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Problem 1

Show, using algebra, a spacetime diagram, or otherwise, that

(i) the temporal order of two events is the same in all reference frames if and only if they are

separated by a time-like interval;

(ii) there exists a reference frame in which two events are simultaneous if and only if they are

separated by a space-like interval;

(iii) for any time-like vector there exists a frame in which its spatial part is zero;

(iv) any vector orthogonal to a time-like vector must be space-like;

(v) with one exception, any vector orthogonal to a null vector is spacelike, and describe the excep-

tion;

(vi) the instantaneous 4-velocity of a particle is parallel to the worldline to the worldline (i.e.

demonstrate that you understand the meaning of this claim - if you do then it is obvious);

(vii) if the 4-displacement between any two events is orthogonal to an observer’s worldline, then

the events are simultaneous in the rest frame of that observer.

Solution:

(i) In in some inertial reference frame (IRF) S, consider events A and B with coordinates,

repsectively, (ctA, xA) and (ctB, xB), and let ∆x0 = c(tB − tA), ∆x = xB − xA. If ∆x0 > 0 and

∆x′0 > 0 in any other IRF, we can find among them the IRF where ∆x′ = 0 (and thus the interval

between the events A and B, s′2 = −(∆x′0)2 < 0, is time-like in this and thus any other IRF).

Indeed, using Lorentz transformations, we have ∆x′ = γ(∆x−β∆x0), so choosing β = ∆x
∆x0

we get

∆x′ = 0. Note that the condition ∆x′0 = γ(∆x0 − β∆x) > 0 implies ∆x0 > β∆x, and therefore

|β| = |∆x|
∆x0

< 1
|β| ⇒ |β| < 1, so the choice is legitimate.

Conversely, if the interval is time-like, does ∆x0 > 0 imply ∆x′0 > 0? Consider the time-like

interval s2
AB = −(∆x0)2 + ∆x2 < 0, so

s2
AB =


∆x−∆x0 < 0 (∆x0 > ∆x)

∆x+ ∆x0 > 0 (∆x0 > −∆x),

(1)

or 
∆x−∆x0 > 0 (∆x0 < ∆x)

∆x+ ∆x0 > 0 (∆x0 < −∆x),

(2)

It is convenient to represent this on a diagram (see Fig. 1).

Since ∆x′0 = γ(∆x0 − β∆x), ∆x0 > 0 would imply ∆x′0 > 0 if ∆x0 > β∆x. If β and ∆x have
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FIG. 1: Space-time diagram.

different signs, the last inequality is obviously true. If they are both positive (β > 0, ∆x > 0),

then this is true because s2
AB < 0 implies ∆x0 > ∆x and thus ∆x0 > ∆x > β∆x, since β < 1.

For β < 0, ∆x < 0 we can use ∆x0 > −∆x = |∆x| > |β||∆x| = β∆x, since |β| < 1. So indeed

∆x0 > β∆x and thus ∆x′0 > 0.

Thus the notion of causality is meaningful for events separated by time-like intervals: one can

time-order them, and the ordering is the same in all IRFs.

Note (optional): The parameter space of the general Lorentz group (the group preserving the

Minkowski metric) consists of 4 components, depending on the sign of det Λ = ±1 and on the

sign of Λ0
0 (we can have either Λ0

0 ≥ 1 or Λ0
0 ≤ −1). The component with det Λ = 1 and Λ0

0 ≥ 1

contains the identity transformation. This subgroup of the full Lorentz group is called the group

of proper orthochronous Lorentz transformations and is often denoted by L↑+. Other 3 compo-

nents are denoted L↑−, L↓+ and L↓−, where ± corresponds to the sign of the determinant. Generic

Lorentz transformations are combinations of transformations from L↑+ and one of the 4 elements

(E,P, T, PT ), where E = diag(1, 1, 1, 1) is the identity transformation, P = diag(1,−1,−1,−1) is

parity, and T = diag(−1, 1, 1, 1) is time reversal.

