OXFORD UNIVERSITY
 PHYSICS DEPARTMENT
 3RD YEAR UNDERGRADUATE COURSE

SYMMETRY AND RELATIVITY

TUTORIAL V
Forces and fields
Problem Set 3
(Part B: problems 5-9)

Andrei Starinets
andrei.starinets@physics.ox.ac.uk

Problem 5

Show that two of Maxwell's equations are guaranteed to be satisfied if the fields are expressed in terms of potentials \mathbf{A} and ϕ such that

$$
\begin{align*}
& \mathbf{B}=\nabla \wedge \mathbf{A} \tag{1}\\
& \mathbf{E}=-\left(\frac{\partial \mathbf{A}}{\partial t}\right)-\nabla \phi \tag{2}
\end{align*}
$$

(i) Express the other two of Maxwell's equations in terms of \mathbf{A} and ϕ.
(ii) Introduce a gauge condition to simplify the equations, and hence express Maxwell's equations in terms of 4-vectors, 4-vector operators, and Lorentz scalars (a manifestly covariant form).

Solution:

We may start by recalling the Maxwell's equations in $3 d$ notations:

$$
\begin{align*}
& \nabla \cdot \mathbf{B}=0 \tag{3}\\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{4}\\
& \nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} \tag{5}\\
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{6}
\end{align*}
$$

There are 4 equations altogether (8 in terms of components), appearing in two groups (each containing two equations), with a prominent asymmetry between the groups. The first group (Eqs. (3), (4)) contains no sources (ρ and \mathbf{J}). These equations must be satisfied automatically, regardless of the distribution of charges and currents in space-time. Such equations are known as constraints. They often imply the presence of a symmetry in the theory under consideration.

If \mathbf{E} and \mathbf{B} are written in terms of \mathbf{A} and ϕ as in Eqs. (1), (2), then the equations (3), (4) are automatically satisfied. Indeed, since $B_{i}=\varepsilon_{i j k} \partial_{j} A_{k}$, we have $\nabla \cdot \mathbf{B}=\partial_{i} B_{i}=\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}=0$, since the contraction of $i j$ in $\varepsilon_{i j k}$ and $i j$ in a symmetric object $\left(\partial_{i} \partial_{j}=\partial_{j} \partial_{i}\right)$ gives zero.

Note that all manipulations are done in $3 d$ Euclidean space, where there is no need to distinguish between lower and upper indices.

Explicitly, $\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}=\varepsilon_{j i k} \partial_{j} \partial_{i} A_{k}$ [we re-labeled $i \rightarrow j$ and $\left.j \rightarrow i\right]=\varepsilon_{j i k} \partial_{i} \partial_{j} A_{k}\left[\right.$ since $\partial_{i} \partial_{j}=$ $\left.\partial_{j} \partial_{i}\right]=-\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}$. We arrived at $\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}=-\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}$, which implies $\varepsilon_{i j k} \partial_{i} \partial_{j} A_{k}=0$, since $X=-X$ implies $X=0$.

Now consider $(\nabla \times \mathbf{E})_{i}=\varepsilon_{i k l} \partial_{k} E_{l}=-\varepsilon_{i k l} \partial_{k}\left(\partial_{t} A_{l}+\partial_{l} \phi\right)=-\partial_{t} \varepsilon_{i k l} \partial_{k} A_{l}-\varepsilon_{i k l} \partial_{k} \partial_{l} \phi=-\partial_{t} B_{i}$, since $\varepsilon_{i k l} \partial_{k} \partial_{l} \phi \equiv 0$ for reasons discussed above. Thus, equations (3), (4) are automatically satisfied.
(i) We now write the other two Maxwell's equations in terms of \mathbf{A} and ϕ.

