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1. Closed Universe

(a) Show that

a(η) = C (1− cos η) (1)

t(η) = C (η − sin η) (2)

satisfies the closed, matter dominated FRW equation and find an expression for C in terms

of H0, Ω and the scale factor today, a0.

(b) If the parameter η that occurs there is used as a time coordinate, show that the metric

takes the form

ds2 = a2(η)
[

−c2dη2 + dχ2 + sin2 χ
(

dθ2 + sin2 θdφ2
)]

. (3)

Solution:

(a) The FRW equation is

H2 ≡

(

ȧ

a

)2

=
8πGρ

3
−

kc2

a2
+

Λc2

3
. (4)

The value of ρ such that k = 0 in the absence of a cosmological constant is known as the

critical density ρc. The critical density is time-dependent: ρc(t) = 3H2/8πG.

In the matter-dominated Universe, ρ = ρM , with ρMa3 = ρM,0a30. Introducing the cos-

mological parameters

ΩM =
8πGρM,0

3H2
0

, Ωk = −
kc2

H2
0

, ΩΛ =
Λc2

3H2
0

, (5)

where H0 = H(t0), the FRW equation can be re-written as

H2 ≡

(

ȧ

a

)2

= H2
0

(

ΩMa30
a3

−
Ωk

a2
+ ΩΛ

)

. (6)

In our case,

da = C sin ηdη (7)

dt = C (1− cos η) dη (8)

and therefore ȧ = da/dt = C sin η/a. Therefore,

(

ȧ

a

)2

=
C2 sin2 η

a4
. (9)
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But cos η = 1− a/C, and thus sin2 η = 2a/C − a2/C2. We find therefore

(

ȧ

a

)2

=
2C

a3
−

1

a2
. (10)

Comparing this to the FRW equation (4), we find k = 1 (closed Universe), Λ = 0, C =

4πGρM,0/3. A comparison to the FRW equation in the form (6) gives C = ΩMa30H
2
0/2.

(b) Observations suggest that the Universe is spatially homogeneous and isotropic on a

large scale. Assuming this is true for the whole Universe (this is known as the ”cosmological

principle” hypothesis), one finds (see e.g. S. Weinberg, ”Gravitation and Cosmology”) that

the metric of the Universe must have the RW form (i.e. be a metric whose hypersurfaces of

constant time are maximally symmetric spaces in three dimensions):

ds2 = −c2dt2 + a2(t)

(

dr2

1− kr2
+ r2dΩ2

)

, (11)

where dΩ2 = dθ2+sin2 θdφ2, and k determines the scalar curvature of the three-dimensional

space: R = 6k (the parameter k can be positive, negative or zero, k = 0 corresponds to

flat three-dimensional space). If the radial coordinate r has the dimension of length, then

k ∼ 1/L2 (since kr2 in the metric should be dimensionless). Thus k is inversely proportional

to the square of the scale of the corresponding space. In the RW metric one can rescale

variables k → λ2k, r → r/λ, a → λa, so that in the new metric k = 0,±1, the radial

coordinate is dimensionless, and the scale factor a(t) has the dimension of length. Another

form of the RW metric is

ds2 = −c2dt2 + a2(t)
(

dχ2 + F 2(χ)dΩ2
)

, (12)

where F (χ) = χ, sinχ, sinhχ for k = 0,+1,−1, respectively.

In our case, dt = adη and k = 1 which immediately implies that the corresponding RW

metric is given by Eq. (3).
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2. Linearly Expanding Universe

Consider a homogeneous, isotropic cosmological model described by the line element

ds2 = −c2dt2 +

(

t

t∗

)

[

dx2 + dy2 + dz2
]

(13)

where t∗ is a constant.

(a) Is this model open, closed or flat?

(b) Is this a matter-dominated Universe? Explain.

(c) Assuming the Friedmann equation holds for this Universe, find ρ(t).

Solution:

(a) Comparing the metric (13) to the standard RW metric (11), we find k = 0 (i.e. the

geometry is flat): dx2 + dy2 + dz2 is written in spherical coordinates as dr2 + r2dΩ2.

