B2: Symmetry and Relativity Problem Set 1: Vectors, tensors, and groups MT 2023 Weeks 1-2

Einstein summation convention is assumed, with indices taking values from 1 to N.

1. If we have two successive transformations from $u^i = u^i(x^1, x^2, \cdots x^N)$ to $v^i = v^i(y^1, y^2, \cdots y^N)$, and from v^i to $w^i = w^i(z^1, z^2, \cdots z^N)$, with $i = 1, 2, \cdots N$,

$$v^i = \frac{\partial y^i}{\partial x^j} u^j,$$

and

$$w^i = \frac{\partial z^i}{\partial y^j} v^j$$

show that we can perform the transformation in one step via

$$w^i = \frac{\partial z^i}{\partial x^j} u^j.$$

2. Let B^i be the contravariant components of one vector, and C_i the covariant components of another. Show that the contraction of B^i with C_i is a scalar invariant.

Furthermore, if $A^{i}{}_{j}$ are the components of a mixed tensor, show that $A^{i}{}_{i}$ transforms as a scalar invariant.

- 3. If $A^{ij}{}_k$ is a mixed tensor, $B^{ij}{}_k$ is another tensor of the same kind, and α and β are scalar invariants, show that $\alpha A^{ij}{}_k + \beta B^{ij}{}_k$ is yet another tensor of the same kind.
- 4. Consider rotations of x and y as components of a Euclidean vector. Show that the matrix

$$A^{ij} = \left(\begin{array}{cc} x^2 & xy\\ xy & y^2 \end{array}\right)$$

transforms as a rank-2 tensor under such rotations. Show, on the other hand, that

$$B^{ij} = \left(\begin{array}{cc} xy & y^2 \\ x^2 & -xy \end{array}\right)$$

does not. [based on E Butkov, Mathematical Physics]

- 5. Show that if the components of a contravariant vector vanish in one coordinate system, they vanish in all coordinate systems. What can be said of two contravariant vectors whose components are equal in one coordinate system?
- 6. Let A_{ij} be a skew-symmetric tensor with $A_{ij} = -A_{ji}$, and S_{ij} a symmetric tensor with $S_{ij} = S_{ji}$. Show that the symmetry properties are preserved in coordinate transformations. Also show that the quantities with raised indices, A^{ij} and S^{ij} , possess the same properties. From this, show that $A^{ij}S_{ij} = 0$ and $A_{ij}S^{ij} = 0$.

- 7. Let $C^{k\ell} = A^{ijk} B^{\ell}_{ij}$ be a rank-2 contravariant tensor given by contracting the N^3 functions A^{ijk} with the tensor B^{ℓ}_{mn} , which is symmetric in the mn indices but otherwise arbitrary, *i.e.*, $B^{\ell}_{mn} = B^{\ell}_{nm}$. Show that $A^{ijk} + A^{jik}$ is a rank-3 contravariant tensor. Give reasons why the same is not true for A^{ijk} or A^{jik} separately.
- 8. Show that $e^{in\theta}$, with θ a constant, is a representation of the group of integers n under the addition operator. If $\theta = \pi/N$, how many elements does the representation have, and in what sense is it still a representation of the infinite group of integers?
- 9. Working in a representation in which the basis vectors are $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$, show that rotations around the $\hat{\mathbf{z}}$ direction form a group.

Show that the matrix

$$J_3 = \left(\begin{array}{rrr} 0 & -i & 0\\ i & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$$

generates a finite rotation through angle θ using the exponential map $R(\theta) = e^{-i\theta J_3}$.

Write down generators for rotations around the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ directions.

Evaluate the product $(1 - i\theta_1 J_1)(1 - i\theta_2 J_2)$ or, alternatively, a finite rotation around $\hat{\mathbf{y}}$ followed by another rotation around $\hat{\mathbf{z}}$. What does the result indicate about the possibility of the rotations around two axes forming a group?

10. We can form another representation of the generators of 3D rotations using the rules

$$\begin{array}{rcl} J_3|m\rangle &=& m|m\rangle \\ J_{\pm}|m\rangle &=& [j(j+1)-m(m\pm 1)]^{1/2}|m\pm 1\rangle \\ J_{\pm} &=& J_1\pm iJ_2 \end{array}$$

with j = 1. Write down matrices representing the J_i generators using the basis $\{|1\rangle, |0\rangle, |-1\rangle\}$.

Verify that the generators satisfy the same Lie algebra as that of the SO(3) group, *i.e.*,

$$[J_j, J_k] = i \sum_m \epsilon_{jkm} J_m.$$

Now consider angular distributions which are linear combinations of the j = 1 spherical harmonics. Show that J_3 generates rotations of these distributions around $\hat{\mathbf{z}}$.

Similarly, show that distribution evaluated in the yz plane are rotated around $\hat{\mathbf{x}}$ by J_1 .

Additional questions

11. In this problem, we will consider a transformation from Cartesian to polar coordinate systems in two Euclidean dimensions. Let $x^1 = x$ and $x^2 = y$ for the Cartesian system, and $\hat{x}^1 = r$ and $\hat{x}^2 = \theta$ for the polar, with the transformation

$$\begin{aligned} x^1 &= r \cos \theta = \hat{x}^1 \cos \hat{x}^2 \\ x^2 &= r \sin \theta = \hat{x}^1 \sin \hat{x}^2 \end{aligned}$$

The metric for the Cartesian system is $g_{ij} = \delta_{ij}$. Derive the metric tensor \hat{g}_{ij} for the polar coordinate system, its reciprocal \hat{g}^{ij} , and the covariant polar components \hat{x}_1 and \hat{x}_2 in terms of r and θ . Why might it *not* be appropriate to calculate a length from the origin to a point specified by finite values of r and θ using these covariant components?

Show that the components of the metrics g_{ij} and \hat{g}_{ij} do not change under rotations of the coordinate system through a fixed angle α around the origin.

12. Write down a set of 3×3 matrices to represent the permutation group on three amplitudes, such that the action of swapping the second and third amplitudes is the matrix

$$(D_{132})^{i}{}_{j} = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{array}\right)$$

Show that this matrix representation is reducible by the following steps:

- (i) Find a common eigenvector for all the $D^{i}{}_{j}$ matrices.
- (ii) Use the similarity transformation matrix S^{i}_{j}

$$S^{i}{}_{j} = \frac{1}{3} \left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{array} \right)$$

to transform to a new basis. What is the common eigenvector in this basis?

(iii) Show that the transformation matrices in the new basis take on block-diagonal form.