One can show that the sign of the component A0 of a generic time-llike 4-vector Aµ is preserved

by the Lorentz transformations Λ ∈ L↑ (orthochronous Lorentz transformations). Indeed, we have

A′µ = ΛµνAν and A′ 0 = Λ0
0A

0 + Λ0
iA

i, where Λ0
0 > 0 since Λ ∈ L↑. Thus, to show that the sign of

A0 remains unchanged, and e.g. A0 > 0 implies A′0 > 0, we need to show that |Λ0
iA

i| < |Λ0
0A

0|

for a time-like vector Aµ.To estimate |Λ0
iA

i|, we use Cauchy-Bunyakovsky inequality: (Λ0
iA

i)2 ≤

(Λ0
iΛ

0
i)(AiAi). Since Aµ is time-like, (A0)2 > AiAi. Also, from ΛµρΛνση

ρσ = ηµν we have (Λ0
0)2 −
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(Λ0
i)

2 = 1. Therefore, (Λ0
iA

i)2 ≤ ((Λ0
0)2−1)(AiAi) < ((Λ0

0)2−1)(A0)2 < (Λ0
0)2(A0)2. So, indeed,

|Λ0
iA

i| < |Λ0
0A

0| for a time-like vector Aµ, and the sign of the temporal component of Aµ remains

unchanged.

(ii) If two events are simultaneous in a certain IRF, the corresponding interval s2
AB = −c2∆t2+

∆x2 = ∆x2 > 0 is space-like. If the interval is space-like, ∆x2−∆(x0)2 > 0 =⇒ |∆x| > |∆x0|, one

can choose IRF such that ∆x′0 = γ(∆x0 − β∆x) = 0: |β| = |∆x0|
|∆x| < 1.

(iii) We use notation, Aµ = (A0, ~A). In a time-like case:

A ·A = ηµνA
µAν = AµA

µ = −(A0)2 + ~A2 < 0, (3)

(note that this statement is independent of IRF)

A′0 = γ(A0 − βA1)

A′1 = γ(A1 − βA0) = 0⇒ β =
A1

A0
, |β| = |A

1|
|A0|

< 1, (4)

since A ·A < 0⇒ | ~A| < |A0|.

(iv) A ·B = 0, −(A0)2 + ~A2 < 0 (time-like). Is B space-like (i.e. is it true that −(B0)2 + ~B2 > 0

or | ~B|/|B0| > 1)?

Yes, since A ·B = 0 implies

−A0B0 + ~A · ~B = 0⇒ |A0||B0| = | ~A|| ~B|| cosα| ⇒ | ~B|
|B0|

=
|A0|

| ~A|| cosα|
> 1. (5)

(v) If A is null, −(A0)2 + ~A2 = 0. Then we have the condition A · B = 0, so together we have

|A0| = | ~A| and A ·B = 0. Then

A0B0 = ~A · ~B = | ~A|| ~B| cosα (6)

and hence

| ~B|
|B0|

=
|A0|

| ~A|| cosα|
=

1

| cosα|
≥ 1, (7)

which means that B is space-like except when ~A‖ ~B in which case B is also null.

(vi) Worldlines in 3+1-dimensional Minkowski space-time: xµ = xµ(τ), where τ is a parameter

(e.g. proper time). Then uµ = dxµ

dτ , i.e. uµ is tangent to the curve in the usual sense,

(recall y = y0 + y′(x)(x − x0) for y = y(x)). Now, ds2 = −c2dt2 + d~x2 = −c2dτ2, where

−c2dt2 + d~x2 is describes ds2 in S and −c2dτ2 in particle’s own frame. Therefore

dτ = dt
√

1− ~v2/c2 =
dt

γ
, (8)
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so that uµ = dxµ

dτ =
(
c dtdτ ,

dxi

dτ

)
= (γc, γ~v).

(vii) Suppose y1 and y2 are two events in S, and ∆yµ = yµ2 − y
µ
1 is the 4-displacement. If for

an observer with a worldlike xµ = xµ(τ) and 4-velocity uµ = dxµ

dτ we have

∆yµuµ = −γc2(t2 − t1) + ∆yiγvi = 0 (9)

(since ∆yµuµ is Lorentz-invariant, this is true in any IRF), then in the rest frame of the observer

(where ~v′ = 0), ∆y′µu′µ = −γc2(t′2 − t′1) = 0⇒ t′2 = t′1, and hence events are simultaneous in that

frame.
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Problem 2

Define proper time. A worldline (not necessarily straight) may be described as a locus of time-like

separated events specified by Xµ = (ct, x, y, z) in some inertial reference frame. Show that the

increase of proper time τ along a given worldline is related to reference frame time t by dt/dτ = γ.

