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Problem Set I

Elements of General Relativity

• Einstein’s field equations

a) Show that Einstein’s field equations Rµν − 1
2gµνR = 8πGD

c4
Tµν can be written for

D = 4 in the form

Rµν =
8πG4

c4

(
Tµν −

1

2
gµνT

)
,

where T is the trace of the energy-momentum tensor. Generalize to arbitrary D.
Repeat the exercise for the case of a non-vanishing cosmological constant, when the
equations of motion read Rµν − 1

2gµνR+ Λgµν = 8πGD
c4

Tµν .

b) Determine the dimensions of GD for arbitrary D.

c) Consider D = 4. Use dimensional analysis to build combinations of G4 = 6.674×
10−11m3/kg · s2, h̄ = 1.055 × 10−34kg · m2/s and c = 2.998 × 108m/s which have
dimensions of length, time, and mass. These quantities are called Planck length,
Planck time, and Planck mass. Discuss their physical meaning.

d) Higher derivative terms: in generalizations of Einsten’s theory (e.g. in string the-
ory), one adds higher derivative terms such as αRµνλσR

µνλσ to the Einstein-Hilbert
action in a systematic way. What is the dimension of α and similar coefficients? Can
one detect physical effects due to the presence of such terms on the scales currently
used to test GR?

e) Verify that the Schwarzschild metric1

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2
2

is a solution of the vacuum Einstein’s equations. Compute the Kretschmann invariant
K = RµνλσR

µνλσ for this metric.

1Here and in other formulas below we have set G4 = 1 and c = 1.

1



• Einstein’s field equations (continued)

a) Derive the Einstein’s field equations

Rµν −
1

2
gµνR+ Λgµν = 8πGDTµν

from the action (classical Einstein-Hilbert gravity in D dimensions coupled to matter)

SEH =
1

16πGD

∫
dDx
√
−g (R− 2Λ) +

∫
dDxLmatter

by computing the variation δSEH/δg
µν = 0.

Note: The variation of the matter action gives, by definition, the matter energy-
momentum tensor

Tµν ≡ −
2√
−g

δLmatter
δgµν

.

Note: There are two tricky parts in this computation: the first one is to realize that
you should write R = gµνRµν and that the variation δRµν actually gives a boundary
term that you can neglect (you may assume this part of the computation without
proving it). The second tricky part is to find out what δ

δgµν
√
−g is. Hint: Use the

identity ln(detM) = Tr(lnM) valid for any matrix M (you may want to think how
to prove this useful identity).

• Electromagnetism in curved spacetime

a) In curved space-time, the electromagnetic field strength tensor Fµν = ∇µAν −
∇νAµ satisfies Maxwell’s equations: ∇µFµν = −Jν . Check that the covariant deriva-
tives in the definition of the field strength can actually be replaced by usual partial
derivatives.

b) The energy-momentum tensor of the electromagnetic field in D = 4 is

Tµν = FµσF
σ

ν −
1

4
gµνFστF

στ .

Show that in the absence of charged matter

i) ∇µFνρ +∇ρFµν +∇νFρµ = 0 (Bianchi identities).

ii) ∇µTµν = 0 .

iii) Tµµ = 0 .

How would the above change in arbitrary dimension?

c) Prove that Maxwell’s equations can also be written as

1√
−g

∂µ(
√
−gFµν) = −Jν .

2



• AdS black holes in 5 dimensions

a) Verify that the following 5-dimensional metric

ds2 = −
(

1 +
r2

L2
− r40
L2r2

)
dt2 +

(
1 +

r2

L2
− r40
L2r2

)−1

dr2 + r2dΩ2
3

is a solution of the Einstein’s equations with cosmological constant Λ = −6/L2. This
solution is called an AdS-Schwarzschild black hole.

b) Find the position rH of the horizon of this black hole and compute its Hawking
temperature. Plot 1/T , the inverse temperature, on the vertical axis versus the
position of the horizon rH on the horizontal axis. Discuss this plot. In particular,
can you understand the terminology “large” and “small” AdS black holes?

Useful (optional) reference:

S. W. Hawking and D.N. Page, “Thermodynamics of Black Holes in anti-De Sitter
Space,” Commun. Math. Phys. 87, 577 (1983).

• Optional problems

a) Gibbons-Hawking term: discuss applying the variational principle to the Einstein-
Hilbert action on a manifold with boundary. Argue that a boundary term should be
added to the action to make the variational principle well defined (you may consider
a simple classical mechanics model which captures the relevant features).

You may want to look at the discussion in hep-th/0406264.

b) Ostrogradsky instability: generically, higher derivative terms in the gravitational
action can be treated only as small perturbations. Investigate (using e.g. a simple
classical mechanics model) what happens if this requirement is relaxed.

You may want to consult articles such as R.P.Woodard, “Ostrogradsky’s theorem on
Hamiltonian instability,” arXiv:1506.02210 [hep-th].
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