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1. Redshift

The Friedmann-Robertson-Walker metric for a homogeneous and isotropic Universe is

given by

ds2 = −c2dt2 + a2(t)

[

dr2

1− kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (1)

where ds is the proper time interval between two events, t is the cosmic time, k measures

the spatial curvature, r, θ and φ are radial, polar and azimuthal coordinates, respectively.

(a) Explain what is meant by a(t) and discuss its physical significance.

(b) Describe what is meant by redshift and how spectroscopic observations of extragalactic

objects may be used to deduce their redshifts.

(c) What does the above expression become in the case of a light ray? Hence derive an

integral expression for a light ray which leaves the origin at time tem and reaches a comoving

distance r0 at time tobs. A second ray is emitted a time dt after the first. By considering

the two intervals as corresponding to successive wave crests, derive the relation

λobs

λem
=

a(tobs)

a(tem)
≡ 1 + z , (2)

where z the redshift and λem and λobs are the emitted and observed wavelengths, respectively.

(d) How does the separation of galaxies today compare with the separation of galaxies

when light left the galaxies we observe at redshift 1?

Solution:

Interaction of matter with (low-energy) gravity is described by the action

S =
c4

16πG

∫

d4x
√
−g (R− 2Λ+ Lm) = SEH + Sm , (3)

where the Einstein-Hilbert action includes the cosmological constant Λ, and Lm is the La-

grangian containing all non-gravitational fields (i.e. the Standard Model matter fields)

coupled to gravity. We know that Lm is a valid description of Nature up to a TeV scale

(and possibly beyond). Einstein’s gravity may be valid up to the (four-dimensional) Planck

scale EP ≈ 1019 GeV (lP =
√

G!/c3 ≈ 10−33 cm), where quantum gravity effects become

relevant, but experimentally gravity is directly tested only up to a submillimeter scale (i.e.

for distances r ! 0.22 mm), so it is possible that the true quantum gravity scale is less than

the four-dimensional Planck scale (current experimental bounds suggest that this scale is

greater than approximately 1 TeV).
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The equations of motion resulting from the variational principle applied to the action (3)

are

Rµν −
1

2
gµν R + Λ gµν =

8πG

c4
Tµν , (4)

where the energy-momentum tensor of matter fields is defined as Tµν = 2√
−g

δSm

δgµν . Obser-

vations suggest that the Universe is spatially homogeneous and isotropic on a large scale1.

Assuming this is true for the whole Universe (this is known as the ”cosmological principle”

hypothesis), one finds (see e.g. S. Weinberg, ”Gravitation and Cosmology”) that the metric

of the Universe must have the Friedmann-Robertson- Walker (FRW) form (i.e. be a metric

whose hypersurfaces of constant time are maximally symmetric spaces in three dimensions):

ds2 = −c2dt2 + a2(t)

(

dr2

1− kr2
+ r2dΩ2

)

, (5)

where dΩ2 = dθ2+sin2 θdφ2, and k determines the scalar curvature of the three-dimensional

space: R = 6k (the parameter k can be positive, negative or zero, k = 0 corresponds to a

flat three-dimensional space). If the radial coordinate r has the dimension of length, then

k ∼ 1/L2 (since kr2 in the metric should be dimensionless). Thus k is inversely proportional

to the square of the scale of the corresponding space. In the FRW metric one can rescale

variables k → λ2k, r → r/λ, a → λa, so that in the new metric k = 0,±1, the radial

coordinate is dimensionless, and the scale factor a(t) has the dimension of length. Another

form of the RW metric is

ds2 = −c2dt2 + a2(t)
(

dχ2 + F 2(χ)dΩ2
)

, (6)

where F (χ) = χ, sinχ, sinhχ for k = 0,+1,−1, respectively.

The coordinates r, θ, φ in (1) are the so called ”comoving” coordinates. (Imagine a

coordinate grid on the surface of an inflating balloon, with galaxies represented by dots

on the surface of the balloon - as the balloon inflates, the dots move, but the coordinate

lines move with them, so each dot will have the same coordinates - if we neglect the ”local”

motion of a given galaxy in the gravitational potential of nearby galaxies.)