Since $\nabla \cdot \mathbf{E}=-\partial_{t} \partial_{i} A_{i}-\partial^{2} \phi$, where $\partial^{2}=\partial_{i} \partial_{i}=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$ is the Laplacian in 3d, Eq. (5) becomes

$$
\begin{equation*}
-\partial_{t} \partial_{i} A_{i}-\partial^{2} \phi=\frac{\rho}{\epsilon_{0}} . \tag{7}
\end{equation*}
$$

Computing the curl, we find $(\nabla \times \mathbf{B})_{i}=\varepsilon_{i j k} \partial_{j} E_{k}=\varepsilon_{i j k} \partial_{j} \varepsilon_{k l m} \partial_{l} A_{m}=\varepsilon_{i j k} \varepsilon_{k l m} \partial_{j} \partial_{l} A_{m}=\partial_{i} \partial_{m} A_{m}-$ $\partial^{2} A_{i}$, where we used the identity $\varepsilon_{k i j} \varepsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$. Therefore, Eq. (6) in components becomes

$$
\begin{equation*}
\partial_{i} \partial_{m} A_{m}-\partial^{2} A_{i}=\mu_{0} J_{i}-\mu_{0} \epsilon_{0}\left(\partial_{t}^{2} A_{i}+\partial_{i} \partial_{t} \phi\right) \tag{8}
\end{equation*}
$$

and can be re-written as (taking into account that $\epsilon_{0} \mu_{0}=1 / c^{2}$)

$$
\begin{equation*}
-\frac{1}{c^{2}} \partial_{t}^{2} A_{i}+\partial^{2} A_{i}-\frac{1}{c^{2}} \partial_{i} \partial_{t} \phi-\partial_{i} \partial_{m} A_{m}=-\mu_{0} J_{i} . \tag{9}
\end{equation*}
$$

(ii) Introducing the 4 -vector $A^{\mu}=(\phi / c, \mathbf{A})$, we can write Eqs. (7), (9) in the form

$$
\begin{array}{r}
-\partial^{2} \phi-\partial_{t} \partial_{i} A_{i}=\frac{\rho}{\epsilon_{0}}, \\
-\partial_{i}\left(\partial_{\mu} A^{\mu}\right)+\square A_{i}=-\mu_{0} J_{i}, \tag{11}
\end{array}
$$

where

$$
\begin{equation*}
\square \equiv \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}=-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\partial^{2} \tag{12}
\end{equation*}
$$

is the d'Alembertian in $4 d$ Minkowski space and

$$
\begin{equation*}
\partial_{\mu} A^{\mu}=\frac{\partial A^{0}}{\partial x^{0}}+\frac{\partial A^{i}}{\partial x^{i}}=\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}+\operatorname{div} \mathbf{A} . \tag{13}
\end{equation*}
$$

The important fact is that the correspondence between A^{μ} and the fields \mathbf{E} and \mathbf{B} is not one to one: there are (infinitely) many potentials A^{μ} corresponding to the same values of \mathbf{E} and \mathbf{B}. All such equivalent A^{μ} are related by

$$
\begin{equation*}
A^{\mu} \rightarrow A^{\mu}-\partial^{\mu} f(x), \tag{14}
\end{equation*}
$$

where f is a smooth function (this, of course, can be shown explicitly, by using definitions of \mathbf{E} and \mathbf{B} via ϕ and A^{i}). One can say that the whole orbit of A^{μ} parametrised by f corresponds to the same values of \mathbf{E} and \mathbf{B}. This phenomenon is known as gauge invariance and the transformation (14) as gauge transformation. Electromagnetism is the simplest example of a gauge theory.

We can choose a representative on the orbit of A^{μ} by fixing a gauge (or choosing a gauge condition). One popular gauge condition is $\partial_{\mu} A^{\mu}=0$, known as the Lorentz gauge. In the Lorentz gauge, Maxwell's equations (10), (11) have a very simple form

$$
\begin{array}{r}
\square \phi=-\frac{\rho}{\epsilon_{0}}, \\
\square A_{i}=-\mu_{0} J_{i} . \tag{16}
\end{array}
$$

Of course, these equations should be supplemented by the appropriate boundary and/or initial conditions. Note that the equations are linear PDEs.

