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Problem 5

The 4-vector field Fµ is biven by Fµ = 2xµ + kµ(xνxν) where k is a constant 4-vector and xµ =

(ct, x, y, z) is the 4-vector displacement in spacetime.

Evaluate the following:

(i) ∂λx
λ

(ii) ∂µ
(
xλx

λ
)

(iii) ∂µ∂µx
νxν

(iv) ∂λF
λ

(v) ∂µ
(
∂λF

λ
)

(vi) ∂µ∂µ sin kλx
λ

(vii) ∂µxν .

Solution:

It is important to clearly understand the meaning of all the notations. We have xµ = (ct, xi) and

∂µ = ∂
∂xµ . Then xµ ≡ ηµνx

ν , where ηµν = diag(−1, 1, 1, 1) is the Minkowski space metric tensor.

Thus, xµ = (−ct, xi). (Note that often, e.g. in particle physics, a different signature convention is

used, ηµν = diag(1,−1,−1,−1), and formulas will change accordingly; physical results, of course,

remain the same.)

(i)

∂λx
λ =

∂xλ

∂xλ
= ∂0x

0 + ∂1x
1 + ... = 4 .

Alternatively, since

∂µx
ν = δνµ ,

we have ∂λx
λ = δλλ = 4.

(ii)

∂µ
(
xλx

λ
)

= ηµν∂ν (ηρσx
ρxσ) = ηµνηρσ (δρνx

σ + xρδσν ) = ηµνηνσx
σ + ηµνηρνx

ρ = 2xµ .

(iii) Note that ∂µ (xνx
ν) = 2xµ and ∂µx

µ = 4. Combining these results, we find

∂µ∂µx
νxν = 8.

(iv) Similarly,

∂λF
λ = 2∂λx

λ + kλ∂λ(xνxν) = 8 + 2kλxλ .
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(v)

∂µ(∂λF
λ) = 2kλδµλ = 2kµ .

(vi)

∂µ∂µ(sin kλx
λ) = ∂µ

(
kµ cos kλx

λ
)

= −kµkµ sin kλx
λ = −k2 sin kx .

(vii)

∂µxν = ηµρ∂ρx
ν = ηµρδνρ = ηµν .
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Problem 6

A particle of rest mass m and kinetic energy 3mc2 strikes a stationary particle of rest mass 2m

and combines with it while still conserving energy and momentum. Find the rest mass and speed

of the composite particle.

Solution:

In a given inertial frame, the 4-momenta of the two initial particles are pµ1 = (E1/c, ~p1), p
µ
2 =

(2mc, 0). We also know that E1 = mc2 + T = mc2 + 3mc2 = 4mc2. Since

−E
2
1

c2
+ |~p1|2 = −m2c2 ,

we find that |~p1| =
√

15mc. Note that p21 = −m2c2 and p22 = −4m2c2.

Since the 4-momentum is conserved in the collision, we have

p1 + p2 = pf .

This implies

(p1 + p2)
2 = p21 + p22 + 2p1 · p2 = p2f = −M2c2 ,

where M is the mass of the composite particle. Explicitly,

−m2c2 − 4m2c2 − 2
E1

c
2mc = −M2c2 .

Since E1 = 4mc2, we find M =
√

21m.

For the energy over c, i.e. for the zeroth component of the equation

pµ1 + pµ2 = pµf

we have E1/c+ 2mc = Ef/c, so Ef = 6mc2. Since

Ef = γfMc2

we get γf = 6/
√

21 and therefore βf =
√

15/6⇒ vf = 0.645c.
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Problem 7

Two photons may collide to produce an electron-positron pair. If one photon has energy E0 and the

other has energy E, find the threshold value of E for this reaction in terms of E0 and the electron

rest mass m.

High energy photons of galactic origin pass through the cosmic microwave background radiation

which can be regarded as a gas of photons of energy 2.3× 10−4 eV. Calculate the threshold energy

of the galactic photons for the production of electron-positron pairs.

Solution:

The 4-momenta of the two photons can be written as kµ1 =
(
~ω1
c , ~ ~k1

)
and kµ2 =

(
~ω2
c , ~ ~k2

)
,

where k21 = 0, k22 = 0 (since photons are massless), and ~ω1 = E0 and ~ω2 = E. Conservation of

energy and momentum implies

kµ1 + kµ2 = pµ1 + pµ2 ,

where p1 and p2 are the 4-momenta of the electron and positron. We have then

(k1 + k2)
2 = 2k1 · k2 = (p1 + p2)

2 = p21 + p22 + 2p1 · p2 . (1)

The invariants can be computed in any inertial frame. It is convenient to compute the invariant

on the RHS of eq. (1) in the CMF of the electron-positron pair. The threshold condition means

that in the CMF, the spatial momenta of electron and positron are zero (the energy is just enough

to produce them, but not enough to set them in motion). So, in the CMF: p1 = (mc, 0) and

p2 = (mc, 0). Eq. (1) becomes

2k1 · k2 = −2
EE0

c2
(1− cosφ) = p21 + p22 + 2p1 · p2 = −4m2c2 , (2)

where φ is the angle between the directions of the photons. Thus,

E =
2m2c4

E0(1− cosφ)
.