The Cosmological Principle also implies (again, see e.g. S. Weinberg, ”Gravitation and

Cosmology”) that on average at sufficiently large scales the matter in the Universe is de-

1 Note that the isotropy at each point of a space implies homogeneity of the space, see Weinberg’s book

”Gravitation and Cosmology” for more details.
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scribed by the energy-momentum tensor of the form:

Tµν =
P (t)

c2
gµν +

(

ρ(t) +
P (t)

c2

)

uµuν (7)

which is the energy-momentum tensor of a perfect (i.e. non-viscous, non-dissipative) fluid.

With the FRW ansatz (5) and the energy momentum tensor as in Eq. (7), the Einstein’s

equations (4) give

ȧ2 + kc2 − c2

3
Λa2 =

8πG

3
ρa2 , (8)

2aä+ ȧ2 + kc2 − c2Λa2 = −8πG

c2
P (t)a2 . (9)

The energy-momentum tensor is covariantly conserved: T µν
;ν = 0 (note that this is compati-

ble with the Einstein equations (4) since the covariant derivative of the LHS of (4) vanishes).

With Eqs. (5), (7), the conservation equation gives

Ṗ a3 =
d

dt

[

a3
(

P + ρ c2
)]

(10)

which can be rewritten as

ρ̇+
3ȧ

a

(

P

c2
+ ρ

)

= 0 . (11)

We can also arrive at Eq. (11) by taking the derivative of Eq. (8) and combining the result

with Eq. (9). See e.g. L.Ryder, ”Introduction to General Relativity”, Chapter 10.7. This

means that Eqs. (8), (9) and (11) are not independent. Normally, Eqs. (8) and (11) are used

as fundamental equations

ȧ2 + kc2 − c2

3
Λa2 =

8πG

3
ρa2 , (12)

ρ̇+
3ȧ

a

(

P

c2
+ ρ

)

= 0 (13)

for a(t), ρ(t), P (t). Supplemented by the equation of state P = P (ρ) (for example, for

radiation we have P = ρc2/3) this is a system of two coupled non-linear ODE for two

variables.

(a) The scale factor a(t) describes the expansion of the Universe and measures the physical

(proper) distances (distances traveled by e.g. light) in the Universe. Recall that r, θ, φ in

the FRW metric are comoving coordinates, i.e. their values do not change while the Universe

expands. At a given moment of time t = t∗, the proper distance between ”us” at r = 0 and
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an object at the radial coordinate r is given by

d(t∗) = a(t∗)

r
∫

0

dx√
1− kx2

.

(b) The redshift z is defined as z = (λobs − λem)/λem, where λobs and λem are the wave-

lengths of the observed and emitted light. The observed spectroscopic line emitted by a

moving object will not in general coincide with the ”canonical” one, i.e. the one emitted by

the same source at rest with respect to an observer. A generic motion of a source results

in the Doppler shift of spectroscopic lines. The cosmological redshift z refers exclusively to

the motion due to the expansion of the Universe (i.e. ignoring all ”local” motion of galax-

ies, stars and so on which in principle contributes to the Doppler effect). The cosmological

redshift is related to the scale factor of the Universe a(t).

(c) To relate z with a, recall that the geodesic equation for light traveling to us along the

radial direction from the object at r = r1 is

ds2 = −c2dt2 + a2
dr2

1− kr2
= 0 . (14)

This can be written as cdt = −adr/
√
1− kr2, where the minus sign reflects the fact that the

light is moving towards the origin r = 0 and its radial velocity component dr/dt is negative

in the associated coordinate system. If the light was emitted at t = t1 at r = r1 and is

observed at t = t0 at r = 0, then

c

t0
∫

t1

dt

a(t)
=

r1
∫

0

dx√
1− kx2

. (15)

For a second pulse, emitted at t = t1 + δt1 at the same comoving location r = r1 and

observed at t = t0 + δt0 at r = 0 we have

c

t0+δt0
∫

t1+δt1

dt

a(t)
=

r1
∫

0

dx√
1− kx2

. (16)

This implies
t0+δt0
∫

t1+δt1

dt

a(t)
−

t0
∫

t1

dt

a(t)
= 0 . (17)

Re-arranging the limits of integration carefully, we find

t0+δt0
∫

t0

dt

a(t)
=

t1+δt1
∫

t1

dt

a(t)
. (18)
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Taking δt1 and δt0 to be the periods of the emitted (observed) light wave, δt1 = T1 = 1/νem

and δt0 = T0 = 1/νobs, and taking into account the fact that during the time intervals δt1

and δt0 the scale factor a(t) is essentially constant, we find

δt0
a(t0)

=
δt1
a(t1)

which implies
νobs
νem

=
a(tem)

a(tobs)
. (19)

Since λν = c, for the redshift z we find

z =
λobs − λem

λem
=

a(tobs)

a(tem)
− 1 . (20)

If the light is observed ”now” at tobs = t0, the standard normalization a(t0) = 1 simplifies

the relation (20) even further: z + 1 = 1/a(tem).