Problem 6

How does a second rank tensor changes under a Lorentz transformation? By transforming the field tensor and interpreting the result, prove that the electromagnetic field transforms as

$$
\begin{align*}
\mathbf{E}_{\|}^{\prime} & =\mathbf{E}_{\|} \tag{17}\\
\mathbf{B}_{\|}^{\prime} & =\mathbf{B}_{\|} \tag{18}\\
\mathbf{E}_{\perp}^{\prime} & =\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \wedge \mathbf{B}\right) \tag{19}\\
\mathbf{B}_{\perp}^{\prime} & =\gamma\left(\mathbf{B}_{\perp}-\mathbf{v} \wedge \mathbf{E} / c^{2}\right) \tag{20}
\end{align*}
$$

[Hint: you may find the algebra easier if you treat \mathbf{E} and \mathbf{B} separately. Do you need to work out all the matrix elements, or can you argue that you already know the symmetry?]

Find the magnetic field due to a long straight current by Lorentz transformation from the electric field due to a line charge.

Solution:

The field strength tensor is given by

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \tag{21}\\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right)
$$

(Note that the signs of matrix elements are sensitive to the choice of the Minkowski metric convention - here we use $(-+++)$, but for $(+---)$ all entries change sign.)

Since $F^{\mu \nu}$ is a tensor of rank $(2,0)$, under general continuous coordinate transformation $x \rightarrow$ $x^{\prime}=x^{\prime}(x)$ it transforms as

$$
\begin{equation*}
F^{\prime \mu \nu}=\frac{\partial x^{\prime \mu}}{\partial x^{\rho}} \frac{\partial x^{\prime \nu}}{\partial x^{\sigma}} F^{\rho \sigma} \tag{22}
\end{equation*}
$$

Lorentz transformations are linear, $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$. For the motion of S^{\prime} along OX we have $x^{\prime 0}=$ $\gamma\left(x^{0}-\beta x^{1}\right), x^{1}=\gamma\left(x^{1}-\beta x^{0}\right)$, i.e.

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \tag{23}\\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In matrix form, the transformation (22) is

$$
\begin{equation*}
F^{\prime}=\Lambda F \Lambda^{T} \tag{24}
\end{equation*}
$$

(This may require a bit of attention - note that 22 is written for individual components of the matrices; convince yourself, maybe using simple $2 d$ examples, that (24) is correct.)

The result of the matrix multiplication is $F^{\prime}=A+B$, where

$$
A=\left(\begin{array}{cccc}
0 & E_{x} / c & \gamma E_{y} / c & \gamma E_{z} / c \tag{25}\\
-E_{x} / c & 0 & -\beta \gamma E_{y} / c & -\beta \gamma E_{z} / c \\
-\gamma E_{y} / c & \beta \gamma E_{y} / c & 0 & 0 \\
-\gamma E_{z} / c & \beta \gamma E_{y} / c & 0 & 0
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cccc}
0 & 0 & -\beta \gamma B_{z} & \beta \gamma B_{y} \tag{26}\\
0 & 0 & \gamma B_{z} & -\gamma B_{y} \\
\beta \gamma B_{z} & -\gamma B_{z} & 0 & B_{x} \\
-\beta \gamma B_{y} & \gamma B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Comparing this with the standard form of $F^{\mu \nu}$, we see that $E_{x}^{\prime}=E_{x}, E_{y}^{\prime}=\gamma E_{y}-\gamma \beta c B_{z}$, $E_{z}^{\prime}=\gamma E_{z}+\gamma \beta c B_{y}$. Since the motion is along OX, $E_{x}=E_{\|}$, and $E_{y}, E_{z}=E_{\perp}$. Thus, we can write the above formulas as

$$
\begin{align*}
& \mathbf{E}_{\|}^{\prime}=\mathbf{E}_{\|}, \tag{27}\\
& \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \wedge \mathbf{B}\right) . \tag{28}
\end{align*}
$$

Similarly, $B_{x}^{\prime}=B_{x}, B_{y}^{\prime}=\gamma B_{y}+\gamma \beta E_{z} / c, B_{z}^{\prime}=\gamma B_{z}-\gamma \beta E_{y} / c$, which can be written in the form

$$
\begin{align*}
& \mathbf{B}_{\|}^{\prime}=\mathbf{B}_{\|}, \tag{29}\\
& \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\mathbf{v} \wedge \mathbf{E} / c^{2}\right) . \tag{30}
\end{align*}
$$

We now apply these formulas to a concrete problem: Find the magnetic field due to a long straight current by Lorentz transformation from the electric field due to a line charge.

