THIRD YEAR PHYSICS COLLECTIONS HILARY TERM

B2: SYMMETRY AND RELATIVITY

SOLUTION NOTES

by Andrei Starinets
andrei.starinets@physics.ox.ac.uk

1. Write down the Lorentz transformation appropriate for a 4 -vector involving the time t and position x, y, z
2. The 4-momentum (energy-momentum 4 -vector) of a single particle is defined by $P^{\mu} \equiv m U^{\mu}$ where $U^{\mu} \equiv d X^{\mu} / d \tau$. Define the symbols m, τ, X^{μ} appearing in this expression, and prove that the components P^{μ} can be written $P^{\mu}=(\gamma m c, \gamma m \mathrm{~V})$ where \mathbf{v} is the velocity of the particle and γ is the Lorentz factor. Now consider two particles A and B with energies E_{A} and E_{B} and momenta p_{A} and p_{B}, respectively. W hat can you say about the quantity $E_{A} E_{B}-\mathrm{p}_{A} \cdot \mathrm{p}_{B} c^{2}$?
(a) Particle Y of mass m_{Y} decays at rest into particles A and C with masses m_{A} and m_{C}, respectively. Derive an expression for the energy of particle C in the lab frame in terms of the particle masses.
(b) Now consider a three-body decay of particle Y at rest into products A, B (of mass m_{B}), and C, all of which have non-zero rest mass. By considering A and B as a composite particle X, or otherwise, show that the energy of C in the lab frame is

$$
E_{C}=\frac{\left(m_{Y}^{2}+m_{C}^{2}-m_{A}^{2}-m_{B}^{2}\right) c^{4}-2 E_{A} E_{B}+2 \mathrm{p}_{A} \cdot \mathrm{p}_{B} c^{2}}{2 m_{Y} c^{2}} .
$$

Give an expression for the maximum energy of particle C.
(c) By taking the limit as $m_{B} \rightarrow 0$, find an expression for the maximum energy of particle C when particle B is massless.
(d) T he trouble with the way the answer to part (c) was obtained is that massless particles may only travel at the speed of light. Comment on why the answer to part (c) is nevertheless correct.
(e) The momenta of charged particles are sometimes measured by observing their tracks in a region of known uniform magnetic field. Write down the equation of motion and find the relationship between the momentum and the radius of curvature of the track, for a particle whose initial velocity is perpendicular to the magnetic field.
3. Frame S^{\prime} moves with a constant 3 -velocity $\mathrm{v}=\left(v_{x}, 0,0\right)$ relative to the lab frame S. In S, the components of the electric field and the magnetic field are, respectively, $\mathrm{E}=\left(E_{x}, E_{y}, E_{z}\right)$ and $\mathrm{B}=\left(B_{x}, B_{y}, B_{z}\right)$. Find the electric ($E_{x}^{\prime}, E_{y}^{\prime}, E_{z}^{\prime}$) and magnetic ($B_{x}^{\prime}, B_{y}^{\prime}, B_{z}^{\prime}$) field components in the frame S^{\prime}.

Define a 4-vector potential A^{μ} and a 4-wave vector K^{μ}. A plane, linearly polarised electromagnetic wave propagates in the z direction through vacuum. Using the 4 -vector potential $A^{\mu}=\left(0,0, A_{y}, 0\right)$, where

$$
A_{y}=-A_{0}\left(\frac{\sin \left(K^{\nu} X_{\nu}\right)}{\omega / c}\right),
$$

with A_{0} a constant and ω the frequency, find the field strength tensor

$$
F^{\alpha \beta}=\partial^{\alpha} A^{\beta} \partial^{\beta} A^{\alpha} .
$$

Define the 4-current J^{μ}. Write down the 4-current continuity condition in 3-vector form and 4 -vector form. Using M axwell's equations written in 3 -vector form, show that $\partial_{\beta} F^{\alpha \beta}=\mu_{0} J^{\alpha}$. The Lorentz force acting on a unit volume of charge density ρ can be written as $f^{\mu}=F^{\mu \nu} J_{\nu}$. What is the physical meaning of the f^{0} component of this 4 -vector?