(d) The distance to an object located at r = r∗ is given now (i.e. at t = t0) by

d(t0) = a(t0)

r∗
∫

0

dx√
1− kx2

.

The distance to the same object at t = tem was

d(tem) = a(tem)

r∗
∫

0

dx√
1− kx2

= a(tem)
d(t0)

a(t0)
=

1

2
d(t0) ,

since a(t0)/a(tem) = 1+ z = 2. Thus, d(t0) = 2 d(tem), i.e. the separation today is twice the

separation at t = tem.

2. Horizons

(a) Describe the concept of our past and future light-cone. Explain the meaning of

the terms particle horizon distance, event horizon distance and world-line, and discuss the

difference between time-like and space-like locations.

(b) Show that in an Einstein-de Sitter Universe in which the scale-factor a(t) at time t

follows a(t) ∝ t2/3, the particle horizon is at 3ct and the event horizon is at infinity.

(c) Suppose that the scale factor were given by a(t) ∝ exp (mt), where m is a positive con-

stant. Show that the event horizon is finite and that the particle horizon grows exponentially

when t ( 1/m.

(d) Explain how such behaviour of the particle horizon might be useful in explaining

observations of the cosmic microwave background.
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Solution:

(a) A world-line is a trajectory of a point-like object moving in a space-time. A world-

line of a stationary object is parallel to the time axis. For a moving object, the slope of its

world-line w.r.t. time axis can be less or equal to c. At each fixed space-time location, the

world-lines with the slope equal to c form a cone - a future light-cone in the direction of

increasing time, and a past light-cone in the direction of decreasing time.

Recall that the Equivalence Principle (which is an experimentally testable physical as-

sumption) implies that at each space-time point P there exists a coordinate system such

that the metric at P reduces to Minkowski metric ηµν = diag(−1, 1, 1, 1) and the Christoffel

symbols vanish (note that for space-times obeying the Equivalence Principle, the torsion

tensor then necessarily vanishes and the Christoffel symbols are symmetric in their lower

indexes, Γµ
νσ = Γµ

σν). Using a coordinate transformation x′ = x′(x) and tensor transforma-

tion rules, one can show explicitly that at a given point P it is possible to reduce gµν(x)

to Minkowski metric and make the Christoffel symbols (i.e. the metric’s first derivatives)

vanish. However, this coordinate freedom is not sufficient to make the second derivatives of

the metric vanish - thus if the Riemann tensor at P is non-zero, it remains non-zero after

the coordinate transformation - the spacetime is curved. (Note in passing that it is possible

to make the Christoffels vanish along a given world-line.) Thus, at each space-time point

P one can choose a local inertial frame. Thus in an infinitesimal neighborhood of P, GR

reduces to Special Relativity, and one can introduce the usual concepts of a light cone as

well as time-like, space-like and null infinitesimal separations between points according to

ds2 < 0, ds2 > 0 or ds2 = 0, where ds2 = gµν(xP )dxµdxν .

Particle horizon of a given observer includes all points the observer can see at present

(all points emitting light or other signals since the beginning of time).

Using the equation for the radial light-like geodesic, one finds for the light emitted at r

at time t and received at r = 0 at t = t0 > t

c

t0
∫

t

dt

a(t)
= −

0
∫

r

dx√
1− kx2

. (21)

The maximal value of r corresponds to t = 0:

c

t0
∫

0

dt

a(t)
=

rmax
∫

0

dx√
1− kx2

. (22)
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The distance to the location r = rmax at t = t0 (now) is given by

dH = d(t0) = a(t0)

rmax
∫

0

dx√
1− kx2

= c a(t0)

t0
∫

0

dt

a(t)
. (23)

This is known as the particle horizon distance. Alternatively, the distance dH is the maximal

distance a hypothetical signal emitted at t = 0 at our location r = 0 can reach at t = t0.

