EQUILIBRIUM, FLOWS, AND ORBITS IN GENERAL RELATIVITY

1.) Hydrostatic Equilibrium in GR. Model a neutron star atmosphere with a simple equation of state: $P=K \rho^{\gamma}$, where P is pressure, ρ is mass density, γ is the adiabatic index and K is a constant. Assume that $g_{00}=-\left(1-2 G M / r c^{2}\right)$, where M is the mass of the star and r is radius. If $\rho=\rho_{0}$ at the surface $r=R_{0}$, solve the equation of hydrostatic equilibrium to show that

$$
\frac{1+K \rho^{\gamma-1} / c^{2}}{1+K \rho_{0}^{\gamma-1} / c^{2}}=\left(\frac{1-R_{S} / r_{0}}{1-R_{S} / r}\right)^{\alpha}
$$

where $R_{S}=2 G M / c^{2}$ is the so-called Schwarzschild radius, and $2 \alpha \gamma=\gamma-1$. (Hint: See $\S 4.6$ of the notes.) What is the Newtonian limit of the above equation? Express your answer in terms of the speed of sound $a, a^{2}=\gamma P / \rho$ and the potential $\Phi(r)=-G M / r$. (OPTIONAL: For those who have studied fluids, what quantity is being conserved in the Newtonian limit?)
2.) Bondi Accretion: go with the flow. To get some practise working with the equations of GR as well as some insight into relativistic dynamics in a practical problem in astrophysics, consider what is known as (relativistic) Bondi Accretion, the spherical flow of gas into a black hole. (The original Bondi accretion problem was Newtonian accretion onto an ordinary star.) We assume a Schwarzschild metric in the usual spherical coordinates:

$$
g_{00}=-\left(1-2 G M / r c^{2}\right), g_{r r}=\left(1-2 G M / r c^{2}\right)^{-1}, g_{\theta \theta}=r^{2}, g_{\phi \phi}=r^{2} \sin ^{2} \theta
$$

2a.) First, let us assume that particles are neither created or destroyed. So particle number is conserved. If n is the particle number density in the local rest frame of the flow, then the particle flux is $J^{\mu}=n U^{\mu}$, where U^{μ} is the flow 4-velocity. Justify this statement, and using $\S 4.5$ in the notes, show that particle number conservation implies:

$$
J_{; \mu}^{\mu}=0 .
$$

If nothing depends upon time, show that this integrates to

$$
n U^{r}\left|g^{\prime}\right|^{1 / 2}=\text { constant }
$$

where g^{\prime} is the determinant of $g_{\mu \nu}$ divided by $\sin ^{2} \theta$, and U^{r} is... well, you tell me what U^{r} is.
2b.) We move on to energy conservation, $T_{: \nu}^{t \nu}=0$. (Refer to $\S 4.6$ in the notes.) Show that the only nonvanishing affine connection that we need to use is

$$
\Gamma_{t r}^{t}=\Gamma_{r t}^{t}=\frac{1}{2} \frac{\partial \ln \left|g_{t t}\right|}{\partial r}
$$

Derive and solve the energy equation. Show that its solution may be written

$$
\left(P+\rho c^{2}\right) U^{r} U_{t}\left|g^{\prime}\right|^{1 / 2}=\mathrm{constant}
$$

where $U_{t}=g_{t \mu} U^{\mu}$, and ρ is the total energy density of the fluid in its rest frame, including any thermal energy.

2c.) We next define

$$
\varpi=\mu n,
$$

where μ is the rest mass per particle and ϖ is a Newtonian density. This is not to be confused with ρ, the true relativistic energy density divided by $c^{2} . P$ and ϖ are assumed to be related by a simple power law relationship,

$$
P=K \varpi^{\gamma}
$$

where K is a constant, and γ is called the adiabatic index. This is not an entirely artificial problem: it is valid for cold classical particles $(\gamma=5 / 3)$ or hot relativistic particles $(\gamma=4 / 3)$. The first law of thermodynamics then tells us that the thermal energy per unit volume is

$$
\epsilon=\frac{P}{\gamma-1}
$$

(You needn't derive that here, just use it!) Show that this implies:

$$
\rho=\varpi+\frac{P}{c^{2}(\gamma-1)} .
$$

2d.) Verify that

$$
\left|g^{\prime}\right|=r^{4}
$$

and using $g_{\mu \nu} U^{\mu} U^{\nu}=-c^{2}$, show that

$$
U_{t}=\left[c^{2}-\frac{2 G M}{r}+\left(U^{r}\right)^{2}\right]^{1 / 2}
$$

(Take care to distinguish U^{t} and U_{t}.)
2e.) With

$$
a^{2}=\gamma P / \varpi,
$$

(this is the speed of sound in a nonrelativistic gas), combine our mass and energy conservation equations to show that

$$
\left(\mathrm{c}^{2}+\frac{\mathrm{a}^{2}}{\gamma-1}\right)^{2}\left(\mathrm{c}^{2}+\mathrm{U}^{2}-\frac{2 \mathrm{GM}}{\mathrm{r}}\right)=\text { constant } .
$$

