A13484W1

B5: GENERAL RELATIVITY AND COSMOLOGYSaturday, 20 June20159.30 am11.30 am

1. Show that if you extremize the action for a test particle $S=-\int \mathrm{d} \lambda g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}$ (where λ is the affine parameter and $g_{\alpha \beta}$ the metric), you will obtain the correct expressions for the connection coefficients for a general metric.

Consider the "global rain" metric,

$$
\mathrm{d} s^{2}=-c^{2}\left(1-\frac{r_{\mathrm{S}}}{r}\right) \mathrm{d} \vec{t}^{2}+2 \sqrt{\frac{r_{\mathrm{s}}}{r}} c \mathrm{~d} \bar{t} \mathrm{~d} r+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

where $(\bar{t}, r, \theta, \phi)$ are space-time coordinates and r_{S} is a constant. Show that the non-zero components of the inverse metric are

$$
g^{\overline{t t}}=-\frac{1}{c^{2}}, g^{\overline{t r}}=\frac{1}{c} \sqrt{\frac{r_{\mathrm{S}}}{r}}, g^{r r}=\left(1-\frac{r_{\mathrm{S}}}{r}\right), g^{\theta \theta}=\frac{1}{r^{2}}, g^{\phi \phi}=\frac{1}{r^{2} \sin ^{2} \theta}
$$

Using the definition of the connection coefficients (or otherwise), show that the radial geodesic equation is

$$
\begin{aligned}
\ddot{r}-\frac{1}{2 r_{\mathrm{S}}}\left(\frac{r_{\mathrm{S}}}{r}\right)^{2} \dot{r}^{2} & +\frac{c^{2}}{2 r_{\mathrm{S}}}\left(1-\frac{r_{\mathrm{S}}}{r}\right)\left(\frac{r_{\mathrm{S}}}{r}\right)^{2} \dot{\bar{t}}-\frac{c}{r_{\mathrm{S}}}\left(\frac{r_{\mathrm{S}}}{r}\right)^{\frac{5}{2}} \dot{r} \dot{\bar{t}} \\
& -\left(1-\frac{r_{\mathrm{S}}}{r}\right) r \dot{\theta}^{2}-\left(1-\frac{r_{\mathrm{S}}}{r}\right) r \sin ^{2} \theta \dot{\phi}^{2}=0
\end{aligned}
$$

Compare what happens to this metric at $r=r_{\mathrm{S}}$ with what happens to the Schwarzschild metric in the usual coordinates. By looking only at light-like radial geodesics, explain why, if $r<r_{\mathrm{S}}$, photons always fall inwards [hint: show that $\mathrm{d} r / \mathrm{d} \bar{t}<$ $0]$.

Consider a change of coordinates such that $\bar{t}=\bar{t}(r, t)$ where

$$
\begin{aligned}
\frac{\partial \bar{t}}{\partial t} & =1 \\
\frac{\partial \bar{t}}{\partial r} & =\sqrt{\frac{r_{\mathrm{S}}}{r}}\left(1-\frac{r_{\mathrm{S}}}{r}\right)^{-1} \frac{1}{c}
\end{aligned}
$$

Rewrite the global rain metric in terms of t and r, and show that it is equivalent to the Schwarzschild metric.
2. Consider a conformally flat space-time with metric given in Cartesian coordinates by

$$
\mathrm{d} s^{2}=\mathrm{e}^{\frac{2 \varphi}{c^{2}}} \eta_{\alpha \beta} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}
$$

where φ is a scalar function of space-time coordinates and $\eta_{\alpha \beta}$ is the Minkowski metric. Show that the connection coefficients take the form

$$
\Gamma^{\mu}{ }_{\alpha \beta}=\frac{1}{c^{2}}\left[\partial_{\beta} \varphi \delta^{\mu}{ }_{\alpha}+\partial_{\alpha} \varphi \delta^{\mu}{ }_{\beta}-\partial^{\mu} \varphi \eta_{\alpha \beta}\right],
$$

where $\partial^{\mu}=\eta^{\mu \nu} \partial_{\nu}$.
The Ricci tensor is given by

$$
R_{\nu \beta} \equiv \partial_{\mu} \Gamma^{\mu}{ }_{\beta \nu}-\partial_{\beta} \Gamma^{\mu}{ }_{\mu \nu}+\Gamma^{\mu}{ }_{\mu \epsilon} \Gamma^{\epsilon}{ }_{\nu \beta}-\Gamma_{\epsilon \beta}^{\mu} \Gamma^{\epsilon}{ }_{\nu \mu} .
$$