We use the field transformations (written here in slightly different notations)

$$
\begin{align*}
\vec{E}_{\|}^{\prime} & =\vec{E}_{\|} \\
\vec{E}_{\perp}^{\prime} & =\gamma\left(\vec{E}_{\perp}+\vec{v} \times \vec{B}\right), \\
\vec{B}_{\|}^{\prime} & =\vec{B}_{\|}, \\
\vec{B}_{\perp}^{\prime} & =\gamma\left(\vec{B}_{\perp}-\vec{v} \times \vec{E} / c^{2}\right) . \tag{31}
\end{align*}
$$

In the frame S where the charge carriers are not moving, the magnetic field is zero and the electric

FIG. 1: Problem 6: the line charge viewed in different reference frames.
field \vec{E} can be found by using Gauss-Ostrogradsky's theorem ${ }^{1}$:

$$
\begin{equation*}
\vec{E}=\frac{\rho}{2 \pi \epsilon_{0} r} \vec{n} \tag{32}
\end{equation*}
$$

where $r=\sqrt{x^{2}+y^{2}},|\vec{n}|=1, \vec{E}=\left(E_{x}, 0, E_{z}\right)$.
We can now transform to S^{\prime} moving along OY with velocity \vec{v} (thus in S^{\prime} there is a current flowing in the negative y^{\prime} direction). In S^{\prime} :

$$
\begin{array}{ll}
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}=0, & \vec{E}_{\perp}^{\prime}=\gamma \vec{E}_{\perp}, \\
\vec{B}_{\|}^{\prime}=0, & \vec{B}_{\perp}^{\prime}=-\gamma \vec{v} \times \vec{E} / c^{2}, \tag{34}
\end{array}
$$

Therefore, the magnitude of the magnetic field in S^{\prime} is

$$
\begin{equation*}
\left|\vec{B}_{\perp}^{\prime}\right|=\frac{\gamma}{c^{2}} v \frac{\rho}{2 \pi \epsilon_{0} r} . \tag{35}
\end{equation*}
$$

In Eq. (35), we need to express all quantities via the corresponding quantities in S^{\prime}. Note that $r^{\prime}=r\left(x, z\right.$ do not transform), and $\rho^{\prime} d l^{\prime}=\rho d l$ (charge conservation), therefore $\rho^{\prime}=\gamma \rho$ (since $\left.d l^{\prime}=d l / \gamma\right)$. Also, $\vec{v}^{\prime}=-\vec{v}$. Thus

$$
\begin{equation*}
\left|\vec{B}_{\perp}^{\prime}\right|=\frac{v^{\prime} \rho^{\prime}}{2 \pi \epsilon_{0} r^{\prime} c^{2}}=\frac{I^{\prime}}{2 \pi \epsilon_{0} r^{\prime} c^{2}}, \tag{36}
\end{equation*}
$$

where $I^{\prime}=\rho^{\prime} v^{\prime}$. Note that $c^{2}=1 / \epsilon_{0} \mu_{0}$, hence

$$
\begin{equation*}
\left|\vec{B}_{\perp}^{\prime}\right|=\frac{\mu_{0} I^{\prime}}{2 \pi r^{\prime}}, \tag{37}
\end{equation*}
$$

as anticipated.

[^0]
Problem 7

The electromagnetic field tensor $F^{\mu \nu}$ (sometimes called the Faraday tensor) is defined such that the 4-force on a charged particle is given by

$$
\begin{equation*}
f^{\mu}=q F^{\mu \nu} U_{\nu} . \tag{38}
\end{equation*}
$$

By comparing this to the Lorentz force equation

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \wedge \mathbf{B})
$$

which defines the electric and magnetic fields (keeping in mind the distinction between $d \mathbf{p} / d t$ and $\left.d P^{\mu} / d \tau\right)$, show that the components of the field tensor are

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{x} / c & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Solution:

