B2: Symmetry and Relativity Problem Set 1: Vectors and Tensors MT 2020

Einstein summation convention is assumed, with indices taking values from 1 to N.

1. If we have two successive transformations from $u^i = u^i(x^1, x^2, \cdots x^N)$ to $v^i = v^i(y^1, y^2, \cdots y^N)$, and from v^i to $w^i = w^i(z^1, z^2, \cdots z^N)$, with $i = 1, 2, \cdots N$,

$$v^i = \frac{\partial y^i}{\partial x^j} u^j,$$

and

$$w^i = \frac{\partial z^i}{\partial y^j} v^j$$

show that we can perform the transformation in one step via

$$w^i = \frac{\partial z^i}{\partial x^j} u^j.$$

- 2. If $A^{ij}{}_k$ is a mixed tensor, $B^{ij}{}_k$ is another tensor of the same kind, and α and β are scalar invariants, show that $\alpha A^{ij}{}_k + \beta B^{ij}{}_k$ is yet another tensor of the same kind.
- 3. If $A^i{}_j$ are the components of a mixed tensor, show that $A^i{}_i$ transforms as a scalar invariant.
- 4. Assuming x and y transform as the components of a Euclidean vector, determine which of the following matrices are tensors:

$$A^{ij} = \begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix}, \quad B^{ij} = \begin{pmatrix} xy & y^2 \\ x^2 & -xy \end{pmatrix}, \quad C^{ij} = \begin{pmatrix} y^2 & xy \\ xy & x^2 \end{pmatrix}$$

[based on E Butkov, *Mathematical Physics*]

- 5. Show that if the components of a contravariant vector vanish in one coordinate system, they vanish in all coordinate systems. What can be said of two contravariant vectors whose components are equal in one coordinate system?
- 6. Let A_{ij} be a skew-symmetric tensor with $A_{ij} = -A_{ji}$, and S_{ij} a symmetric tensor with $S_{ij} = S_{ji}$. Show that the symmetry properties are preserved in coordinate transformations. Also show that the quantities with raised indices, A^{ij} and S^{ij} , possess the same properties. From this, show that $A^{ij}S_{ij} = 0$ and $A_{ij}S^{ij} = 0$.
- 7. Let $C^{k\ell} = A^{ijk} B^{\ell}{}_{ij}$ be a rank-2 contravariant tensor given by contracting the N^3 functions A^{ijk} with the tensor $B^{\ell}{}_{mn}$, which is symmetric in the mn indices but otherwise arbitrary, *i.e.*, $B^{\ell}{}_{mn} = B^{\ell}{}_{nm}$. Show that $A^{ijk} + A^{jik}$ is a rank-3 contravariant tensor. Give reasons why the same is not true for A^{ijk} or A^{jik} separately.

8. In this problem, we will consider a transformation from Cartesian to polar coordinate systems in two Euclidean dimensions. Let $x^1 = x$ and $x^2 = y$ for the Cartesian system, and $\hat{x}^1 = r$ and $\hat{x}^2 = \theta$ for the polar, with the transformation

$$x^{1} = r \cos \theta = \hat{x}^{1} \cos \hat{x}^{2}$$
$$x^{2} = r \sin \theta = \hat{x}^{1} \sin \hat{x}^{2}$$

The metric for the Cartesian system is $g_{ij} = \delta_{ij}$. Derive the metric tensor \hat{g}_{ij} for the polar coordinate system, its reciprocal \hat{g}^{ij} , and the covariant polar components \hat{x}_1 and \hat{x}_2 in terms of r and θ . Why might it *not* be appropriate to calculate a length from the origin to a point specified by finite values of r and θ using these covariant components?

Show that the components of the metrics g_{ij} and \hat{g}_{ij} do not change under rotations of the coordinate system through a fixed angle α around the origin.