµν ẋ

µẋν .
Write down the resulting equations of motion in global coordinates. Consider a
geodesic going through the origin with some velocity. Plot its trajectory inside
the cylinder.
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• (Extremal) Reissner-Nordström black holes

To give a black hole a charge we need to couple gravity with a gauge field (here we
shall consider Abelian gauge fields but generalization is possible). This coupling, in
four dimensions, is given by the Einstein-Maxwell action1

SEM =
1

16πGN

∫
d4x
√
−g

(
R− 1

4
FµνF

µν
)
, Fµν = ∂µAν − ∂νAµ . (7)

a) Write the Einstein’s equations of motion δSEM/δg
µν = 0 resulting from this action

and the Maxwell’s equations of motion δSEM/δA
µ = 0.

b) From the equations of motion compute the scalar curvature R.

c) Now consider the following ansatz for the metric and gauge field:

ds2 = − 1

H(r)2
dt2 +H(r)2

(
dr2 + r2dΩ2

2

)
,

F = −αdt ∧ d
(

1

H(r)

)
.

Here α is some constant to be determined. If you are not familiar with the form
notation for F , convince yourself that this notation means that the field strength
F = 1

2Fµν dx
µ ∧ dxν has only two non-vanishing components:

Ftr = −Frt = α
1

H(r)2
∂H(r)

∂r
. (8)

In particular, this means that the gauge field we are considering is an electric field.
Substitute the ansatz above in the equations of motion (you may use Mathematica)
and find the correct value of the constant α and the equation that H(r) must satisfy
in order for the ansatz to be a solution of the equations of motion.

d) What is the general solution of the equation for H(r) that you have found?

e) In the most general solution there are two integration constants (because the
equation is second order). Fix one of them by requiring asymptotic flatness (that is,
at r →∞ the metric should be Minkowski). The second integration constant should
be fixed by requiring that the black hole has charge Q. This is done by computing
the flux threading the S2 of the dual field strength:

Q ≡
∫
S2
?F , (9)

where ?F is the Hodge dual of F . This is oriented along the S2 (unlike F which in
our ansatz has legs along the t and r directions, but not along the S2 directions).
The explicit definition of the Hodge dual of a form Fµν is

?Fρσ =
1

2

√
−g ε µν

ρσ Fµν , (10)

1Here we are rescaling the gauge field so that the 1/(16πGN ) factor becomes an overall factor.
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where ερσµν is the totally antisymmetric tensor (ε0123 = +1, with even permutation
of the indices being equal to +1, odd permutations being equal to −1, and repeated
indices being equal to 0).

f) Can you superimpose different solutions? What does this represent?

g) Take the so-called near-horizon limit, r → 0. Show that the resulting metric is
AdS2 × S2. Write down the relation between the radius of curvature of the space L
(both AdS2 and S2 have the same radius L) and the charge Q.

h) Do you know how to add a magnetic field? (No need to repeat the whole compu-
tation, it is enough to write down how you would modify the ansatz for F ).

• Generic RN black holes

What we have seen in the previous exercise is in fact a very special case of RN black
hole, the case in which the mass M and the charge Q of the black hole are the same
(this is why it was called “extremal”).

Consider the more general RN black hole

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2 ,

F = α
Q

r2
dt ∧ dr .

a) Using Mathematica check that this is a solution to the equations of motion that
you have obtained in the previous problem. In particular determine what α is.

b) Find the position of the horizons r±. What do we need to assume about M and
Q? Compute the temperature of the black hole (using the outer horizon r = r+).
What happens when M = Q?

c) Compute the appropriate curvature invariant to understand the nature of the
singularities at r = r± and at r = 0.
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