We can recall that the 4 -velocity $U^{\mu}=(\gamma c, \gamma \mathbf{v})$ and the components of the 4 -force are

$$
\frac{d p^{\mu}}{d \tau}=f^{\mu}=\left(\frac{\gamma}{c} \frac{d E}{d t}, \gamma \mathbf{f}\right)
$$

where $p^{\mu}=(E / c, \mathbf{p}), d \tau=d t / \gamma$ and $d p_{i} / d t=f_{i}\left(\right.$ or $d p^{i} / d t=f^{i}$; note that $\left.f_{i}=f^{i}\right)$.
The $3 d$ equation of motion involving Lorentz force is

$$
\begin{equation*}
\dot{p}^{i}=q E^{i}+q(v \times B)^{i} . \tag{39}
\end{equation*}
$$

On the other hand, Eq. (38) gives

$$
\begin{equation*}
\gamma \dot{p}^{i}=-q \gamma c F^{i 0}+q \gamma F^{i k} v_{k} . \tag{40}
\end{equation*}
$$

Comparing Eqs. (39) and (40), we find $F^{i 0}=-E^{i} / c=-E_{i} / c$.
Since $U_{\mu} f^{\mu}=0$ for $m=$ const (this can be seen by remembering that $U_{\mu} f^{\mu}$ is Lorentz-invariant and computing it in particle's rest frame, where $U_{\mu} f^{\mu}=-c^{2} \dot{m}=0$ for $m=$ const), we have $F^{\mu \nu} U_{\mu} U_{\nu}=0$ and hence $F^{\mu \nu}=-F^{\nu \mu}$, since $U_{\mu} U_{\nu}=U_{\nu} U_{\mu}$. Thus, $F^{\mu \nu}$ is antisymmetric, and $F^{0 i}=-F^{i 0}=E^{i} / c=E_{i} / c$.

Comparing now the part with v^{i}, we find $\varepsilon_{i j k} v_{j} B_{k}=F_{i j} v_{j}$ (note that with $i, j, k=x, y, z$ we have $F_{i j}=F^{i j}$). Therefore, $F^{i j}=F_{i j}=\varepsilon_{i j k} B_{k}$, i.e. $F^{12}=\varepsilon_{123} B_{3}=B_{z}, F^{13}=\varepsilon_{132} B_{2}=-B_{y}$ and $F^{23}=\varepsilon_{231} B_{1}=B_{x}$.

Thus, with all diagonal components vanishing due to antisymmetry, we get

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \tag{41}\\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Problem 8

Show that the field equation $\partial_{\lambda} F^{\lambda \nu}=-\mu_{0} \rho_{0} U^{\nu}$ is equivalent to

$$
\partial^{\lambda} \partial_{\lambda} A^{\nu}-\partial^{\nu}\left(\partial_{\lambda} A^{\lambda}\right)=-\mu_{0} J^{\nu},
$$

where $J^{\nu} \equiv \rho_{0} U^{\nu}$ (here ρ_{0} is the proper charge density, and J^{ν} is the 4-current density). Comment.

Solution:

Since $F^{\lambda \nu}=\partial^{\lambda} A^{\nu}-\partial^{\nu} A^{\lambda}$, we get

$$
\begin{equation*}
\partial_{\lambda} \partial^{\lambda} A^{\nu}-\partial^{\nu}\left(\partial_{\lambda} A^{\lambda}\right)=-\mu_{0} J^{\nu}, \tag{42}
\end{equation*}
$$

where $J^{\nu}=\rho_{0} U^{\nu}$, with $U^{\nu}=(\gamma c, \gamma \mathbf{v})$, so that $J^{\nu}=\left(\gamma \rho_{0} c, \gamma \rho_{0} \mathbf{v}\right)$. Note that ρ_{0} is the proper charge density, i.e. the charge density in the rest frame of the charge. We can introduce $\rho=\gamma \rho_{0}$, then $J^{\nu}=(\rho c, \rho \mathbf{v})$.