(b) The scale factor is a(t) =
√

t/t∗. Thus ȧ/a = 1/2t, H2 ∼ 1/t2 ∼ 1/a4. Therefore,

the model corresponds to a radiation-dominated rather than a matter-dominated Universe.

(c) Since ( ȧa)
2 = 1

4t2 = 1
4t2

∗
a4 , from the FRW equation we find ρ = 3/32πGt2

∗
a4.
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3. Hubble parameter

Assume that the Universe is dust-dominated. Take H0 = 100 kms−1Mpc−1.

(a) Give a rough estimate of the age of the Universe.

(b) How far can light have traveled in this time?

(c) The microwave background radiation has been traveling towards us uninterrupted

since decoupling, when the Universe was 1/1000 of its current size. Compute the value of

the Hubble parameter H at the time of decoupling.

(d) How far could light have traveled in the time up to decoupling (assume the Universe

was dominated by radiation until then)?

(e) Between decoupling and the present, the distance that light traveled up to the time

of decoupling has been stretched by the subsequent expansion. What would its physical size

be today?

(f) Assuming that the distance to the last-scattering surface is given by part (b) of

this question, what angle is subtended by the distance light could have traveled before

decoupling?

(g) What is the physical significance of this value?

Solution:

(a) For the dust-dominated Universe
(

ȧ

a

)2

=
H2

0a
3
0

a3
. (14)

With the normalization choice a0 = 1, the relevant ODE is ȧ = H0/
√
a. The solution is

given by

t = C +
1

H0

a
∫

0

√
xdx , (15)

where the integration constant C is set to zero by the initial condition a(0) = 0. The age of

the Universe is given by

t0 =
1

H0

1
∫

0

√
xdx =

2

3H0
. (16)

Note that 1 Mpc = 3.086 × 1022 m, and thus t0 ≈ 6.52 × 109 years. Thus in this model the

age of the Universe is 6.52 Gyr (this is shorter than the age of some stars in the Universe, and

thus the model cannot be completely correct). (Note that the current standard cosmological

model gives t0 = 13.69± 0.13 Gyr.)
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(b) The light emitted at r = r1 at time t = t1 and received at the origin r = 0 at

t = t0 (now) travels along the radial null geodesic given by the equation ds2 = 0 or cdt =

−a(t)dr/
√
1− kr2 (the minus sign reflects the direction of propagation: dr/dt < 0 in our

coordinate system). We have

c

t0
∫

t1

dt

a(t)
=

r1
∫

0

dr
√
1− kr2

. (17)

The proper distance (determined at time t = t0) from the origin r = 0 to a comoving object

at r = r1 is given by

d(r1, t0) = a(t0)

r1
∫

0

dr
√
1− kr2

= a(t0)c

t0
∫

t1

dt

a(t)
. (18)

For the light emitted at t1 = 0, t0 is the age of the Universe, and so a(t1) = 0, a(t0) = 1.

Using the FRW equation for a matter-dominated Universe, ȧ = H0/
√
a, we find

d(t0) = ca(t0)

t0
∫

0

dt

a(t)
=

c

H0

1
∫

0

da
√
a
=

2

H0
c = 3ct0 . (19)

With H0 = 100 kms−1Mpc−1 one finds d(t0) = 6000 Mpc. The distance d(t0) is known as

the ”particle horizon”.

(c) The Hubble parameter at the time t = td of the decoupling is H(td) = ȧ(td)/a(td),

where a(td) = a(t0)/1000. Using the FRW equation for the assumed matter-dominated

model, ȧ = H0/
√
a, we find ȧ(td) = H0

√
1000. Thus, H(td) = H01000

√
1000 ≈ 3.16 ×

106 kms−1Mpc−1.

