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I. A BRIEF COMMENT ABOUT THE LITERATURE

The titles recommended by the lecturer are [1] and [2].

When reading about tensors, one should remember that many books discuss them twice - once

in the context of Special Relativity and then in full generality. For example, in Weinberg’s book [3]

tensors appear in Chapter 2 and then in Chapter 4 (and similarly in Landau-Lifshitz [4]). In this

course, we shall not be making such a distinction and always treat tensors in the most general way,

unless explicitly stated otherwise, because this is how they appear in various branches of physics

(not only in SR & GR).

A very useful collection of problems (with solutions!) in Special and General Relativity (tensors

appear in Chapter 3) is [5].

Useful books where tensors and other structures are introduced rigorously but in the language

accessible to physicists are [6], [7], [8], [9].

II. TENSORS AND TENSOR ALGEBRA

In this course, we will be dealing mostly with 3-dimensional Euclidean space and 4-

dimensional Minkowski space. These are examples of the so called “metric spaces”, i.e.

spaces, equipped with a machinery (metric) to measure distances between points. To be

more precise, one has to define the notion of “space” first. This is done in topology and

differential geometry courses (one starts with sets, then introduces topology to have a sense

of continuity, then gradually adds other structures, including a metric). This is important to

know for a physicist, since at small (Planckian, i.e. l ∼ lP =
√
G~/c3 ∼ 10−33cm) distances

some of these structures may not be adequate (e.g. Riemannian geometry may have to be

replaced by a more general construction, reducing at l� lP to the “standard” one).

Coordinates are introduced to quantify a space and objects associated with it. One

can introduce many coordinate systems for the same space, e.g. Cartesian, spherical or

cylindrical coordinates for the 3-dimensional Euclidean space R3, or Cartesian or polar for

R2. (See Morse and Feshbach “Methods of Theoretical Physics” [10], Vol. I, Chapter 5, for

a list of some useful coordinate systems.)

Suppose we have two coordinate systems in n-dimensional space Mn (not necessarily

Euclidean): xi = (x1, x2, ... xn) and x′ i = (x′ 1, x′ 2, ... x′n) . Here i = 1, 2, ...n. Each point

p ∈ Mn is characterised by the set of coordinates (either xi or x′ i), and there is one-to-
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one correspondence1 x′ i = x′ i(x) between the two descriptions at a point p provided the

determinant of the Jacobi matrix

J ij =
∂x′ i

∂xj
(1)

known as the Jacobian does not vanish at this point: J = det J ij 6= 0. Points where J = 0 are

known as coordinate singularities (they are singularities associated with a given coordinate

system, not the space itself).

Excercise: Compute J ij and J for the sets of Cartesian and polar coordinates in R2 and

Cartesian and spherical coordinates in R3. Identify the coordinate singularities.

Now consider vectors on Mn, e.g. the velocity vector of a point moving in Mn. Vectors

are specified by their components ai(x) = (a1(x), a2(x), ... an(x)) at each point x ∈ Mn.

Consider the gradient of a function f in the direction of ai:

ai∇if = ai(x)
∂f

∂xi
, (2)

where summation over repeated indices is assumed (this is known as “Einstein summation

convention”). What happens to this expression if we write it in the new coordinates x′ i =

x′ i(x)? We have

ai(x)
∂f

∂xi
= ai (x(x′))

∂f

∂x′ j
∂x′ j

∂xi
= a′ j(x′)

∂f

∂x′ j
, (3)

where

a′ j(x′) =
∂x′ j

∂xi
ai (x(x′)) (4)

is the law of transformations of vectors (old name: contravariant vectors), or, more precisely,

vector’s components, under the coordinate transformation x′ i = x′ i(x). Eq. (4) appears

naturally: indeed, we could have started in x′ coordinates, writing the gradient of the

function as on the RHS of Eq. (3) (its functional form should not depend on the choice of

coordinates). In fact, we can define a vector in a way independent of the choice of coordinates

by

v = ai(x)
∂

∂xi
, (5)

1 All transformations x′ i = x′ i(x) are assumed to be smooth, e.g. of C∞ class. The important class of discrete
transformations (such as xi → −xi), including parity inversion (x → −x, y → −y, z → −z) and time reversal
(t→ −t), are considered separately.
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where ∂/∂x1, ∂/∂x2...∂/∂xn can be thought as the basis in the linear vector space, similar

to the unit vectors i, j,k in V = a1i + a2j + a3k. Sometimes, the notation ei ≡ ∂/∂xi is

used. Then

v = ai(x)
∂

∂xi
= ai(x) ei (6)

are contravariant vectors (or just vectors) with components ai(x). More precisely, they are

vector fields, since ai are not constant but depend on x.