Indeed, for the outward traveling light ray,

c

t0
∫

0

dt

a(t)
=

rmax
∫

0

dx√
1− kx2

(24)

and then the distance to rmax now (at t = t0) is given by dH as in Eq. (23).

Event horizon includes all points (events) in the Universe at time t, the signal from which

will be able to reach us during the remaining life-time of the Universe.

In a sense, an event horizon is a concept complementary to the concept of a particle hori-

zon. Both terms were introduced in 1956 by W.Rindler (see e.g. S.Weinberg, ”Cosmology”,

Section 1.13).

Again, imagine an observer sitting at r = 0. If this observer was sending the light

signals starting from t = 0 (here we ignore all issues related to the decoupling of matter and

radiation and so one - it is an idealized situation), then the farthest proper distance such

signals could travel during the time from t = 0 to t = t0 (now) is given by dH : this is the

particle or object horizon distance (alternatively and symmetrically, this is the maximum

proper distance we can look into the Universe now). But now suppose the observer emits a

signal at time t = t∗ and wonders how far (measured at t = t∗) this signal will propagate

during the remaining life-time of the Universe (i.e. from t = t∗ until t = Tfin which can

be infinite or finite, depending on the model). In other words, what part of the Universe

(considered at t = t∗) will ever be accessible for observations. The answer is given by the

equations

c

Tfin
∫

t∗

dt

a(t)
=

rmax
∫

0

dx√
1− kx2

(25)

and

dEH = d(t∗) = a(t∗)

rmax
∫

0

dx√
1− kx2

= c a(t∗)

Tfin
∫

t∗

dt

a(t)
. (26)
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The distance dEH is known as the event horizon distance.

Consider the proper distance between two objects (e.g. galaxies) fixed at their comoving

coordinates, say r = 0 and r. In a spatially flat Universe (k = 0), this distance at time t is

given by d(t) = a(t)r. The rate of separation, ḋ, is then

ḋ =
ȧ

a
ar = H(t) d(t) .

So ḋ/c = Hd/c > 1 if d > c/H . This implies that the objects separated by the distance

exceeding the Hubble distance, are receding from each other at a rate exceeding the speed

of light (this does not contradict special relativity since the motion is due to a cosmological

expansion and is not related to a local change of coordinates of the objects or a signal

propagation).

For the matter-dominated Universe whose scale factor is given by a(t) = (t/t0)2/3, where

t0 = 2/3H0 is the age of the Universe in this model, we find

dH = c t2/30

t0
∫

0

dt

t2/3
= 3 c t0 =

2

H0
c (27)

and

dEH = c a(t∗)t
2/3
0

∞
∫

t∗

dt

t2/3
→ ∞ . (28)

Note that the Hubble constant H0 (more precisely, its inverse, 1/H0) effectively sets the time

scale (”Hubble time”) and the length scale (”Hubble length”) of the observable Universe.

The Hubble constant is usually written as H0 = 100 h km/s Mpc, where the current (2010)

value of h is 0.72(3).

The exponential scale factor a(t) ∼ exp (mt) arises in models with dominating cosmo-

logical constant. Setting all Ωi except ΩΛ to zero in the FRW equation, we find a(t) =

a(tf )em(t−tf ), where m = c
√

Λ/3 = H0, and tf is the time when the inflation (exponential

expansion) ends. With tf = t0, we find

dH = c emt0

t0
∫

ti

e−mt dt =
c

m

(

eN − 1
)

, (29)

dEH = c emt∗

∞
∫

t∗

e−mt dt =
c

m
. (30)
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where ti is the time when the inflation starts, N = m(tf − ti) = m(t0 − ti) is known as the

number of e-foldings during the inflation. It is clear that the event horizon distance is finite,

and the particle horizon distance grows exponentially for N ( 1.

(d) The cosmic microwave background (CMB) radiation is highly isotropic, with temper-

ature differences between different directions in the sky of the order of δT/T ∼ 10−5. These

fluctuations in CMB photons energies is due to density fluctuations at the time of photon

emission (more dense regions had gravitational potentials that redshifted emitted photons

stronger than less dense regions). The fact that the density fluctuations are so small implies

that the regions emitting CMB were in causal contact with each other at some point, so

that different regions could influence each other. As explained in Problem 3 of the Problem

Set 4, the particle horizon distance at the time of radiation decoupling as seen now is of the

order of 100 Mpc, whereas the particle horizon now in the ”old” matter-dominated models is

much larger, about 6000 Mpc. Thus, within these models, the region in the sky (now) whose

interior was causally connected at the time of CMB release subtends an angle of about ∼ 1◦.

