
B2: Symmetry and Relativity
Problem Set 5: Groups and Revision

MT 2019

1. Show that the Lorentz transformations in a single spatial direction form a group.

2. Show that einθ, with θ a constant, is a representation of the group of integers n under
the addition operator. If θ = π/N , how many elements does the representation have,
and in what sense is it still a representation of the infinite group of integers?

3. Write down a set of 3×3 matrices to represent the permutation group on three objects,
such that the action of swapping the second and third objects is the matrix

(D132)
i
j =

 1 0 0
0 0 1
0 1 0


Show that this matrix representation is reducible by the following steps.

(i) Find a common eigenvector for all the Di
j matrices.

(ii) Write down a suitable similarity transformation matrix Sij, such that (D′)ij =

SimD
m
n(S−1)nj with the common eigenvector becoming (1, 0, 0) in the new basis.

(iii) Show that the transformation matrices in the new basis take on block-diagonal
form.

4. Show that the following matrix generates a rotation around the x axis

(J1)
µ
ν =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


using the exponential R(θ) = e−iθJ1 .

Show that the matrix

(K1)
µ
ν =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0


generates a boost in the x direction with Λ(η) = e−iηK1 .

Write the matrix form of the generator K2 for infinitesimal boosts along the y axis.
Multiply an infinitesimal boost along x by another along y. What does the form of the
matrix indicate about whether non-aligned Lorentz transformations can form a group?
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5. The canonical j = 1 representation of the generators of 3D rotations can be derived
from following rules:

J3|m〉 = m|m〉
J±|m〉 = [j(j + 1)−m(m± 1)]1/2|m± 1〉

J± = J1 ± iJ2

Write down matrices representing the Ji generators using the basis {|1〉, |0〉, | − 1〉}.
Verify that the generators satisfy the same Lie algebra as that of the SO(3) group, i.e.,

[Jj, Jk] = i
∑
m

εjkmJm.

Using the appropriate spherical harmonics as basis of the j = 1 representation space,
show that J3 generates rotations around ẑ. Similarly, show that the spherical harmonics
representing a direction in the yz plane are rotated around x̂ by J1.

6. Consider the Dirac equation of a fermion field in the presence of an electromagnetic
field Aµ:

(iγµ∂µ + qγµAµ −m)ψ = 0

where the γµ are 4× 4 matrices with the anti-commutation relationship

γµγν + γνγµ = −2gµν

(The important thing to keep in mind here is merely that there are 4 distinct matrices;
you shouldn’t need the anti-commutation relationship itself.) Apply the local gauge
transformation to the fermion field

ψ → ψ′ = eiqαψ

where α is also a function of spacetime. Show that local gauge invariance can be
restored by applying a simultaneous gauge transformation to the electromagnetic field,

Aµ → A′µ = Aµ + ∂µχ.

What must the relationship be between χ and α?

Past exam problems

7. (Based on B2 2014 Q3.) Write down the relationship between electric and magnetic
fields and the scalar and vector potentials. The Faraday tensor is related to the four-
vector potential by the expression

F µν = ∂µAν − ∂νAµ.

Use this to find the expression for F µν in terms of electric and magnetic fields E and
B.
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The electromagnetic field satisfies ∂λF
λκ = −µ0J

κ where Jκ is the four-current. Use
this equation to obtain two of the Maxwell equations. Also, obtain the other two
Maxwell equations given that F λκ can be obtained from a 4-potential.

The stress-energy tensor of the electromagentic field may be written

T µν = ε0c
2(−F µλFλ

ν − 1

4
gµνFκλF

κλ).

Find the top row of this tensor (i.e., T 0ν) in terms of E and B for a general field, and
identify the physical quantities obtained. Find the ν = 0 component of ∂λT

λν in terms
of E and B, and state how it is related to the current density j.

A parallel-plate capacitor has its plates parallel to the xz plane and moves relative to
the laboratory in the x direction at speed v. Let E be the electric field between the
plates in the rest frame of the capacitor. Write down the Faraday tensor for this field
in the rest frame, and hence obtain the stress-energy tensor, first in the rest frame and
then in the laboratory. Hence find the Poynting vector of the field observed in the
laboratory.

Repeat the calculation for a capacitor moving in the same way whose plates are parallel
to the yz plane. In both cases describe the physical processes whereby the capacitor’s
stored energy is transported.

8. (Based on B2 2014 Q4.) Write down the scalar and vector potential for the field of
a charged particle at rest. Hence, carefully explaining your reasoning, show that the
4-vector potential of an arbitrarily moving charged particle is given by

Aµ =
q

4πε0

Uµ/c

(−RνUν)

and define the quantities Uµ and Rν involved in this expression. Make sure you justify
the claim that your argument leads to a genuinely covariant result.

