
Problem Set 2. General Relativity, HT21

EQUILIBRIUM, FLOWS, AND ORBITS IN GENERAL RELATIVITY

1.) Hydrostatic Equilibrium in GR. Model a neutron star atmosphere with a simple equation
of state: P = Kργ, where P is pressure, ρ is mass density, γ is the adiabatic index and K
is a constant. Assume that g00 = −(1 − 2GM/rc2), where M is the mass of the star and r
is radius. If ρ = ρ0 at the surface r = R0, solve the equation of hydrostatic equilibrium to
show that

1 +Kργ−1/c2

1 +Kργ−10 /c2
=

(
1−RS/r0
1−RS/r

)α

where RS = 2GM/c2 is the so-called Schwarzschild radius, and 2αγ = γ−1. (Hint: See §4.6
of the notes.) What is the Newtonian limit of the above equation? Express your answer in
terms of the speed of sound a, a2 = γP/ρ and the potential Φ(r) = −GM/r. (OPTIONAL:
For those who have studied fluids, what quantity is being conserved in the Newtonian limit?)

2.) Bondi Accretion: go with the flow. To get some practise working with the equations of
GR as well as some insight into relativistic dynamics in a practical problem in astrophysics,
consider what is known as (relativistic) Bondi Accretion, the spherical flow of gas into a black
hole. (The original Bondi accretion problem was Newtonian accretion onto an ordinary star.)
We assume a Schwarzschild metric in the usual spherical coordinates:

g00 = −(1− 2GM/rc2), grr = (1− 2GM/rc2)−1, gθθ = r2, gφφ = r2 sin2 θ.

2a.) First, let us assume that particles are neither created or destroyed. So particle number
is conserved. If n is the particle number density in the local rest frame of the flow, then the
particle flux is Jµ = nUµ, where Uµ is the flow 4-velocity. Justify this statement, and using
§4.5 in the notes, show that particle number conservation implies:

Jµ;µ = 0.

If nothing depends upon time, show that this integrates to

nU r|g′|1/2 = constant,

where g′ is the determinant of gµν divided by sin2 θ, and U r is...well, you tell me what U r is.

2b.) We move on to energy conservation, T tν;ν = 0. (Refer to §4.6 in the notes.) Show that
the only nonvanishing affine connection that we need to use is

Γttr = Γtrt =
1

2

∂ ln |gtt|
∂r

Derive and solve the energy equation. Show that its solution may be written

(P + ρc2)U rUt|g′|1/2 = constant

where Ut = gtµU
µ, and ρ is the total energy density of the fluid in its rest frame, including

any thermal energy.
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2c.) We next define
$ = µn,

where µ is the rest mass per particle and $ is a Newtonian density. This is not to be confused
with ρ, the true relativistic energy density divided by c2. P and $ are assumed to be related
by a simple power law relationship,

P = K$γ

where K is a constant, and γ is called the adiabatic index. This is not an entirely artificial
problem: it is valid for cold classical particles (γ = 5/3) or hot relativistic particles (γ = 4/3).
The first law of thermodynamics then tells us that the thermal energy per unit volume is

ε =
P

γ − 1

(You needn’t derive that here, just use it! ) Show that this implies:

ρ = $ +
P

c2(γ − 1)
.

2d.) Verify that
|g′| = r4

and using gµνU
µUν = −c2, show that

Ut =

[
c2 − 2GM

r
+ (U r)2

]1/2
(Take care to distinguish U t and Ut.)

2e.) With
a2 = γP/$,

(this is the speed of sound in a nonrelativistic gas), combine our mass and energy conservation
equations to show that(

c2 +
a2

γ − 1

)2(
c2 + U2 − 2GM

r

)
= constant.

We have dropped the superscript r on U r for greater clarity. How does a2 depend upon $?
The other equation we shall use is just that of mass conservation itself. Show that this may
be written as

4π$r2U = ṁ,

which defines the net, constant mass accretion rate ṁ < 0. With a2 depending entirely on
$, and $ = ṁ/(4πr2U), the equation in boldface becomes a single algebraic equation for
U as a function of r, and the formal solution to our problem.

2f.) Three final simple tasks for now:

i) Show that the constant on the right of the bold equation of problem (2e) is

c2
(
c2 +

a2∞
γ − 1

)2
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where a∞ is the sound speed at infinite distance from the black hole, if the gas starts accreting
from rest.

ii) Show that the Newtonian limit of the equation is

v2

2
+

a2

γ − 1
− GM

r
=

a2∞
γ − 1

where v is the ordinary velocity, not the 4-velocity. This is a statement that a quantity
known as enthapy (energy plus the work done by pressure) is conserved. This is the original
nonrelativistic Bondi 1952 solution for accretion onto a star.

iii) Show that as r approaches the Schwarzschild radius RS = 2GM/c2, then if a � c
everywhere, then dr/dt satisfies the condition of a “null geodesic,” a fancy way to say the
inflow follows the equation of light:

dr

dt
= −c(1−RS/r).

Like stalled photons, from the point of view of a distant observer, the flow never crosses RS.

