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1. Show that if you extremize the action for a test particle S = �
R
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(where � is the a�ne parameter and g↵� the metric), you will obtain the correct ex-
pressions for the connection coe�cients for a general metric. [4]

Consider the “global rain” metric,
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where (t̄, r, ✓,�) are space-time coordinates and rS is a constant. Show that the non-zero
components of the inverse metric are
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Using the definition of the connection coe�cients (or otherwise), show that the radial
geodesic equation is
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[10]

Compare what happens to this metric at r = rS with what happens to the
Schwarzschild metric in the usual coordinates. By looking only at light-like radial
geodesics, explain why, if r < rS , photons always fall inwards [hint: show that dr/dt̄ <
0]. [6]

Consider a change of coordinates such that t̄ = t̄(r, t) where
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Rewrite the global rain metric in terms of t and r, and show that it is equivalent to the
Schwarzschild metric. [5]
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2. Consider a conformally flat space-time with metric given in Cartesian coordinates
by

ds2 = e
2'
c2

⌘↵� dx
↵dx� ,

where ' is a scalar function of space-time coordinates and ⌘↵� is the Minkowski metric.
Show that the connection coe�cients take the form
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µ = ⌘

µ⌫
@⌫ . [7]

The Ricci tensor is given by
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Assume that '/c2 ⌧ 1, and show that the Einstein tensor takes the form

G↵� =
2

c

2
(@µ@

µ
'⌘↵� � @↵@�') . [6]

Rewrite the metric into spherical coordinates, (t, r, ✓,�), and assuming that ' is
a function of r only, show that for an equatorial orbit the geodesic equations for t and
� take the form
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where ḟ ⌘ df/d� for any function f(�) (� is the a�ne parameter), and d and ` are
integration constants. Write down an expression for the null condition for photons in
this metric. [5]

Assume that ' = �GM/r, where M is a constant and r is the distance from the
origin. Show that there is no light deflection around r = 0. [7]
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3. The Riemann tensor is defined to be
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where �µ
�⌫ is the connection coe�cient tensor. Show that

(r↵r� �r�r↵)V
µ = R

µ
⌫↵� V

⌫ (1)

for any contravariant vector V µ. [7]

A “Killing” vector, Uµ, satisfies the condition rµU⌫ +r⌫Uµ = 0. We define the
commutator between two vectors to be

W

µ ⌘ [U, V ]µ = U
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.

Using equation 1 (and the symmetry of the Riemann tensor, R↵��� = R��↵�), show that
the commutator of two Killing vectors is also a Killing vector. [8]

Consider a tensor Tµ⌫ = rµr⌫��gµ⌫r�r� � , where � is a scalar function of the
space-time coordinates. Show that

rµ
Tµ⌫ = R

�
⌫ r�� . [6]

Assume now that rµ
Tµ⌫ = 0. If k⌫ is a Killing vector, show that

rµ(Tµ⌫k
⌫) = 0 . [4]
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4. Consider an inflationary universe that undergoes three phases of expansion: an
initial inflationary phase in which the pressure, P , and the density, ⇢, satisfy P = �⇢c

2

up until the scale factor a = a1, followed by a radiation phase in which P = 1
3⇢c

2

up until the scale factor a = a2, followed by a matter phase in which P = 0 up until
the scale factor a = 1. Find an expression for the Hubble rate and deceleration rate,
as a function of the scale factor a, in each of these regimes (neglecting all other non-
dominant components of the energy density). Solve the Friedman-Robertson-Walker
(FRW) equation in each one of the three phases. [7]

Explain why the expansion rate in such a universe is slower when a < a1 than in
a universe where there is no initial inflationary phase (i.e. a universe where there is no
period of inflation for a < a1 and that has exactly the same expansion rate as a function
of the scale factor for a > a1). [Hint: assume continuity in the Hubble rate at a = a1

for the inflationary universe]. [5]

Assume that the initial scale factor of the universe is ain. Find an expression for
the age of the universe in terms of an integral over the Hubble rate. Taking the limit
ain ! 0, show that the inflationary universe must be older than the non-inflationary
universe. [6]

Find an expression for the particle horizon in each one of the phases of the infla-
tionary universe. Comparing the physical size of a length scale of fixed comoving size
with the particle horizon, explain the qualitative di↵erence between what happens for
a < a1 and a > a1. [7]
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