A particle of charge q is moving at constant, non-relativistic speed around a circle in
the xy plane, such that its position is given by (x, y, z) = (a cosωts, a sinωts, 0) at any
given time ts. It is desired to obtain the electric field E at points on the z axis. Let vs
be the velocity of the particle at the source time. Find an expression for Aµ in terms
of q, a, z, vs, and fundamental constants. Hence obtain Ez.

To find the other components of E, the gradient of the scalar potential φ is required.
Consider a field event at (∆x, 0, z) at time t, and obtain the dependence of φ on ∆x to
first order. Hence show that the x component of the electric field at (0, 0, z) is given
by

Ex =
qa

4πε0c2
√
a2 + z2

((
ω2 − c2

a2 + z2

)
cosωts +

ωc√
a2 + z2

sinωts

)
.

9. (Based on B2 2017 Q1.) For a particle of mass m moving along a worldline Xµ = Xµ(τ)
in the inertial reference frame S, define the 4-velocity Uµ and the 4-force F µ. Show
that if the scalar product of two non-zero 4-vectors Dµ and Gµ is zero, and Dµ is
time-like, then Gµ must be space-like. Prove that if the particle has a 4-momentum P µ
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such that P µPµ = 0, then the particle has a rest mass equal to zero. Give an example
of such a particle.

Define proper time and pure force. Show that if F µ is a pure force, then F µUµ = 0,
where Uµ is the 4-velocity. Show that if 3-velocity v and 3-acceleration a are orthogonal
to each other, i.e., v ⊥ a, then the 4-acceleration invariant AµAµ is given by AµAµ =
γ4a2.

A free particle, having rest mass M0, is in vacuum and initially at rest in the lab
frame S. It undergoes an acceleration under the action of a constant pure force with
f = (f, 0, 0). Find its 4-velocity Uµ as a function of time and force. Sketch the graphs
of the dependence of normalised 3-velocity β = v/c and the Lorentz factor γ(t) of the
particle as a function of time t.

An electron and a positron are annihilated during a head-on collision. Before the
collision they had 3-velocities ve = (vx, 0, 0) and vp = (−vx, 0, 0), respectively. After
the collision, some number of photons are detected. What is the minimum number
of photons that can be registered in this experiment? Explain your answer. Find
the energy of each of the minimal number of photons taking into account that the rest
mass of the electron and the positron is each equal to 0.511 MeV and their total kinetic
energy before the collisions was 1 GeV.

An electron is accelerated from rest through a gap of L = 3 m by an electric field of
strength 10 MV m−1 which is constant throughout the gap. Find γ and β at the other
end of the gap.

10. (Based on part of B1 2004 Q3.) For an isolated system of particles, let

s2 =
(∑

Ei

)2
−
(∑

pic
)2

where the sums are taken over the particles in the system at some given time. What
is s for a single particle of mass m?

In the laboratory frame a particle of mass m and momentum pm is incident on a
particle of mass M , at rest. Find an expression for the total available energy in the
centre-of-mass frame.

Show that the momentum of the particle of mass m in the centre-of-mass frame is
given by p′m = Mc2pm/s.

11. (Based on B1 2006 Q8.) It is proposed to generate a pure beam of either electron
neutrinos or electron antineutrinos by accelerating ions of unstable nuclei to relativistic
speeds and then allowing them to decay in a long straight section of the accelerator.

An unstable ion of rest mass M decays after it has been accelerated to total energy E
and Lorentz factor γ = E/Mc2 and emits a neutrino of energy Eν at an angle of θ to
the beam direction. (i) Derive an expression for the neutrino’s energy E∗ν in the rest
frame of the ion in terms of Eν , θ, and the velocity of the ion βc. (ii) Show that in
the rest frame of the ion, the neutrino’s path is inclined to the beam direction by the
angle θ∗ that satisfies

cos θ∗ =
cos θ − β

1− β cos θ
.
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Ions are accelerated to γ = 100 and decay in the straight section of the accelerator. A
cylindrical detector that is coaxial with the beam and has radius r = 30 m, is placed
D = 300 km downstream. Show that the angle between the beam direction and that
of a neutrino which will hit the outer edge of the detector, measured in the rest frame
of the ion, is approximately given by

cos θ∗ =
1− γ2θ2

1 + γ2θ2 − θ2/2

where θ ' r/D. Given that the emission of neutrinos is isotropic in the ion rest frame,
find the fraction of the neutrinos that pass through the detector.

Show that in the ion rest frame the detector subtends an angle 2θ∗r at the ion at the
emission event, where θ∗r = tan−1(γr/D). Why does θ∗r differ from θ∗?
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