We have dropped the superscript r on U^{r} for greater clarity. How does a^{2} depend upon ϖ ? The other equation we shall use is just that of mass conservation itself. Show that this may be written as

$$
4 \pi \varpi r^{2} U=\dot{m}
$$

which defines the net, constant mass accretion rate $\dot{m}<0$. With a^{2} depending entirely on ϖ, and $\varpi=\dot{m} /\left(4 \pi r^{2} U\right)$, the equation in boldface becomes a single algebraic equation for U as a function of r, and the formal solution to our problem.

2f.) Three final simple tasks for now:
i) Show that the constant on the right of the bold equation of problem (2e) is

$$
c^{2}\left(c^{2}+\frac{a_{\infty}^{2}}{\gamma-1}\right)^{2}
$$

where a_{∞} is the sound speed at infinite distance from the black hole, if the gas starts accreting from rest.
ii) Show that the Newtonian limit of the equation is

$$
\frac{v^{2}}{2}+\frac{a^{2}}{\gamma-1}-\frac{G M}{r}=\frac{a_{\infty}^{2}}{\gamma-1}
$$

where v is the ordinary velocity, not the 4 -velocity. This is a statement that a quantity known as enthapy (energy plus the work done by pressure) is conserved. This is the original nonrelativistic Bondi 1952 solution for accretion onto a star.
iii) Show that as r approaches the Schwarzschild radius $R_{S}=2 G M / c^{2}$, then if $a \ll c$ everywhere, then $d r / d t$ satisfies the condition of a "null geodesic," a fancy way to say the inflow follows the equation of light:

$$
\frac{d r}{d t}=-c\left(1-R_{S} / r\right)
$$

Like stalled photons, from the point of view of a distant observer, the flow never crosses R_{S}.
3a.) Kinematic and gravitational redshifts. One of the most important observational black hole diagnostics is a calculation of the radiation spectrum from the surrounding disc. In particular we are interested in how the frequency of a photon is shifted due to space-time distortions and relativistic kinematics. Show that:

$$
\frac{\nu_{R}}{\nu_{E}}=\frac{p_{\mu}(R) V^{\mu}(R)}{p_{\mu}(E) V^{\mu}(E)}
$$

where R denotes the received the photon and E the emitted photon, ν is a frequency (not an index here!), p_{μ} a covariant photon 4 -momentum, and V^{μ} is the normalised 4 -velocity in the form $(d t / d \tau, d \mathbf{x} / c d \tau)$ for the emitted material (E) or the distant observer at rest (R).

3b.) In the problem at hand, the observer views the disc edge-on, in the plane of the disc. The gas moves in circular orbits

Show that in t, r, θ, ϕ coordinates for the $0,1,2,3$ components,

$$
V^{\mu}(R)=(1,0,0,0), \quad V^{\mu}(E)=V_{E}^{0}(1,0,0, d \phi / c d t), \text { with } V_{E}^{0}=d t / d \tau
$$

Then, using $g_{\mu \rho} V^{\mu} V^{\rho}=-1$), conclude that

$$
V_{E}^{0}=\left(1-3 G M / r c^{2}\right)^{-1 / 2}
$$

You may use a result from problem (5c) below. (You will prove it later!)
3c.) Finally, show that

$$
\frac{\nu_{R}}{\nu_{E}}=\left(1-\frac{3 G M}{r c^{2}}\right)^{1 / 2}\left(1+\frac{\Omega p_{\phi}(E)}{c p_{0}(E)}\right)^{-1}, \quad \Omega^{2}=G M / r^{3}
$$

A result of problem (3) from Problem Set 1 may be useful.
From disk material moving at right angles across the line of sight, ν_{R} / ν_{E} reduces to

$$
\left(1-3 G M / r c^{2}\right)^{1 / 2}
$$

Why? From disk material moving precisely along the line of sight, show that

$$
\frac{\nu_{R}}{\nu_{E}}=\left(1-3 G M / r c^{2}\right)^{1 / 2} /\left(1 \pm\left(r c^{2} / G M-2\right)^{-1 / 2}\right)
$$

(Hint: $g^{\nu \rho} p_{\nu} p_{\rho}=0$.) Interpret the \pm sign. In general, the photon paths must be calculated from the dynamical equations to determine the $p(E)$ ratio.