Since we are interested in the threshold (minimum) energy E = Emin, we choose φ = π. Then

Emin =
m2c4

E0
.

With the numbers given in the problem, we find Emin ≈ 1.14×1015 eV ∼ 1 PeV ∼ 103 TeV, about

100 times more energetic than LHC.
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Problem 8

A particle Y decays into three other particles, with labels indicated by Y → 1 + 2 + 3. Working

throughout in the CM frame:

(i) Show that the 3-momenta of the decay products are coplanar.

(ii) Show that the energy of particle 3 is given by

E3 =
(m2

Y +m2
3 −m2

1 −m2
2)c

4 − 2E1 · E2 + 2p1 · p2 c
2

2mY c2

(iii) Show that the maximum value of E3 is

E3,max =
m2
Y +m2

3 − (m1 +m2)
2

2mY
c2 .

(iv) Show that, when particle 3 has its maximum possible energy, particle 1 has the energy

E1 =
m1(mY c

2 − E3,max)

m1 +m2
.

[Hint: first argue that 1 and 2 have the same speed in this situation.]

(v) Now let’s return to the more general circumstance, with E3 not necessarily maximal. Let X

be the system composed of particles 1 and 2. Show that its rest mass is given by

m2
X = m2

Y +m2
3 − 2mYE3/c

2 .

(vi) Write down an expression for the energy E∗ of particle 2 in the rest frame of X in terms

of m1, m2 and mX .

(vii) Show that when particle 3 has an intermediate energy, m− 3c2 < E3 < E3,max, the energy

of particle 2 in the original frame (the rest frame of Y) is in the range

γ (E∗ − βp∗c) ≤ E2 ≤ γ (E∗ + βp∗c) ,

where E∗ and p∗ are the energy and momentum of particle 2 in the X-frame and γ and β refer to

the speed of that frame relative to the rest frame of Y .

Solution:

(i) The 4-momentum is conserved,

pY = p1 + p2 + p3 , (3)

Moreover, in CMF we have pY = (mY c, 0) and ~p1 +~p2 +~p3 = 0. To show that the three vectors are

coplanar, we need to check the condition ~p3 · (~p1 × ~p2) = 0 (the order of indices 1,2,3 is irrelevant

here). Since ~p1 = −~p2 − ~p3 = 0, we have

~p3 · (~p1 × ~p2) = −~p3 [(~p2 + ~p3)× ~p2] = ~p3 · (~p2 × ~p3) ≡ 0.
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(ii) From eq. (3) we get

(pY − p3)2 = (p1 + p2)
2 . (4)

In CMF, pY = (mY c, 0), pi = (Eic , ~pi), i = 1, 2, 3, with ~p1 + ~p2 + ~p3 = 0. Eq. (4) gives

−m2
Y c

2 −m2
3c

2 + 2mYE3 = −m2
1c

2 −m2
2c

2 − 2
E1E2

c2
+ 2p1 · p2 ,

from which we find

E3 =
(m2

Y +m2
3 −m2

1 −m2
2)c

4 − 2E1 · E2 + 2p1 · p2 c
2

2mY c2
. (5)

(iii) Eq. (5) suggests that as far as the angle θ between ~p1 and ~p2 is concerned, the maximal

value of E3 is attained when θ = 0. The other parameters we can maximize with respect to are

the magnitudes p1 and p2 of the two vectors. The condition ∂E3/∂p1 = 0 implies

∂E1

∂p1
E2 = p2c

2

or, since E1 =
√
p21c

2 +m2
1c

4,

p1
E1

=
p2
E2

. (6)

Also, since p1 = γ1m1v1 and E1 = γ1m1c
2, we have p1c/E1 = v1/c. Thus, from eq. (6), we obtain

v1 = v2 ≡ v, i.e. the particles 1 and 2 move with the same speed v in the same direction (opposite

to the direction of particle 3). We should also check that the extremum ∂E3/∂p1 = 0 is actually a

maximum. This can be done by computing the second derivative (it is rather straightforward to

do) and showing that ∂2E3/∂p
2
1 < 0. Starting with p2 insetad of p1 gives the same result. Now,

with E1 = γ(v)m1c
2, E2 = γ(v)m2c

2, p1 = γ(v)m1v, p2 = γ(v)m2v, we get

−2
E1E2

c2
+ 2p1 · p2 = −2γ2m1m2c

4 + 2γ2m1m2β
2c4 = 2γ2m1m2c

4(1− β2) = 2m1m2c
4 .