In the Lorentz gauge $\left(\partial_{\mu} A^{\mu}=0\right)$ Eq. (43) becomes

$$
\begin{equation*}
\partial_{\lambda} \partial^{\lambda} A^{\nu} \equiv \square A^{\nu}=-\mu_{0} J^{\nu}, \tag{43}
\end{equation*}
$$

In components:

$$
\begin{equation*}
\square A^{0}=-\mu_{0} J^{0}=-\mu_{0} \rho c, \tag{44}
\end{equation*}
$$

or, since $A^{\mu}=(\phi / c, \mathbf{A})$,

$$
\begin{equation*}
\square \phi=-\frac{\rho}{\epsilon_{0}} . \tag{45}
\end{equation*}
$$

The remaining components in Eq. (43) are

$$
\begin{equation*}
\square A^{i}=-\mu_{0} J^{i} . \tag{46}
\end{equation*}
$$

Eqs. (45) and (46) are Maxwell's equations in the Lorentz gauge.
One can also show (do this) that the other pair of Maxwell's equations, $\nabla \cdot \mathbf{B}=0$ and $\nabla \times \mathbf{E}=$ $-\frac{\partial \mathrm{B}}{\partial t}$, i.e. the equations without sources, can be written as $\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}+\partial_{\lambda} F_{\mu \nu}=0$, or, equivalently, as $\partial_{\mu} \tilde{F}^{\mu \nu}=0$.

The Moral: Maxwell's equations in covariant form are written as

$$
\begin{align*}
& \partial_{\mu} F^{\mu \nu}=-\mu_{0} J^{\nu}, \tag{47}\\
& \partial_{\mu} \tilde{F}^{\mu \nu}=0 . \tag{48}
\end{align*}
$$

Note that the sign in (47) corresponds to signature $(-+++)$.

Problem 9

Show that the following two scalar quantities are Lorentz invariant: $D=\mathbf{B}^{2}-\mathbf{E}^{2} / c^{2}$ and $\alpha=\mathbf{B} \cdot \mathbf{E} / c$. [Hint: for the second, introduce the dual field tensor $\tilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \kappa \lambda} F^{\kappa \lambda}$.]

Show that if $\alpha=0$ but $D \neq 0$ then either there is a frame in which the field is purely electric, or there is a frame in which the field is purely magnetic. Give the condition required for each case, and find an example of such a frame (by specifying its velocity relative to one in which the fields are $\mathbf{E}, \mathbf{B})$. Suggest a type of field for which both $\alpha=0$ and $D=0$.

Solution:

First, we show that $D=\frac{1}{2} F_{\mu \nu} F^{\mu \nu}$ and $\alpha=\frac{1}{4} \tilde{F}_{\mu \nu} F^{\mu \nu}$. We have

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \tag{49}\\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Lowering the indices with Minkowski tensor, we find $F_{\mu \nu}=\eta_{\mu \lambda} \eta_{\nu \sigma} F^{\lambda \sigma}$. Explicitly,

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} / c & -E_{y} / c & -E_{z} / c \tag{50}\\
E_{x} / c & 0 & B_{z} & -B_{y} \\
E_{y} / c & -B_{z} & 0 & B_{x} \\
E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Note that $F_{\mu \nu} F^{\mu \nu}=-F_{\mu \nu} F^{\nu \mu}=-\operatorname{tr} F_{\mu \nu} F^{\nu \sigma}$. So, to compute $F_{\mu \nu} F^{\mu \nu}$, one has to multiply the matrices 49 and 50 and compute the trace (with the minus sign) of the resulting matrix. This gives

$$
\begin{equation*}
F_{\mu \nu} F^{\mu \nu}=2 \mathbf{B}^{2}-2 \mathbf{E}^{2} / c^{2}=2 D \tag{51}
\end{equation*}
$$

To get α, one uses the definition $\tilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \kappa \lambda} F^{\kappa \lambda}$. Note that $\tilde{F}_{\mu \nu}=-\tilde{F}_{\nu \mu}$. Explicitly, one has $\tilde{F}_{01}=\frac{1}{2} \epsilon_{01 \mu \nu} F^{\mu \nu}=\frac{1}{2} \epsilon_{0123} F^{23}+\frac{1}{2} \epsilon_{0132} F^{32}=\frac{1}{2} \epsilon_{0123} F^{23}-\frac{1}{2} \epsilon_{0123} F^{32}=\frac{1}{2}\left(F^{23}-F^{32}\right)=F^{23}=B_{x}$, and similarly for other components. The result is

$$
\tilde{F}_{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \tag{52}\\
-B_{x} & 0 & E_{z} / c & -E_{y} / c \\
-B_{y} & -E_{z} / c & 0 & E_{x} / c \\
-B_{z} & E_{y} / c & -E_{x} / c & 0
\end{array}\right)
$$