A 4-current $J^{\mu}=\left(\rho c, j_{x}, 0,0\right)$, where $j_{x}=\rho v_{0}$, flows along an infinitely long straight wire which is stationary in the lab frame S. Find the electric and magnetic fields generated in the lab frame S, in the frame moving perpendicular to the wire with velocity $\mathrm{u}=\left(0, v_{0}, 0\right)$, and in the frame co-moving with the electrons, i.e., having 3 -velocity $\mathbf{u}=\left(v_{0}, 0,0\right)$ in S.

During the head-on collision between a low-energy photon defined by 4 -wave vector $K^{\mu}=\left(\omega / c, k_{x}, 0,0\right)$ and an ultra-relativistic particle of rest mass M_{0} and total energy W, an inverse Compton scattering was observed. Show that the maximum energy, which the photon can gain during the process, can be estimated as

$$
E_{p h}^{\max }=4\left(\frac{W}{M_{0} c^{2}}\right)^{2} E_{p h}
$$

where $E_{p h}$ is the initial energy of the photon. What condition defines "low energy" for the photon?
4. The 4 -force is defined to be

$$
F^{\mu}=\left(\frac{\gamma}{c} \frac{d E}{d t}, \gamma \mathbf{f}\right)
$$

where γ is the Lorentz factor, E is the energy, and the 3 -force $\mathbf{f}=d \mathbf{p} / d t$ where \mathbf{p} is the 3 -momentum. If U^{μ} is the 4 -velocity, find the conditions under which $U^{\mu} F_{\mu}=0$ and show that this leads to the classical relation between force and the rate of doing work.

Consider a 4 -force F^{μ} applied to a particle travelling with 3-velocity u in reference frame S. Now consider a reference frame, S^{\prime}, travelling with 3 -velocity v relative to S. Show that in reference frame S^{\prime}, for the case of a pure force (where $d m_{0} / d t=0$), the component of the force parallel to the relative velocity of the reference frames, $\mathrm{f}_{\|}$, transforms to

$$
\begin{equation*}
\mathbf{f}_{\|}^{\prime}=\frac{\mathbf{f}_{\|}-\mathbf{v}(\mathbf{f} \cdot \mathbf{u}) / c^{2}}{1-\mathbf{u} \cdot \mathbf{v} / c^{2}} \tag{12}
\end{equation*}
$$

For a pure force, show that the 3-force is not necessarily parallel to the 3-acceleration. Show that, in fact,

$$
\begin{equation*}
\mathbf{f}=\gamma m_{0} \mathbf{a}+\frac{\mathbf{f} \cdot \mathbf{u}}{c^{2}} \mathbf{u} \tag{7}
\end{equation*}
$$

1. For a Lorentz transf. - a boost along $O X$ - we have $A^{\mu} \rightarrow A^{\prime \mu}$

$$
\begin{aligned}
& A^{10}=\gamma\left(A^{0}-\beta A^{1}\right) \\
& A^{11}=\gamma\left(A^{\prime}-\beta A^{0}\right) \\
& A^{1-2}=A^{2} \\
& A^{13}=A^{3}
\end{aligned}
$$

Here $\gamma=1 / \sqrt{1-\beta^{2}}, \quad \beta=\mid \bar{V} / / c, \bar{V}$ is the velocity of S^{1} w.r.t. S.

$$
\cdot A^{\mu} B_{\mu}^{\prime}=\eta_{\mu} A^{\mu} B^{\nu}=A^{\prime \mu} B_{\mu}^{\prime} ?
$$

Yes: $A^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\rho}} A^{\rho} \quad B_{\mu}^{\prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \mu}} B_{\mu}$

$$
\begin{aligned}
A^{\prime \mu} B_{\mu}^{\prime}=\underbrace{\frac{\partial x^{\prime \mu}}{\partial x^{\rho}} \frac{\partial x^{\mu}}{\partial x^{\prime \mu}} A^{\rho} B_{x}}_{\delta^{x}} & =A^{\rho} B_{\rho} \\
& =A^{\mu} B_{\mu}
\end{aligned}
$$

Note: this is true for any metric gre, not just η_{μ}, since gin $A^{\prime \prime} B^{\prime}$ is a scalar. For Cor. transf: $\frac{\partial x^{1 \mu}}{\partial x^{\rho}}=\Lambda_{\rho}^{\mu}=$ const

$$
\text { Specifically, } \Lambda=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
A^{\prime}=\Lambda A \quad B^{\prime}=\Lambda B
$$