4a.) The perihelion advance of Mercury. In the notes we found that the differential equation for $u=1 / r$ for Mercury's orbit could be written as follows. $u=u_{N}+\delta u$ with the Newtonian solution u_{N} given by

$$
u_{N}=\left(G M / J^{2}\right)(1+\epsilon \cos \phi)
$$

and the differential equation for δu is

$$
\frac{d^{2} \delta u}{d \phi^{2}}+\delta u=\frac{3(G M)^{3}}{c^{2} J^{4}}\left(1+2 \epsilon \cos \phi+\epsilon^{2} \cos ^{2} \phi\right) .
$$

Show that this is equivalent to solving the real part of the equation

$$
\frac{d^{2} \delta u}{d \phi^{2}}+\delta u=a\left(b+2 \epsilon e^{i \phi}+\epsilon^{2} e^{2 i \phi} / 2\right)
$$

where $a=3(G M)^{3} /\left(c^{2} J^{4}\right)$ and $b=1+\epsilon^{2} / 2$.
To solve this, try a solution of the form

$$
\delta u=A_{0}+A_{1} \phi e^{i \phi}+A_{2} e^{2 i \phi}
$$

where the A 's are constants. Why do we need an additional factor of ϕ in the A_{1} term?
4b.) Show that the solution for $u=u_{N}+\delta u$ is

$$
u=\frac{G M}{J^{2}}+a b-\frac{a \epsilon^{2}}{6} \cos 2 \phi+\frac{G M}{J^{2}} \epsilon \cos \phi+\epsilon a \phi \sin \phi
$$

Since a is very small, show that this equivalent to

$$
u=a b-\frac{a \epsilon^{2}}{6} \cos 2 \phi+\frac{G M}{J^{2}}[1+\epsilon(\cos \phi(1-\alpha))]
$$

where

$$
\alpha=a J^{2} / G M=3(G M / J c)^{2}
$$

4c.) In the equation for u, the first two terms in a cause tiny (and unmeasurable) distortions in the shape of the ellipse, but do not affect the 2π perodicity in ϕ of the orbit. Show however that the final term, proportional to $G M / J^{2}$, results in a periastron advance of

$$
\Delta \phi=6 \pi\left(\frac{G M}{c J}\right)^{2}
$$

each orbit. This is the classic Einstein result.

5a.) Black hole orbits. In Newtonian theory, the energy equation for a test particle in orbit around a point mass is

$$
\frac{v^{2}}{2}+\frac{l^{2}}{2 r^{2}}-\frac{G M}{r}=\mathcal{E}
$$

where r is radius, v is the radial velocity, l the angular momentum per unit mass, \mathcal{E} the constant energy per unit mass, and $-G M / r$ is of course the potential energy. For the Schwarzschild solution show that the integrated geodesic equation may also be written in the form

$$
\frac{v_{S}^{2}}{2}+\frac{l_{S}^{2}}{2 r^{2}}+\Phi_{S}(r)=\mathcal{E}_{S}
$$

where r is the standard radial coordinate, l_{S} and \mathcal{E}_{S} are constants, $\Phi_{S}(r)$ is an effective potential function, and $v_{S}=d r / d \tau$. Determine l_{S} and \mathcal{E}_{S} in terms of the fundamental angular momentum and energy constants J and E from lecture (or the notes). Express $\Phi_{S}(r)$ in terms of l_{S}, \mathcal{E}_{S}, the speed of light $c, G M$ and r. The form of l_{S}, \mathcal{E}_{S}, and Φ_{S} should be chosen to go over to their Newtonian counterparts in the limit $E \rightarrow c^{2}, c \rightarrow \infty, E-c^{2} \rightarrow$ finite.

5b.) Sketch the effective potential $l_{S}^{2} / 2 r^{2}+\Phi_{S}(r)$. Prove that there is always a potential minimum in Newtonian theory, but that this is not the case in general relativity. What is the mathematical condition for the existence of a potential minimum for Φ_{S}, and what does it mean physically if it does not exist?

5c.) Show that for the Schwarzschild metric, circular orbits satisfy

$$
\Omega^{2}=\frac{G M}{r^{3}}
$$

exactly the Newtonian form. Here $\Omega \equiv d \phi / d t$ at the coordinate location r, where $d t$ is the proper time interval at infinity. Derive expressions for E and J in terms of $G M, c^{2}$ and r.

5d.) Below what value of r does Φ_{S} not have any local extrema? (Answer: $6 G M / c^{2}$.)