It is difficult to explain why the CMB is so highly isotropic beyond such a region.

Indeed, assuming the Universe was dominated by radiation until the time of decoupling

t = td (this means the Friedmann equation gives a(t) = a(td)
√

t/td for the time dependence

of the scale factor), the distance the light could have traveled during the time from t = 0

and t = td is given by

d(td) = c a(td)

td
∫

0

dt

a(t)
= c

√
td

td
∫

0

dt√
t
= 2 c td . (31)

By now, this distance has been stretched by the subsequent cosmological expansion (during

the matter-dominated epoch) up to

d(td,0) =
a(t0)

a(td)
d(td) = 2 c td

(

t0
td

)2/3

.

This can be compared to this model’s particle horizon at t = t0 (now), dH = 3 c t0:

d(td,0)

dH
=

2

3

(

td
t0

)1/3

∼ (1 + zd)
−1/2 * 1 .

More precisely, one should be calculating the ratio of d(td,0) and the so called angular

diameter distance dA defined so that the proper distance d(td,0) perpendicular to the line of
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sight would be seen today to subtend a (small) angle θ = d(td,0)/dA. This distance is the

proper distance to the decoupling surface now

dA = c a(t0)

t0
∫

td

dt

a(t)
= 3 c t0

[

1−
(

td
t0

)1/3
]

≈ 3 c t0 ∼ dH

since td/t0 * 1. So θ = d(td,0)/dA ∼ (1 + zd)
−1/2 * 1.

A similar calculation with the scale factor a(t) = em(t−t0) shows that2

d(td) = c a(td)

td
∫

ti

dt

a(t)
=

c

m

(

em(td−ti) − 1
)

=
c

m

(

eN − 1
)

,

whereas dA ∼ 1/H0 (assuming ΩΛ += 0, ΩM += 0 only). It is therefore clear that in this case

d(td,0)/dA ∼ z exp (N ) ( 1, i.e. the patches causally connected at the time of radiation

decoupling are now spead throughout the observable sky. Thus, the inflationary expansion

can be invoked to explain the CMB isotropy.

3. The size of the Universe

Assume the Universe today is flat with both matter and a cosmological constant but no

radiation.

(a) Compute the horizon of the Universe as a function of ΩM and sketch it (you will need

a computer or calculator to do this).

(b) What is the current horizon size for a Universe with ΩM = 1/3 and h = 1/
√
2?

(c) What is the mass contained within the current horizon in solar masses? If all objects

were 1013h−1M' in mass, how many are in the observable Universe?

Solution:

(a) With only ΩM and ΩΛ different from zero (and thus ΩM+ΩΛ = 1), the FRW equation

can be written as
ȧ2

a2
= H2

0

(

ΩM

a3
+ ΩΛ

)

.

The horizon distance is

dH(ΩM) = c a(t0)

t0
∫

0

dt

a(t)
=

c

H0

1
∫

0

da
√

(1− ΩM)a4 + ΩMa
, (32)

2 To simplify the calculation, we identified td with tf .
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FIG. 1. The function dHH0/c vs ΩM .

where we used the FRW equation to express dt through da. The integral in (32) can be

computed analytically and expressed through the Gauss hypergeometric function

dH(ΩM) =
2c

H0

√
ΩM

2F1

(

1

6
,
1

2
;
7

6
; 1− 1/ΩM

)

. (33)

The function dH(ΩM)H0/c is shown in Fig. (1).

(b) With ΩM = 1/3, we have X = 2 2F1

(

1
6 ,

1
2 ;

7
6 ; 1− 1/ΩM

)

/
√
ΩM ≈ 3.16636. Then,

remembering that H0 = 100h km/s Mpc, and with h = 1/
√
2, we find dH = cX/H0 ≈ 13.4

Gpc.

(c) The critical density is ρM,0 ≈ 2.775 1011h2M' Mpc −3. The total mass is thus M =

4πρM,0d3H/3 ≈ 1.4 × 1024M'. This corresponds to ∼ 2× 1011 objects of mass 1013h−1M'.