Similarly, consider the differential of a function, df = bi(x)dxi. Under x′ i = x′ i(x), we

have

df = bi(x)dxi = bi (x(x′))
∂xi

∂x′ j
dx′ j = b′j(x

′)dx′ j , (7)

where

b′j(x
′) =

∂xi

∂x′ j
bi (x(x′)) (8)

is the law of transformations of covectors or differential forms (old name: covariant vectors)

under the coordinate transformation x′ i = x′ i(x). In fact, we can define a covariant vector

in a way independent of the choice of coordinates by

v∗ = bi(x)dxi , (9)

where dx1, dx2...dxn can be thought as the basis in the linear vector space, i.e. notation

ei ≡ dxi is used. Then

v∗ = bi(x)dxi = bi(x) ei (10)

are the covariant vectors with componets bi(x). More precisely, they are covector fields, since

bi are not constant but depend on x.

Denoting the space of all vectors by V and all covectors by V ∗, we see that there us a

natural map V ⊗V ∗ → R (in principle, other fields such as C can be used as well, but some

care should be exercised then, especially in the case of curved spaces) given by

v∗(v) = bjdx
j

(
ai

∂

∂xi

)
= aibi ∈ R . (11)

4



We can think of generalising these constructions to objects with more than one index.

For example,

w∗ = cij(x)dxidxj (12)

is an obvious generalisation of (9). A more highbrow notation is

w∗ = cij(x)dxi ⊗ dxj (13)

but it is really the same thing. An operation

w∗(v) = cij(x)dxi ⊗ dxj
(
ak

∂

∂xk

)
= cija

jdxi ∈ V ∗ (14)

is a map V ∗ ⊗ V ∗ ⊗ V → V ∗ which can be seen as linear operators (matrices) acting on

vectors.

Obviously, we can add more components

w∗ = pijk(x)dxi ⊗ dxj ⊗ dxk , (15)

and so on. For vectors we have,

w = hijk(x)
∂

∂xi
⊗ ∂

∂xj
⊗ ∂

∂xk
, (16)

and we can have mixed objects as well, such as

t = sijk (x)
∂

∂xi
⊗ ∂

∂xj
⊗ dxk , (17)

A generic tensor (more precisely - tensor field, since components depend on x) then is an

object

T = T
i1i2...ip
j1j2...jq

(x)
∂

∂xi1
⊗ · · · ⊗ ∂

∂xip
⊗ dxj1 · · · ⊗ dxjq , (18)

whose components T
i1i2...ip
j1j2...jq

(x) transform under a continuous x′ i = x′ i(x) such that each

upper index transforms as in (4) and each lower index - as in (8), i.e.

T
′ i1i2...ip
j1j2...jq

(x′) =
∂x′ i1

∂xk1
∂x′ i2

∂xk2
· · · ∂x

′ ip

∂xkp
∂xl1

∂x′ j1
∂xl2

∂x′ j2
· · · ∂x

lq

∂x′ jq
T
k1k2...kp
l1l2...lq

(x(x′)) (19)

Tensors are often called rank (p, q)-tensors, specifying the number of upper (contravariant)

and lower (covariant) components. In N -dimensional space, a generic rank (p, q)-tensor has

Np+q components.
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The simplest example of the transformation law (19) is a transformation of a scalar ϕ(x)

(under continuous x′ i = x′ i(x)):

ϕ′(x′) = ϕ(x) . (20)

Note: if, in addition to the property (20) under a continuous transformation, ϕ(x) changes

sign under a parity transformation xi → x′i = −xi, it is called a pseudoscalar. If the sign

remains the same it is sometimes called a true scalar. The same terminology applies to

higher tensors, e.g. we have pseudovectors etc.

Another important example of a (0, 2) tensor is the metric gij(x):

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ ν
gρσ (x(x′)) (21)

Note: since rank 2 tensors are represented by matrices, the transformation (21) can be

written as

G′(x′) = STG(x)S , (22)

where

Sρµ(x) =
∂xρ

∂x′µ
. (23)

In special relativity, the matrix Λ representing Lorentz transformations x′ = Λx is indepen-

dent of x and is given by

Λ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 , (24)

whereas

Λ−1 =


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 , (25)
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where β = v/c and γ = 1/
√

1− β2. Thus, S = Λ−1. Now, G is the Minkowski metric

tensor (normally denoted by η)

G = η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (26)

One can easily check that η′ = STηS = η, i.e. the Minkowski metric is invariant under the

Lorentz transformations.