Assume that $\varphi / c^{2} \ll 1$, and show that the Einstein tensor takes the form

$$
\begin{equation*}
G_{\alpha \beta}=\frac{2}{c^{2}}\left(\partial_{\mu} \partial^{\mu} \varphi \eta_{\alpha \beta}-\partial_{\alpha} \partial_{\beta} \varphi\right) . \tag{6}
\end{equation*}
$$

Rewrite the metric into spherical coordinates, (t, r, θ, ϕ), and assuming that φ is a function of r only, show that for an equatorial orbit the geodesic equations for t and ϕ take the form

$$
\mathrm{e}^{\frac{2 \varphi}{c^{2}}} \dot{t}=d \text { and } \mathrm{e}^{\frac{2 \varphi}{c^{2}}} r^{2} \dot{\phi}=\ell,
$$

where $\dot{f} \equiv \mathrm{~d} f / \mathrm{d} \lambda$ for any function $f(\lambda)(\lambda$ is the affine parameter), and d and ℓ are integration constants. Write down an expression for the null condition for photons in this metric.

Assume that $\varphi=-G M / r$, where M is a constant and r is the distance from the origin. Show that there is no light deflection around $r=0$.

A13484W1

3. The Riemann tensor is defined to be

$$
R_{\nu \alpha \beta}^{\mu} \equiv \partial_{\alpha} \Gamma_{\beta \nu}^{\mu}-\partial_{\beta} \Gamma_{\alpha \nu}^{\mu}+\Gamma_{\alpha \epsilon}^{\mu} \Gamma_{\nu \beta}^{\epsilon}-\Gamma_{\epsilon \beta}^{\mu} \Gamma_{\nu \alpha}^{\epsilon},
$$

where $\Gamma^{\mu}{ }_{\beta \nu}$ is the connection coefficient tensor. Show that

$$
\begin{equation*}
\left(\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha}\right) V^{\mu}=R_{\nu \alpha \beta}^{\mu} V^{\nu} \tag{1}
\end{equation*}
$$

for any contravariant vector V^{μ}.
A "Killing" vector, U^{μ}, satisfies the condition $\nabla_{\mu} U_{\nu}+\nabla_{\nu} U_{\mu}=0$. We define the commutator between two vectors to be

$$
W^{\mu} \equiv[U, V]^{\mu}=U^{\nu} \nabla_{\nu} V^{\mu}-V^{\nu} \nabla_{\nu} U^{\mu}
$$

Using equation 1 (and the symmetry of the Riemann tensor, $R_{\alpha \beta \gamma \delta}=R_{\gamma \delta \alpha \beta}$), show that the commutator of two Killing vectors is also a Killing vector.

Consider a tensor $T_{\mu \nu}=\nabla_{\mu} \nabla_{\nu} \phi-g_{\mu \nu} \nabla^{\sigma} \nabla_{\sigma} \phi$, where ϕ is a scalar function of the space-time coordinates. Show that

$$
\begin{equation*}
\nabla^{\mu} T_{\mu \nu}=R_{\nu}{ }^{\sigma} \nabla_{\sigma} \phi \tag{6}
\end{equation*}
$$

Assume now that $\nabla^{\mu} T_{\mu \nu}=0$. If k^{ν} is a Killing vector, show that

$$
\begin{equation*}
\nabla^{\mu}\left(T_{\mu \nu} k^{\nu}\right)=0 \tag{4}
\end{equation*}
$$

4. Consider an inflationary universe that undergoes three phases of expansion: an initial inflationary phase in which the pressure, P, and the density, ρ, satisfy $P=-\rho c^{2}$ up until the scale factor $a=a_{1}$, followed by a radiation phase in which $P=\frac{1}{3} \rho c^{2}$ up until the scale factor $a=a_{2}$, followed by a matter phase in which $P=0$ up until the scale factor $a=1$. Find an expression for the Hubble rate and deceleration rate, as a function of the scale factor a, in each of these regimes (neglecting all other nondominant components of the energy density). Solve the Friedman-Robertson-Walker (FRW) equation in each one of the three phases.

Explain why the expansion rate in such a universe is slower when $a<a_{1}$ than in a universe where there is no initial inflationary phase (i.e. a universe where there is no period of inflation for $a<a_{1}$ and that has exactly the same expansion rate as a function of the scale factor for $a>a_{1}$). [Hint: assume continuity in the Hubble rate at $a=a_{1}$ for the inflationary universe].

Assume that the initial scale factor of the universe is $a_{\text {in }}$. Find an expression for the age of the universe in terms of an integral over the Hubble rate. Taking the limit $a_{\text {in }} \rightarrow 0$, show that the inflationary universe must be older than the non-inflationary universe.

Find an expression for the particle horizon in each one of the phases of the inflationary universe. Comparing the physical size of a length scale of fixed comoving size with the particle horizon, explain the qualitative difference between what happens for $a<a_{1}$ and $a>a_{1}$.