4. The Big Bang and the acceleration of the Universe

(a) Give an account of the observational evidence for the hot Big Bang model of the

Universe.

(b) The Friedmann and fluid equations respectively are given by (Λ = 0)

(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
(34)

and

ρ̇+ 3
ȧ

a

(

ρ+
P

c2

)

= 0 , (35)

where a is the scale factor, ρ is the density and P is the pressure, ȧ and ρ̇ are the derivatives

of these quantities with respect to time. Use these equations to derive the acceleration

equation for the Universe.
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(c) Hence demonstrate that if the Universe is homogeneous and the strong energy condi-

tion ρc2 + 3P > 0 holds, then the Universe must have undergone a Big Bang.

Solution:

(a) The observational evidence for the hot Big Bang scenario includes:

1) The observed expansion of the Universe. Since T (t) ∼ 1/a(t), a smaller scale factor in

the past implies the Universe was hotter.

2) The observed highly uniform Cosmic Microwave Background (CMB) radiation with a

black body (Planckian) spectrum (intensity vs frequency dependence at a given tempera-

ture). One can show (see e.g. L. Ryder, ”Introduction to General Relativity”, Section 10.8)

that the black body nature of the radiation is preserved under the space expansion with the

temperature time dependence given by T (t) ∼ 1/a(t).

3) The primordial nucleosynthesis: during a relatively brief ( minutes) period of time in

the hot and dense primordial Universe fusion reactions resulted in light elements (hydrogen,

helium, lithium) being formed. Their relative abundancies can be predicted and compared

to the observed abundancies of these elements, with excellent agreement.

(b) Taking the time derivative of the equation (34) and combining the result with the

expression for ρ̇ from the equation (35) we get (Λ = 0):

ä

a
= −4πG

3

(

ρ+
3P

c2

)

. (36)

Note that with Λ += 0 we would get from (12)-(13)

ä

a
=

c2Λ

3
− 4πG

3

(

ρ+
3P

c2

)

.

The Big Bang singularity corresponds to a = 0. When the strong energy condition ρc2+3P >

0 holds, equation (36) implies ä < 0 at all times. Since a ≥ 0, this means a(t) should have

crossed the time axis in the past resulting in a = 0.

5. Recombination and the Surface of Last Scattering

(a) What is the ”surface of last scattering”? Would the same surface be seen by any

other observer in a different galaxy?

(b) Estimate the radius of the surface of last scattering using the age of the Universe.

Why might this underestimate the true value?

(c) The present number density of electrons in the Universe is the same as that of protons,

namely about 0.2m−3. Consider a time long before decoupling when the Universe was 104
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years old and then the scale factor was one millionth of its present value3. Estimate the

number density of electrons at that time and comment on whether the electrons would be

relativistic or non-relativistic then.

(d) Given that the mean free path of photons through an electron gas of number density

ne is d ∼ 1/neσ, where the Thompson scattering cross-section σe = 6.7 ·10−29m2, determine

the mean free path for photons when the scale factor was one millionth of its present value.

(e) From the mean free path, calculate the typical time between interactions between the

photons and electrons.

(d) Compare the interaction time with the age of the Universe at that time. What is the

significance of this comparison?

Solution:

(a) Photons interact with electrons and other charged particles (”scatter” on them) with

a certain cross-section which can be calculated in Quantum Electrodynamics (QED). For

photons energies much less than the mass of an electron me, this cross-section reduces to

the classical Thompson cross-section

σe =
8πα2

3m2
e

≈ 6.7 · 10−29m2,

where α = e2/4πε0!c ≈ 1/137 is the fine structure constant. The mean free path of photons

moving through an electron gas of number density ne is given by lmfp ∼ 1/neσe.