Important note: NOT EVERY OBJECT WITH INDICES IS A TENSOR.

A canonical example here is the connection coefficient Γijk(x) of GR which is not a tensor

(see e.g. [3]). To check whether an object with indices is a tensor, one has to check the

transformation law (19) explicitly or use some simple facts of tensor algebra:

• A linear combination of (p, q)-tensors tensors is a (p, q)-tensor

• A contraction of tensors is a tensor

If Sijk and Tijlmare tensors, so is

SijkTijlm = Uk
lm ,

where summation over repeated (“dummy”) indices is assumed. An important con-

traction is

T = T ii

known as “trace” (or “Spur” in German), with the notation tr (or Sp).

Tensor product: For two tensors, A and B, one can define a tensor product S = A⊗B.

For example, if A = Ai and B = Bj are vectors, Sij = AiBj. E.g. in d = 2 we have

S =

A1B1 A1B2

A2B1 A2B2

 .

This can be extended to tensors of any rank. Note that the tensor product operation is

generically not commutative (A⊗B 6= B ⊗ A) but associative.
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A. Special tensors

• The Kronecker tensor δij (the identity matrix) is a (1, 1)-rank tensor. It is the same in

all coordinate systems,

δ′ij = δij ,

as can be seen from the transformation law of tensors. Note that lowering or raising indices

of δij we get the metric tensor or its inverse,

gijδ
j
k = gik , gijδkj = gik , gijgjk = δik .

In this sense, the notations δij and δij only make sense in Euclidean space, where the metric

itself is a unit matrix, gij = δij.

• The Levi-Civita absolutely antisymmetric (pseudo) tensor. In R3, we had a useful object

εijk, where ε123 = +1 and any interchange of indices changes the sign. In 4dMinkowski space,

we define a similar object with ε0123 = −ε1023 = · · · = +1. Note that ε0123 = −1. (Also note

that some authors define ε0123 = −1.)

In general curvilinear coordinates, one can introduce a generalisation of this object (writ-

ten here in 4 dimensions)

εijkl(x) =
√
|g(x)|εijkl ,

where g = det gij is the determinant of a metric tensor. Such an object is a covariant tensor.

The corresponding contravariant tensor is

εijkl(x) =
1√
|g(x)|

εijkl ,

whereas εijkl is known as tensor density (more details can be found e.g. in [3] or in the

exercises in [5]).

B. Vector components in curvilinear coordinates

It is helpful to consider a number of standard examples familiar from earlier studies, such

as the orthogonal curvilinear coordinates (polar, cylindrical, spherical) in R3. It is important

to emphasize that these are coordinates in flat space (the criterium for this is simple - all

components of the Riemann curvature tensor for a given metric are zero and thus there
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exists a coordinate transformation bringing the metric into the form ds2 = dx2 + dy2 + dz2).

Nevertheless, such coordinates exhibit non-trivial features. For example, the connection

coefficients or Christoffel symbols for them are non-zero (they are known as flat connections

since the curvature tensor remains zero), and therefore the covariant derivative is non-trivial,

and so on.

For a cylindrical coordinate system, we have (here xµ = (x, y, z) are Cartesian coordi-

nates, and x′µ = (r, φ, z)):

x = r cosφ (27)

y = r sinφ (28)

z = z (29)

The metric tensor is

gij =


1 0 0

0 r2 0

0 0 1

 .

The inverse metric is given by

gij =


1 0 0

0 1
r2

0

0 0 1

 .

To represent a vector in the new system, usually a set of basis unit vectors r̂, φ̂, ẑ, similar

to the Cartesian unit vectors î, ĵ and k̂, is introduced, so that

~A = Âx î + Ây ĵ + Âz k̂ = Âr r̂ + Âφ φ̂ + Âz ẑ . (30)

Vector components with hats such as Âr were introduced to distinguish them from the

contravariant and covariant componets Ai and Ai used earlier. We shall explain the difference

shortly.