In components, $A^{\prime \mu}=\Lambda_{\rho}^{\mu} A^{\rho}$ and

$$
B^{N}=\Lambda_{x}^{v} B^{x}
$$

The inverse transf. is given by

$$
\begin{aligned}
A & =\Lambda^{-1} A^{\prime}, \\
\Lambda^{-1} & =\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \Lambda^{-1} B^{\prime}\right.
\end{aligned}
$$

Note that $\Lambda^{\top}=\Lambda$
Then $A^{\mu} B_{\mu}=\eta_{\mu} A^{\mu} B^{\nu}=$

$$
\begin{aligned}
& =\eta_{\mu \nu} \Lambda_{\lambda}^{-1}{ }_{\lambda} A^{1 \lambda} \Lambda^{-1}{ }_{x} B^{-x} \\
& B_{\mu} t \eta_{\mu}=\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma} \eta_{\rho \sigma}^{\prime} \Rightarrow \\
& A^{\mu} B_{\mu}=\Lambda_{\mu}^{\rho} \Lambda_{\lambda}^{-1 \mu} \Lambda_{\nu}^{\sigma} \Lambda_{r e}^{-1 /} A^{\prime \lambda} B^{\gamma \mu} \eta_{\rho \sigma}^{\prime}=
\end{aligned}
$$

$$
=\eta_{\rho \sigma}^{\prime} A^{\prime \rho} B^{\prime \sigma}=A^{\prime \mu} B_{\mu}^{\prime}
$$

- Any 4-rector orthogonal to a time-like 4-vector must be space-like. If B is a time-like vechor $\Rightarrow B^{2}<0$

$$
\Rightarrow-\left(B^{0}\right)^{2}+\bar{B}^{2}<0 \Rightarrow\left|B^{\circ}\right|>|\bar{B}|
$$

If A is such that $A \cdot B=0 \Rightarrow$

$$
-A^{\circ} B^{\circ}+\vec{A} \cdot \vec{B}=0 \Rightarrow|A \cdot| B^{\circ}|=|A||(\vec{B}| | \text { cosp } \mid
$$

then $\frac{\left|A^{\circ}\right|}{|\bar{A}|}=\frac{|\bar{B}|}{\left|B^{\circ}\right|}|\cos \varphi|<1$ (since $|\cos \varphi| \leqslant 1$ and $\left.\frac{|\bar{B}|}{\left|B^{\circ}\right|}<1\right) \Rightarrow$
$A^{2}>0 \quad$ (space-like)

$\ln S: U^{\mu}=(\gamma(\bar{u}) c, \gamma(\bar{u}) \bar{u})$

$$
\left.V^{\mu}=(\gamma(v) c, \gamma / v) \bar{v}\right) \Rightarrow
$$

$$
U^{\mu} V_{\mu}=-c^{2} \gamma(u) \gamma(v)+\gamma(u) \gamma(v) \bar{u} \cdot \bar{v}
$$

In the frame S^{\prime} - associated e.J. with the particle moving with $\bar{u}($ in S).

$$
\begin{aligned}
& V^{\prime \mu}=(c, \overline{0}) \\
& V^{\prime \mu}=(\gamma(w) c, \gamma(w) \bar{w})
\end{aligned}
$$

where \bar{w} is the 3 -velocity of the particle, \sim^{\prime} "in S^{\prime}. Since $~ U \cdot V=U^{\prime} V^{\prime}$ we get

$$
\begin{aligned}
& U^{\prime} V^{\prime}=-\gamma(w) c^{2}=U \cdot V=-c^{2} \gamma(u) \gamma(v) \times \\
& \times\left(1-\frac{\bar{u} \cdot \bar{V}}{c^{2}}\right) \\
& \Rightarrow \gamma(w)=\gamma(u) \gamma(v)\left(1-\frac{\bar{u} \cdot \bar{v}}{c^{2}}\right)
\end{aligned}
$$

ii) Since $U^{\mu} V_{\mu}=\eta_{\mu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \bar{\tau}}=$

$$
=\frac{-c^{2} d t^{2}+d \bar{x}^{2}}{d \tau^{2}}=\frac{d s^{2}}{d \tau^{2}}=\frac{-c^{2} d \tau^{2}}{d \tau^{2}}=-c^{2}
$$

$$
2
$$