Two particles have 3-velocities ~u, ~v in some reference frame. The Lorentz factor for their relative

velocity ~w is given by

γ(w) = γ(u)γ(v)
(
1− ~u · ~v/c2

)
. (10)

Prove this twice, by using each of the following two methods:

(i) In the given frame, the worldline of the first particle is Xµ = (ct, ~ut) See comments in the

solution. Transform to the rest frame of the other particle to obtain

t′ = γvt
(
1− ~u · ~v/c2

)
.

Obtain dt′/dt and apply the result of the first part of this question.

(ii) Use the invariant UµVµ, first showing that it is equal to −c2γ(w).

Solution:

A proper time of an object (e.g. a point particle) is the time in the reference frame where this

object is not moving, i.e. where its 3-velocity is zero. In such a frame, the object’s 4-coordinate

is Xµ
0 = (cτ, 0, 0, 0), and the infinitesimal interval is ds2 = −c2dτ2. The same object considered in

an inertial reference frame has the 4-coordinate Xµ = (ct, x(t), y(t), z(t)). Since the interval is an

invariant, we find ds2 = −c2dt2 + d~x2 = −c2dτ2 - see problem 1 (vi), with the final equation (8).

Now the proper time is dτ = dt
√

1− ~v2/c2, so

τ =

∫ t2

t1

dt
√

1− ~v2(t)/c2. (11)
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Equation (11) essentially computes the length of a curve in 3 + 1 dimensional Minkowski space-

time. Note that the straight line path is longer than the one along a curve because the geometry

is non-Euclidean.

Now consider the second part of the problem:

(i) In the original reference frame S, the position of a particle with constant 3-velocity ~u is

described by the 4-vector Xµ = (ct, ~ut) = (ct, ~r). A subtlety here is that in principle there is

no need to restrict ourselves to considering constant ~u and ~v (the result for relative velocity is

valid regardless of this assumption). If velocities of the particles ~u and ~v are not constant, then

Xµ = (ct, ~ut) is the 4-vector of an instantaneous IRF (and similarly for the particle ~v), and thus all

transformations below are done between IRFs moving with constant velocities ~u and ~v (therefore,

using Lorentz transformations is a legitimate step).

Let S’ be the inertial reference frame associated with the particle moving with velocity ~v in S.

If ~v were parallel to e.g. the x-axis, one could use the standard Lorentz transformations from S to

S’ :

ct′ = γ (ct− βx) , (12)

x′ = γ (x− βct) . (13)

Note a useful mnemonic rule: on the right-hand-side of Lorentz transformations you can have

EITHER PRIME OR MINUS. Here, the velocity ~v is not parallel to the x axis, but we can reduce

the current situation to the old one. Indeed, the radius-vector ~r can be split into components

parallel and perpendicular to ~v: ~r = ~r‖ + ~r⊥, where ~r‖ = (~r · ~vv ) · ~vv , ~r⊥ = ~r − ~r‖. Now, |~r‖| is the

analog of x in eqs (12)-(13). Transforming to S’ associated with particle v, we thus get

ct′ = γ(v)
(
ct− v

c
r‖

)
= γ(v)

(
ct− ~r · ~v

c

)
⇒ t′ = γ(v)

(
t− ~r · ~v

c2

)
= γ(v)

(
t− t

c2
~u · ~v

)
= tγ(v)

(
1− ~u · ~v

c2

)
. (14)
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In S’, the 4-velocity of particle u is u′µ = dX′µ

dτ = (cγ(w), γwi), where wi is the relative velocity (of

u w.r.t. v). Therefore cγ(w) = cdt
′

dτ , so

dt′ = dtγ(v)

(
1− ~u · ~v

c2

)
−c2dτ2 = −c2dt2 + ~u2dt2 ⇒ dτ = dt/γ(u)

⇒ γ(w) = γ(u)γ(v)
(
1− ~u · ~v/c2

)
. (15)

(ii) The same result can be obtained by computing the invariant UµVµ in different reference

rames.