Again, computing $\tilde{F}_{\mu \nu} F^{\mu \nu}=-\tilde{F}_{\mu \nu} F^{\nu \mu}=-\operatorname{tr} \tilde{F}_{\mu \nu} F^{\nu \sigma}=\frac{4}{c} \vec{E} \cdot \vec{B}=4 \alpha$.

$$
\begin{equation*}
\tilde{F}_{\mu \nu} F^{\mu \nu}=\frac{4}{c} \vec{E} \cdot \vec{B}=4 \alpha \tag{53}
\end{equation*}
$$

One can check that $\tilde{F}_{\mu \nu} \tilde{F}^{\mu \nu}$ gives the same as $F_{\mu \nu} F^{\mu \nu}$, i.e. it is not a new invariant. Note also that $\tilde{F}_{\mu \nu}$ is a pseudotensor (and, correspondingly, α is a pseudoscalar), i.e. they change sign under parity transformation $\mathrm{P}: \mathbf{x} \rightarrow-\mathbf{x}$.

If $\alpha=0$, then $\vec{E} \cdot \vec{B}=0$, i.e. in a given frame S fields \vec{E} and \vec{B} are either perpendicular, or one of them is zero. In the latter case, the problem is solved in S . In the former case, the outcome depends on the sign of $D \neq 0$.

1) $D<0$: This means that in S we have $\mathbf{B}^{2}<\mathbf{E}^{2} / c^{2}$. Then one can find a frame S^{\prime} with $\mathbf{B}^{\prime}=0$. Recall the field transformations

$$
\begin{align*}
& \mathbf{E}_{\|}^{\prime}=\mathbf{E}_{\|}, \tag{54}\\
& \mathbf{B}_{\|}^{\prime}=\mathbf{B}_{\|}, \tag{55}\\
& \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \wedge \mathbf{B}\right), \tag{56}\\
& \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\mathbf{v} \wedge \mathbf{E} / c^{2}\right) . \tag{57}
\end{align*}
$$

Choose S^{\prime} moving with $\mathbf{v} \perp \mathbf{B}$. Then $\mathbf{B}_{\|}=0$ (and thus $\mathbf{B}_{\|}^{\prime}=0$) and $\mathbf{B}_{\perp}=\mathbf{B}$. Choose the magnitude of \mathbf{v} so that $\mathbf{v} \times \mathbf{E} / c^{2}=\mathbf{B}$, i.e. $v=B c^{2} / E$, where E and B are the magnitudes of the fields. Then is S^{\prime} we have $\mathbf{B}_{\|}^{\prime}=0$ and $\mathbf{B}_{\perp}^{\prime}=0$, so there is only an electric field in S^{\prime}. Note that, since $D<0$, we have $\beta=v / c=B c / E<1$, so such a frame exists.
2) $D>0$: This means that in S we have $\mathbf{B}^{2}>\mathbf{E}^{2} / c^{2}$. We can find a frame S ' where the field is purely magnetic. Choosing $\mathbf{v} \perp \mathbf{E}$, so that $\mathbf{E}_{\|}=0$ (and thus $\mathbf{E}_{\|}^{\prime}=0$), and the magnitude of the velocity so that $\mathbf{v} \times \mathbf{B}=-\mathbf{E}_{\perp}$, i.e. $v=E / B$, we find that in S^{\prime} only the magnetic field is non-zero. Such a frame exists, since $v / c=E / B c<1$, since $D>0$.
3) The important case of $D=0$ and $\alpha=0$ corresponds to the solution of Maxwell's equations known as electromagnetic waves.

[^0]: ${ }^{1}$ First established by Lagrange. This is a special case of the general Stokes' formula for differential forms.