When the Universe was sufficiently hot, the photons were energetic enough to ionize

hydrogen atoms (γ + H → e− + p+). Thus the density of free electrons was high at that

time, and the mean free path of photons was correspondingly short. As the Universe further

expanded, it cooled down (recall that T (t) ∼ 1/a(t)). One may expect that the ionization

processes stopped when kBT was of the order of eV (ionization energy scale). A detailed

calculation gives kBTd ∼ 0.26 eV, or Td ∼ 3000 K. At this time (t ∼ td), the density ne

drops and the photons mean free path increases enormously: photons are now free to travel

across the Universe. These photons form the CMB we observe today (of course, after t ∼ td,

the photon gas continued to cool down as the Universe expanded). The imaginary spherical

surface (with us in the centre) where the CMB (observed by us now at t = t0) originated at

3 There is a typo in the formulation of the problem: the size of one millionth of the present value corresponds

to the Universe being approximately 1 year old. The age of 104 years corresponds (approximately) to the

size of ten thousandth. We use the size of one millionth and the age of one year in this problem.
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t = td is known as the surface of last scattering. The distance to this surface is given by

d = c a(t0)

t0
∫

td

dt

a(t)
. (37)

Clearly, a hypothetical observer in a different galaxy would have his/her/its/? own surface

of last scattering defined in the same way.

(b) Using Eq. (37) and the Friedmann equation, we can find the distance to the surface

of last scattering:

d =
c a(t0)

H0

a(t0)
∫

a(td)

dx√
ΩΛ x4 + Ωk x2 + ΩM x+ ΩR

. (38)

Since a(t0)T0 = a(td)Td, where Td ∼ 3000 K, T0 ∼ 2.7K, and a(t0) = 1, we find a(td) ∼ 10−3.

Moreover, since 1 + zd = a(t0)/a(td), we find that the surface of last scattering is located at

redshift zd ∼ 1110. The current (Particle Data Group edition 2010 (PDG - 2010)) values of

various contributions to the effective energy density of the Universe are

ΩM ≈ 0.26 , ΩΛ ≈ 0.74 , ΩR ≈ 4.8 · 10−5 , Ωk ∼ 0 . (39)

Using these values, the integral in (38) can be computed numerically:

I(ΩM ,ΩΛ,ΩR) =

1
∫

10−3

dx√
ΩΛ x4 + Ωk x2 + ΩM x+ ΩR

≈ 3.30 . (40)

Note that replacing the lower limit of integration with zero does not influence the result

appreciably:

I0(ΩM ,ΩΛ,ΩR) =

1
∫

0

dx√
ΩΛ x4 + Ωk x2 + ΩM x+ ΩR

≈ 3.34 . (41)

The distance to the surface of last scattering is

d =
c

H0
I(ΩM ,ΩΛ,ΩR) ≈ 1.28 · 1026m× I(ΩM ,ΩΛ,ΩR) ≈ 13.6Gpc (42)

which is essentially the same as the horizon distance, dH = c I0(ΩM ,ΩΛ,ΩR)/H0 ≈ 13.8

Gpc. (We use H0 = 100 h km/s Mpc with h ≈ 0.72 as quoted in PDG-2010.)

From the Friedmann equation, the age of the Universe can be found to be

T =
1

H0

1
∫

0

x dx√
ΩΛ x4 + Ωk x2 + ΩM x+ ΩR

≈ 13.6Gyr .
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Estimating d as d ∼ c T gives

d ∼ c

H0

1
∫

0

x dx√
ΩΛ x4 + Ωk x2 + ΩM x+ ΩR

≈ 4220Mpc (43)

which is more than three times smaller than the actual value of ∼ 13.6 Gpc found in (42).

Mathematically, this is due to the extra power of x in (43) which makes the value of the

integral smaller in the interval [0, 1]. Physically, such an estimate ignores the expansion of

the Universe in the expression for a photon’s geodesic (which leads to integrating dt instead

of dt/a(t)) and of course is bound to underestimate the true value of the distance.

(c) For matter, we have ne,0a30 ∼ nea3, and therefore

ne ∼ ne,0
a30
a3

∼ ne,0 · 1018 ∼ 2 · 1017m−3 .

Before decoupling, the temperature of the electrons was the same as the temperature of

photons, since they were in thermal equilibrium. For radiation, T0 a0 ∼ T a, so

T ∼ T0
a0
a

∼ 106 T0 ∼ 2.7 · 106K ∼ 233 eV/kB ,

since 1 eV ≈ 11604KkB. The electrons are non-relativistic since 233 eV * mec2 ∼ 0.5 MeV.

(d) The mean free path of photons is lmfp ∼ 1/neσe ∼ 7.5 · 1010 m.

(e) The corresponding mean free time is τ ∼ lmfp/c ∼ 250 s.

(f) The mean free time is much less than the age of the Universe at that time (∼ 1 year).

This implies the system was in thermal equilibrium.
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