In S, Uµ =
dXµ

1
dτ1

and V µ =
dXµ

2
dτ2

, where Xµ
1 and Xµ

2 are the 4-coordinates of the two particles,

respectively. Explicitly, since dτ1 = dt/γ(u), dτ2 = dt/γ(v), we find in S: Uµ = (cγ(u), γ(u)~u) and

V µ = (cγ(v), γ(v)~v). Therefore

UµVµ ≡ ηµνUµV ν = −c2γ(u)γ(v) + γ(u)γ(v)~u · ~v = −c2γ(u)γ(v)
(
1− ~u · ~v/c2

)
. (16)

In S’, on the other hand, we have: V ′µ = (c, 0, 0, 0) and U ′µ = (cγ(w), γ(w)~w), where ~w is the

velocity of particle u relative to particle v. Therefore,

U ′µV ′µ = −c2γ(w) . (17)

But the product of 4-vectors is Lorentz-invariant, U ′µV ′µ = UµVµ, so

γ(w) = γ(u)γ(v)
(
1− ~u · ~v/c2

)
, (18)

as before. Note: this result is symmetric in ~u and ~v, and insensitive to whether velocities ~u and

~v are constant. The notion of relative velocity is important in considering scattering of relativistic

particles (see e.g. [1], section 12). The expression for w is sometimes written as

w2 =
(~u− ~v)2 − [~u× ~v]2

(1− ~u · ~v/c2)2 . (19)

For two particles with 4-momenta pµ1 and pµ2 in some intertial frame S, p1µp
µ
2 =

−γ(v1)γ(v2)m1m2c
2 + γ(v1)γ(v2)~v1 ~v2 is an invariant (again, note that ~v1 and ~v2 are not assumed

to be constant). In the frame where one of the particles is at rest, p1µp
µ
2 = −γ(w)m1m2c

2. This is

yet another way to show the validity of Eq. (18) or Eq. (19) (see [1], section 12).

Comment: Considering relative velocity of two points moving with infinitesimally close veloc-

ities ~v and ~v + d~v, we find from Eq. (19)

dw2 =
(c2 − v2)(d~v)2 + (~v · d~v)2

(c2 − v2)2
. (20)
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In the space with coordinates vx, vy, vz, Eq. (20) defines a metric which is known in mathematics

as Lobachevsky metric in three-dimensional non-Euclidean (hyperbolic) space. Thus, the space of

velocities in Special Relativity has the geometry of Lobachevsky (hyperbolic) space. In the limit

v/c→ 0, we return to the Euclidean velocity space dw2 → (d~v)2 = dv2
x + dv2

y + dv2
z .
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Problem 3

Derive a formula for the frequency ω of light waves from a moving source, in terms of the proper

frequency ω0 in the source frame and the angle in the observer’s frame, θ, between the direction of

observation (we take it to be the direction from the source to the observer, otherwise it is π − θ)

and the velocity of the source.

A galaxy with a negligible speed of recession from Earth has an active nucleus. It has emitted two

jets of hot material with the same speed v in opposite directions, at an angle θ to the direction to

Earth. A spectral line in singly-ionised Mg (proper wavelength λ0 = 448.1 nm) is emitted from

both jets. Show that the wavelengths λ± observed on Earth from the two jets are given by

λ± = λ0γ
(

1± v

c
cos θ

)
(21)

(you may assume the angle subtended at Earth by the jets is negligible). If λ+ = 420.2 nm and

λ− = 700.1 nm, find v and θ. In some cases, the receding source is difficult to observe. Suggest a

reason for this.

Solution:

The most convenient way to derive the relativistic Doppler shift formula is to use the invariants.

A source moving w.r.t. an inertial frame S (e.g. w.r.t. Earth) has 4-velocity V µ = (γc, γ~v) in

that frame and 4-velocity V ′µ = (c, 0, 0, 0) in the frame S’ associated with the source. A photon

emitted by the sourse has 4-momentum kµ = (~ωc , ~~k) in S (we shall set ~ = 1 in the following).