3a.) Kinematic and gravitational redshifts. One of the most important observational black
hole diagnostics is a calculation of the radiation spectrum from the surrounding disc. In
particular we are interested in how the frequency of a photon is shifted due to space-time
distortions and relativistic kinematics. Show that:

νR
νE

=
pµ(R)V µ(R)

pµ(E)V µ(E)

where R denotes the received the photon and E the emitted photon, ν is a frequency (not
an index here!), pµ a covariant photon 4-momentum, and V µ is the normalised 4-velocity in
the form (dt/dτ, dx/cdτ) for the emitted material (E) or the distant observer at rest (R).

3b.) In the problem at hand, the observer views the disc edge-on, in the plane of the disc.
The gas moves in circular orbits

�————→ observer m

Show that in t, r, θ, φ coordinates for the 0, 1, 2, 3 components,

V µ(R) = (1, 0, 0, 0), V µ(E) = V 0
E(1, 0, 0, dφ/cdt), with V 0

E = dt/dτ

Then, using gµρV
µV ρ = −1 ), conclude that

V 0
E = (1− 3GM/rc2)−1/2.

You may use a result from problem (5c) below. (You will prove it later!)

3c.) Finally, show that

νR
νE

=

(
1− 3GM

rc2

)1/2(
1 +

Ωpφ(E)

cp0(E)

)−1
, Ω2 = GM/r3.
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A result of problem (3) from Problem Set 1 may be useful.

From disk material moving at right angles across the line of sight, νR/νE reduces to

(1− 3GM/rc2)1/2.

Why? From disk material moving precisely along the line of sight, show that

νR
νE

=
(
1− 3GM/rc2

)1/2
/
(
1± (rc2/GM − 2)−1/2

)
(Hint: gνρpνpρ = 0.) Interpret the ± sign. In general, the photon paths must be calculated
from the dynamical equations to determine the p(E) ratio.

4a.) The perihelion advance of Mercury. In the notes we found that the differential equation
for u = 1/r for Mercury’s orbit could be written as follows. u = uN +δu with the Newtonian
solution uN given by

uN = (GM/J2)(1 + ε cosφ)

and the differential equation for δu is

d2δu

dφ2
+ δu =

3(GM)3

c2J4
(1 + 2ε cosφ+ ε2 cos2 φ).

Show that this is equivalent to solving the real part of the equation

d2δu

dφ2
+ δu = a(b+ 2εeiφ + ε2e2iφ/2)

where a = 3(GM)3/(c2J4) and b = 1 + ε2/2.

To solve this, try a solution of the form

δu = A0 + A1φe
iφ + A2e

2iφ

where the A’s are constants. Why do we need an additional factor of φ in the A1 term?

4b.) Show that the solution for u = uN + δu is

u =
GM

J2
+ ab− aε2

6
cos 2φ+

GM

J2
ε cosφ+ εaφ sinφ

Since a is very small, show that this equivalent to

u = ab− aε2

6
cos 2φ+

GM

J2
[1 + ε(cosφ(1− α))]

where
α = aJ2/GM = 3(GM/Jc)2

4c.) In the equation for u, the first two terms in a cause tiny (and unmeasurable) distortions
in the shape of the ellipse, but do not affect the 2π perodicity in φ of the orbit. Show however
that the final term, proportional to GM/J2, results in a periastron advance of

∆φ = 6π

(
GM

cJ

)2
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each orbit. This is the classic Einstein result.

5a.) Black hole orbits. In Newtonian theory, the energy equation for a test particle in orbit
around a point mass is

v2

2
+

l2

2r2
− GM

r
= E

where r is radius, v is the radial velocity, l the angular momentum per unit mass, E the
constant energy per unit mass, and −GM/r is of course the potential energy. For the
Schwarzschild solution show that the integrated geodesic equation may also be written in
the form

v2S
2

+
l2S

2r2
+ ΦS(r) = ES

where r is the standard radial coordinate, lS and ES are constants, ΦS(r) is an effective
potential function, and vS = dr/dτ . Determine lS and ES in terms of the fundamental
angular momentum and energy constants J and E from lecture (or the notes). Express
ΦS(r) in terms of lS, ES, the speed of light c, GM and r. The form of lS, ES, and ΦS should
be chosen to go over to their Newtonian counterparts in the limit E → c2, c→∞, E− c2 →
finite.

5b.) Sketch the effective potential l2S/2r
2 + ΦS(r). Prove that there is always a potential

minimum in Newtonian theory, but that this is not the case in general relativity. What is
the mathematical condition for the existence of a potential minimum for ΦS, and what does
it mean physically if it does not exist?

5c.) Show that for the Schwarzschild metric, circular orbits satisfy

Ω2 =
GM

r3
,

exactly the Newtonian form. Here Ω ≡ dφ/dt at the coordinate location r, where dt is the
proper time interval at infinity. Derive expressions for E and J in terms of GM , c2 and r.

5d.) Below what value of r does ΦS not have any local extrema? (Answer: 6GM/c2.)
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