More generally, one can write

d~r = eidx
i = e′kdx

′k , (31)

with

e′k =
∂xi

∂x′k
ei . (32)
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For the cylindrical cordinates, with e1 = ex ≡ î, e2 = ey ≡ ĵ, e3 = ez ≡ k̂ and e′1 = er,

e′2 = eφ, , e′3 = ez, we have from Eq. (32)

er = cosφ î + sinφ ĵ + 0 k̂ , (33)

eφ = −r sinφ î + r cosφ ĵ + 0 k̂ , (34)

ez = 0 î + 0 ĵ + 1k̂ . (35)

This can also be written as

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
+
∂z

∂r

∂

∂z
= cosφ

∂

∂x
+ sinφ

∂

∂y
+ 0

∂

∂z
, (36)

∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z
= −r sinφ

∂

∂x
+ r cosφ

∂

∂y
+ 0

∂

∂z
, (37)

∂

∂z
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
+
∂z

∂r

∂

∂z
= 0

∂

∂x
+ 0

∂

∂y
+ 1

∂

∂z
, (38)

which is an explicit form of the identification ei = ∂/∂xi.

Note that the basis vectors er, eφ, ez are not normalised to unity, e.g. |eφ| =
√
eφ · eφ = r.

One can introduce the normalised vectors

r̂ =
er
|er|

, φ̂ =
eφ
|eφ|

, ẑ =
ez
|ez|

,

whose Cartesian coordinates are r̂ = (cosφ, sinφ, 0), φ̂ = (− sinφ, cosφ, 0), ẑ = (0, 0, 1). In

general, êi = ei/|ei|, where |ei|2 = ei · ei = gαβe
α
(i)e

β
(i). Clearly, components of a vector ~A

will be different in these two bases,

~A = Aiei = Ai|ei|êi = A1 |er |̂r + A2 |eφ|φ̂ + A3 |ez|ẑ . (39)

Raising the indices with the metric gij, we get

er = cosφ î + sinφ ĵ + 0 k̂ , (40)

eφ = −1

r
sinφ î +

1

r
cosφ ĵ + 0 k̂ , (41)

ez = 0 î + 0 ĵ + 1k̂ . (42)

Note that ei · ej = gij, e
i · ej = gij, and ei · ej = δji . We can introduce êi = ei/|ei|. For

diagonal metrics, êi = gijej/|gijej| = êj sgn(gij). In particular, êr = êr, êφ = êφ, êz = êz.

This is convenient, since in the expansion of a vector

~A = Aiei = Ai|ei|êi = Âiêi = Aie
i = Ai|ei|êi = Âiê

i (43)
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we have Âi = Âi, i.e. there is no difference between components with upper and lower

indices in this basis. For details, see [11] and [10]. This basis is typically used when dealing

with orthogonal curvilinear coordinates in R3.

We note that for a generic curved space-time with the metric tensor gµν(x) the standard

bases ∂/∂xi (for vectors) and dxi (for covectors) are used, and, respectively, one has the

standard contravariant and covariant components Ai and Ai.

C. Differential operators

In curved space (and even in flat space when using curvilinear coordinates) one has to

generalise various differential operations accordingly. This is fully considered in GR courses

but we mention some operations here. When differentiating tensors, ordinary derivatives

should be replaced with covariant derivatives. For example, acting on vectors, the covariant

derivative is

∇iA
j = ∂iA

j + ΓjikA
k ,

where Γjik are Christoffel symbols (coefficients of the metric connection). We also have

∇iAj = ∂iAj − ΓkijAk ,

Some operations can be easily generalised any dimension, for example, the divergence

∇iA
i, whereas others, such as curl, may be dimension-specific and are replaced in other

dimensions by more general constructions.

The curl of a vector ~A in 3d can be written as(
curl ~A

)i
= εijk∇jAk ,

where the tensor εijk is defined as

εijk(x) =
1√
|g(x)|

εijk ,

whereas εijk is the permutation coefficient, with ε123 = 1. For example, in spherical coordi-

nates in R3, g = r4 sin2 θ and e.g. the r-component of a curl is given by(
curl ~A

)r
=

εrθφ

r2 sin θ
(∇θAφ −∇φAθ) ,
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where

∇θAφ = ∂θAφ − ΓkθφAk ,

and

∇φAθ = ∂φAθ − ΓkφθAk .

Since for metric connection Γkθφ = Γkφθ, and εrθφ = 1, we have(
curl ~A

)r
=

1

r2 sin θ
(∂θAφ − ∂φAθ) .

Remembering our discussion of different bases for curvilinear coordinates in flat space, we

note that Aφ = r sin θÂφ and Aθ = rÂθ. Correspondingly, we have(
curl ~A

)r
=

1

r sin θ

[
∂θ(sin θÂφ)− ∂φÂθ

]
.

Typically, this is the expression that appears in the standard literature such as ref. [2].

Finally, we note that one can also write the coordinate-free expression for curl in 3d space

as

curl ~A = ? d ~A ,

where ? denotes the Hodge dual operator.
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