Since photon is massless, we have k2 = 0, and thus |~k| = ω/c. In S’, k′µ = (ω0
c ,
~k′). Since the

product kµVµ is an invariant, we have

k′µV ′µ = kµVµ , (22)

or, explicitly,

− ω0 = −γω + γ ~v · ~k = −γω + γ |~v||~k| cos θ , (23)

where θ is the angle between the direction of ~v and the direction of ~k. This gives

ω =
ω0

√
1− β2

1− β cos θ
. (24)

Using λν = c and ω = 2πν, we find the formula for the wavelength

λ = λ0γ (1− β cos θ) . (25)

Assuming that ~k is directed towards the Earth, one can see that for θ = 0 (the source is moving

directly towards the Earth), λ < λ0 (the line is blue-shifted), whereas for θ = π (the source is
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moving directly away from the Earth), λ > λ0 (the line is red-shifted). There exists an angle θ∗

for which neither blue- nor red-shift is observed (λ = λ0). From eq. (25) one can see that

cos θ∗ =
c

v

(
1−

√
1− v2/c2

)
≈ v

2c
for

v

c
� 1 . (26)

Thus, for v/c� 1, θ∗ ≈ π/2.

In the scenario with the galaxy emitting two jets, for the jet moving towards the Earth, we have

λ = λ− = λ0γ (1− β cos θ) , (27)

whereas for the jet moving away from the Earth

λ = λ+ = λ0γ [1− β cos (π − θ)] = λ0γ (1 + β cos θ) . (28)

Substituting numbers, one finds v ≈ 0.6c and θ ≈ 65.4 ◦.

The intensity of the radiation in S requires separate consideration, but one can show (see e.g.

[2] or Chapter 3 of [3]) that for sources, moving towards the Earth, I > I0, whereas for the ones

receding we have I < I0. Thus, the receding source will be dimmer. More precisely, the flux of

energy I (energy per time per solid angle) in S in related to the flux I0 in the frame S’ of the source

by

I =

(
ω

ω0

)4

I0 =
(1− β2)2

(1− β cos θ)4
I0 . (29)

In particular, for the sources directly approaching the observer and directly receding from him/her,

we have

Iapproaching
Ireceding

=

(
1 + β

1− β

)4

> 1 . (30)

Comments:

• It has not been specified in the problem whether the velocity of the source ~v is constant.

If it is not constant, what is meant by ~v is the instantaneous velocity (in frame S) of the

source at the moment (again, in S) the photon was emitted. The presented solution (which

is based on the invariance of the scalar product of 4-vectors) is insensitive to this, and the

result (24) remains valid.

But the result (24) can also be obtained by applying Lorentz transformation to the photon’s

4-momentum kµ = (ω/c,~k) is S:

k′0 = γ(k0 − ~β · ~k) , (31)
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where ~β = ~v/c is the (normalised) velocity of the source in S. However, if ~v is not constant,

the frame associated with the source is not an inertial frame, and Lorentz transformations

apparently cannot be applied. They can be applied, nevertheless, to the instantaneous

inertial reference frame S’ comoving with the source (i.e. the frame whose velocity is contant

and coincides with the velocity of the source at the moment when the photon is emitted).

Since k′0 = ω0/c, where ω0 is the frequency of the source in the frame where its velocity

is zero (i.e. S’), Eq. (31) gives the same result as (24). Similar considerations apply in the

situation when the source is stationary in an inertial frame but the observer is moving with

non-constant velocity, as in the experiment described below.

A simple experiment confirming the result (31) (and, indirectly, the concept of the instanta-

neous comoving inertial reference frame) was performed in 1960 by Hay, Schiffer, Cranshaw

and Engelstaff. The source of photons was located in the centre of a rotating disk of radius

R, and the detector on the rim (thus the detector was moving with acceleration). Since in

the lab frame S in this case ~β ·~k = 0, where ~β is the linear velocity of the rim, the frequency

detected on the rim should be ω′ = γω, where ω is the frequency of the source in the centre

of the disk.