(d) Assuming the Universe was dominated by radiation until the time of decoupling t = td

(this means the FRW equation gives a(t) = a(td)
√

t/td for the time dependence of the scale

factor), the distance the light could have traveled during the time from t = 0 and t = td is

given by

d(td) = ca(td)

td
∫

0

dt

a(t)
= c

√
td

td
∫

0

dt
√
t
= 2ctd . (20)

During the later matter-dominated epoch, the scale factor evolves as a(t) ∼ t2/3, so

(

td
t0

)2/3

=
a(td)

a(t0)
=

1

1000
.
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and td = t0(1000)−3/2. The distance is then d(td) = 2ctd =
2
3(1000)

−3/23ct0 =
2
3(1000)

−3/2d(t0) ≈

0.126 Mpc.

(e) Since d(td) = a(td) r and d(td,0) = a(t0) r, we have d(td,0) =
a(t0)
a(td)

d(td) = 1000 d(td) ≈

126 Mpc.

(f) The corresponding angle is θ ∼ d(td,0)/d(t0) = 126/6000 ≈ 0.021 rad ∼ 1.2◦.

(e) The significance of this value is in the fact that in this model the distance traveled

by light at the decoupling as seen now (i.e. d(td,0)) is much smaller than the size of the

observable Universe. The regions that could be in a causal contact with each other at the

time of decoupling thus occupy a small patch (with the angular size of about one degree)

on a present day sky. This poses a difficulty for the ”old” cosmological models, since the

observed CMB is highly uniform throughout the sky. This problem is resolved in the ”new”

inflationary cosmological models.
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4. Conformal time

We can define conformal time, η, in terms of physical time, t, through dt = adη, where a

is the scale factor which is a function of t or η.

(a) Show that η ∝ a1/2 in a matter-dominated Universe, and η ∝ a in one dominated by

radiation

(b) Consider a Universe with only matter and radiation, with equality at aeq. Show that

η =
2

√

ΩMH2
0

(√

a+ aeq −
√
aeq
)

(c) What is the conformal time today? And at recombination?

Solution:

(a) For the matter-dominated Universe, the solution of the FRW equation is a(t) =

(t/t0)2/3. Direct integration gives η = 3t2/30 t1/3. Expressing this through a(t), we get

η = 3t0
√
a. Similarly, for the radiation-dominated Universe, where a(t) =

√

t/t0, we find

η = 2 t0 a.

(b) Including matter and radiation only, the FRW equation reads

(

ȧ

a

)2

= H2
0

(

ΩM

a3
+

ΩR

a4

)

= H2
0 ΩM

(

1

a3
+

aeq
a4

)

. (21)

Since dt = adη, we find

dη =
da

H0

√

ΩM (a+ aeq)
. (22)

Integrating with the initial condition a(0) = 0 we obtain

η =
2

H0

√
ΩM

(√

a + aeq −
√
aeq
)

. (23)

(c) The conformal time today, in a matter-dominated Universe, is η(t0) = 3t0
√

a(t0) =

3t0, where t0 = 2/3H0. Thus, η(t0) = 2/H0 ≈ 20 Gyrs. At recombination, η(td) =

3t0
√

a(td). Since a(td) = 10−3a(t0), η(td) = 3t010−3/2 ≈ 0.632 Gyrs.
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5. Contributions to the dynamics of the Universe

(a) Suppose the Universe contains four different contributions to the Friedmann equa-

tion, namely dust, radiation, a cosmological constant and negative curvature. What is the

behaviour of each as a function of the scale factor a(t)?

(b) Which will dominate at early times and which will dominate at late times?

Solution:

(a) The FRW equation reads

(

ȧ

a

)2

=
8πGρ

3
−

kc2

a2
+

Λc2

3
. (24)

For dust (cold matter), the energy density ρ is essentially Mc2/V olume, so ρ ∼ 1/a3(t). For

radiation, from e.g. the Stefan-Boltzmann law we have ρ ∼ T 4 ∼ 1/a4(t). The curvature

term scales as 1/a2(t). Finally, the cosmological constant term is independent of the scale

factor.

(b) Since a(0) = 0, at early times the dominant contribution to the right hand side of

Eq. (24) comes from radiation. At late times, the cosmological constant term dominates

(provided Λ )= 0).
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