Eq. (5) then becomes

E3,max =
m2
Y +m2

3 − (m1 +m2)
2

2mY
c2 .

(iv) From conservation of energy (zeroth component of eq. (3)), we can write

mY c
2 = E1 + E2 + E3,max ,

where all energies are computed in CMF. From the discussion in (iii), we see that E2 = m2E1/m1

in this particular situation. Thus,

E1 =
m1(mY c

2 − E3,max)

m1 +m2
.
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(v) Treating 1 and 2 as a composite particle X, instead of eq. (3) we have

pY = pX + p3 .

Then

(pY − p3)2 = −m2
Y c

2 −m2
3c

2 + 2E3mY = p2X = −m2
Xc

2 .

Therefore,

m2
X = m2

Y +m2
3 − 2mYE3/c

2 .

(vi) Since pX = p1 + p2, we can write

p21 = (pX − p2)2

and compute the right hand side in the rest frame of X, where pX = (mXc, 0) and p2 = (E∗/c, ~p∗).

We have

−m2
1c

2 = −m2
Xc

2 −m2
2c

2 + 2E∗mX ,

and so

E∗ =
m2
X +m2

2 −m2
1

2mX
c2 .

(vii) In (vi), we found the energy of particle 2, E∗, in the rest frame of X. In the rest frame

of Y , the energy E2 can be found by making a Lorentz transformation from the rest frame of X

to the rest frame of Y ,

E2 = γ
(
E∗ + βp∗‖c

)
,

where γ and β refer to the velocity of X w.r.t. Y and p∗‖ is the component of ~p∗ parallel to that

velocity. When E3 = E3,max, particles 1 and 2 move in the same direction and p∗‖ = p∗. Thus, the

upper bound is given by E2,max = γ (E∗ + βp∗c). When E3 = m3c
2, particle 3 is not moving in the

Y system, and thus particles 1 and 2 move in the opposite directions to conserve the 3-momentum.

Then p∗‖ = −p∗ and E2,min = γ (E∗ − βp∗c). Therefore,

γ (E∗ − βp∗c) ≤ E2 ≤ γ (E∗ + βp∗c) .
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Problem 9

Obtain the formula for the Compton effect using 4-vectors, starting from the usual energy-

momentum conservation Pµ + Pµe = (P ′)µ + (P ′e)
µ. [Hint: we would like to eliminate the final

elecron 4-momentum (P ′e)
µ, so make this the subject of the equation and square.]

A collimated beam of X-rays of energy 17.52 keV is incident on an amorphous carbon tar-

get. Sketch the wavelength spectrum you would expect to be observed at a scattering angle of 90◦,

including a quantitative indication of the scale.

In the lab frame, the original electron is stationary, so Pe = (mec, 0), whereas for the photon

P = (Eγ/c, ~pγ), where Eγ = ~ω, and |~pγ | = Eγ/c, with P 2 = 0. The 4-vector conservation law

reads

P + Pe = P ′ + P ′e .

It is convenient to eliminate the final electron 4-momentum by writing

(
P + Pe − P ′

)2
= P ′2e = −m2

ec
2 .

Simplifying, we find (recall that P 2 = 0 and P ′2 = 0 since photons are massless)

PP ′ − PPe + P ′Pe = 0

or, explicitly,

−
EγE

′
γ

c2
+
EγE

′
γ

c2
cosϕ = me

(
E′γ − Eγ

)
,

where ϕ is the angle between ~pγ and ~p′γ . With Eγ = ~ω = hν = hc/λ, we get

λ′ − λ =
h

mec
(1− cosϕ) = λC (1− cosϕ) ,

where λC ≡ h/mec = hc/mec
2 is the Compton wavelength.

We have hc ≈ 1.24 · 10−6 eV ·m, and the electron’s Compton wavelength λC ≈ 2.43 · 10−12 m =

0.00243 nm. The beam’s photons have λ = hc/Eγ ≈ 0.0708 nm. At 90◦, the scattered photons will

have a peak around λ′ = λ+ λC ≈ 0.0732 nm. We may also expect contributions to the spectrum

from the photons of lower energy resulting from multiple, rather than single, scattering. A typical

spectrum is shown in Fig. 1.
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FIG. 1: A typical spectrum of photons after Compton scattering by a target (in this case, a 662 keV

photon beam from 137Cs radioactive source was scattered on a steel target at a scattering angle of 120◦).

Ignore the background and focus on blue dots only. The Compton peak is well visible at the energy of

about 225 keV (predicted by the Compton’s formula). At lower energies, there is a broad distribution of

photons resulting from multiple scattering. Figure from the paper by Tran Thien Thanh et al., “Verifi-

cation of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target

using MCNP5 code” in “Applied Radiation and Isotopes”, Volume 105, November 2015, Pages 294-298;

https://doi.org/10.1016/j.apradiso.2015.09.005.
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