One may be legitimately concerned about using formulas such as (24) in situations where the

velocity v is not constant, since the process of emitting a photon is not exactly instantaneous

(the relevant time-scale is ∆t = T = 2π/ω = 1/ν) and v may change appreciably during

that time interval [4]. During the time ∆t = T which it takes for a complete wave with

the frequency ν = 1/T to pass a point in the observer’s comoving instantaneous rest frame,

the observer, moving with acceleration a, would move by a distance a∆t2/2 = a/2ν2. This

distance better be small in comparison with the wavelength λ = c/ν, i.e. we should have

a � 2cν in order to be able to replace the accelerated observer frame wih the comoving

instantaneous inertial one [4]. For e.g. yellow light, this is a � 3 · 1026g (in the 1960

experiment mentioned above, the acceleration was a ∼ 6 · 104g).

A careful discussion of these issues can be found in Rindler’s books [5] and [4].

• Another remark is that the emitted waves may not necessarily be electromagnetic waves.

For sound waves, kµ = (ω/c,~k), where ω = vs|~k| for small |~k|. Correspondingly, Eq. (23)

reads

− ω0 = −γω + γ ~v · ~k = −γω + γ |~v||~k| cos θ = −γω + γ |~v| ω
vs

cos θ , (32)
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This gives the following formula for relativistic acoustic Doppler effect (here v = |~v|)

ω =
ω0

√
1− v2

c2

1− v
vs

cos θ
. (33)

In the non-relativistic limit, the relativistic square root is gone and we have

ω =
ω0

1− v
vs

cos θ
≈ ω0

(
1 +

v

vs
cos θ

)
(34)

for v/vs � 1.
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Problem 4

The 4-angular momentum of a single particle about the origin is defined as

Lµν ≡ XµP ν −XνPµ .

(i) Prove that in the absence of forces, dLµν/dτ = 0.

(ii) Exhibit the relationship between the space-space part Lij and the 3-angular momentum vector

L = x× p.

(iii) The total angular momentum of a collection of particles about the pivot Rλ is defined as

Lµνtot =
∑
i

(Xµ
i −R

µ)P νi − (Xν
i −Rν)Pµi ,

where the sum runs over the particles (that is, Xµ and Pµ are 4-vectors, not second-rank tensors;

i here labels the particles). Show that the 3-angular momentum in the CM frame is independent of

the pivot.

Solution:

(i) We have, generically,

dpµ

dτ
=

(
1

c

dE

dτ
,
d~p

dτ

)
=

(
γ

c

dE

dt
, γ
d~p

dt

)
.

The absence of forces (~f = 0) implies that dpµ/dτ = 0, since dE/dt = ~f ·~v = 0 and d~p/dt = ~f = 0.

Therefore,

dLµν

dτ
=
dXµ

dτ
P ν − dXν

dτ
Pµ = UµP ν − UνPµ = m (UµUν − UνUµ) = 0 .

(ii) The space-space part Lab (where a, b = 1, 2, 3) of Lµν can be written as a 3x3 antisymmetric

matrix

Lab =


0 L12 L13

L21 0 L23

L31 L32 0

 ,

where L12 = xpy − ypx, L13 = xpz − zpx, L23 = ypz − zpy. On the other hand, L = x × p =

(Lx, Ly, Lz), where the components are determined by the matrix
i j k

x y z

px py pz

 ,
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or else by Li = εijkxjpk. We therefore have Lx = L23, Ly = −L13, Lz = L12, which can also be

written as Li = 1
2εijkL

jk.

(iii) The space-space part Labtot (where a, b = 1, 2, 3) of Lµνtot is

Labtot(R) =
∑
i

[
(Xa

i −Ra)P bi −
(
Xb
i −Rb

)
P ai

]
=
∑
i

(
Xa
i P

b
i −Xb

iP
a
i

)
−Ra

∑
i

P ai +Rb
∑
i

P bi , (35)

where the summation over i is the summation over the particles. Thus,

∑
i

P ai = P atot , and
∑
i

P bi = P btot .

In CMF, ~Ptot = 0, i.e. each component P atot, a = 1, 2, 3, is zero. Thus,

Labtot(R) =
∑
i

(
Xa
i P

b
i −Xb

iP
a
i

)
= Labtot(0) .
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