B2: Symmetry and Relativity Problem Set 2: Lorentz transformations MT 2022 Week 3

Conventions: Greek indices take values 0 through 3, while Latin indices take values 1 through 3. 3 -vectors can also be indicated by boldface, e.g., a. Minkowski metric $g^{\mu \nu}=$ $\operatorname{diag}(-1,1,1,1)$.

1. The 4 -vector field F^{μ} is given by $F^{\mu}=2 x^{\mu}+k^{\mu}\left(x^{\nu} x_{\nu}\right)$ where k^{μ} is a constant 4 -vector and $x^{\mu}=(c t, x, y, z)$ is the 4 -vector displacement in spacetime. Evaluate the following:
(i) $\partial_{\lambda} x^{\lambda}$
(ii) $\partial^{\mu}\left(x_{\lambda} x^{\lambda}\right)$
(iii) $\partial^{\mu} \partial_{\mu} x^{\nu} x_{\nu}$
(iv) $\partial_{\lambda} F^{\lambda}$
(v) $\partial^{\mu}\left(\partial_{\lambda} F^{\lambda}\right)$
(vi) $\partial^{\mu} \partial_{\mu} \sin \left(k_{\lambda} x^{\lambda}\right)$
(vii) $\partial^{\mu} x^{\nu}$
2. Show that the Lorentz transformations in a single spatial direction form a group.
3. Show that the matrix

$$
\left(K_{1}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

generates a boost in the x direction with $\Lambda(\eta)=e^{-i \eta K_{1}}$.
Write the matrix form of the generator K_{2} for infinitesimal boosts along the y axis. Multiply an infinitesimal boost along x by another along y. What does the form of the matrix indicate about whether non-aligned Lorentz transformations can form a group?
4. Show, using algebra, a spacetime diagram, or otherwise,
(i) the temporal order of two events is the same in all reference frames if and only if they are separated by a time-like interval;
(ii) there exists a reference frame in which two events are simultaneous if and only if they are separated by a space-like interval;
(iii) for any time-like vector there exists a frame in which its spatial part is zero;
(iv) any vector orthogonal to a time-like vector must be space-like;
(v) with one exception, any vector orthogonal to a null vector is space-like, and describe the exception;
(vi) the instantaneous 4 -velocity of a particle is parallel to the worldline (i.e., demonstrate that you understand the meaning of this claim - if you do then it is obvious); and
(vii) if the 4-displacement between any two events is orthogonal to an observer's worldline, then the events are simultaneous in the rest frame of that observer.
5. Define proper time. A worldline (not necessarily straight) may be described as a locus of time-like separated events specified by $X^{\mu}=(c t, x, y, z)$ in some inertial reference frame. Show that the increase of proper time τ along a given worldline is related to reference frame time t by $d t / d \tau=\gamma$.

Two particles have 3 -velocities \mathbf{u} and \mathbf{v} in some reference frame. The Lorentz factor for their relative 3 -velocity \mathbf{w} is given by

$$
\gamma_{w}=\gamma_{u} \gamma_{v}\left(1-\mathbf{u} \cdot \mathbf{v} / c^{2}\right) .
$$

Prove this twice, by using each of the following two methods:
(i) In the given frame, the worldline of the first particle is $X^{\mu}=(c t, \mathbf{u} t)$. Transform to the rest frame of the other particle to obtain

$$
t^{\prime}=\gamma_{v} t\left(1-\mathbf{u} \cdot \mathbf{v} / c^{2}\right)
$$

Obtain $d t^{\prime} / d t$ and apply the result of the first part of this question.
(ii) Use the invariant $U^{\mu} V_{\mu}$, first showing that it is equal to $-c^{2} \gamma_{w}$.
6. Derive a formula for the frequency ω of light waves from a moving source, in terms of the proper frequency ω_{0} in the source frame and the angle in the observer's frame, θ, between the direction of observation and the velocity of the source.
A galaxy with a negligible speed of recession from Earth has an active nucleus. It has emitted two jets of hot material with the same speed v in opposite directions, at an angle θ to the direction to the Earth. A spectral line in singly-ionised Mg (proper wavelength $\lambda_{0}=448.1 \mathrm{~nm}$) is emitted from both jets. Show that the wavelengths $\lambda_{ \pm}$ observed on Earth from the two jets are given by

$$
\lambda_{ \pm}=\lambda_{0} \gamma(1 \pm(v / c) \cos \theta)
$$

(you may assume the angle subtended at Earth by the jets is negligible). If $\lambda_{+}=$ 420.2 nm and $\lambda_{-}=700.1 \mathrm{~nm}$, find v and θ.

In some cases, the receding source is difficult to observe. Suggest a reason for this.

Additional questions

7. For any two future-pointing time-like vectors U^{μ} and V^{μ}, prove that $U^{\mu} V_{\mu}=-u v \cosh \rho$, where ρ is the relative rapidity of frames in which U^{μ} and V^{μ} are purely temporal and with $U^{\mu} U_{\mu}=-u^{2}$ and $V^{\mu} V_{\mu}=-v^{2}$.
8. In a given inertial frame S, two particles are shot out from a point in orthogonal directions with equal speeds v. At what rate does the distance between the particles increase in S ? What is the speed of each particle relative to the other?
9. In a frame S a guillotine blade in the (x, y) plane falls in the negative y direction towards a block level with the x axis and centred at the origin. The angle of the edge of the blade is such that the point of intersection of blade and block moves at a speed in excess of c in the positive x direction. Show that in some frames S^{\prime} in standard configuration with S, this point moves in the opposite direction along the block. [For simplicity, assume that the blade drops with constant speed u.]
Now suppose that when the centre of the blade arrives at the block, the whole blade instantaneously evaporates in frame S (for example, it could be vapourized by a very powerful laser beam incident from the z direction). A piece of paper placed on the block is therefore cut on the negative x-axis only. Explain this in S^{\prime}.
10. Derive the equations describing the transformation of velocity:

$$
\begin{aligned}
\mathbf{u}_{\|}^{\prime} & =\frac{\mathbf{u}_{\|}-\mathbf{v}}{1-\mathbf{u} \cdot \mathbf{v} / c^{2}} \\
\mathbf{u}_{\perp}^{\prime} & =\frac{\mathbf{u}_{\perp}}{\gamma_{v}\left(1-\mathbf{u} \cdot \mathbf{v} / c^{2}\right)}
\end{aligned}
$$

