
Problem Set 1. General Relativity, HT22

THE SIGN OF FOUR: COORDINATES, 4-VECTORS and 4-TENSORS

“That’s its business,” said Lambert. “If Balbus says it’s the same bulk, why, it’s the same bulk,
you know.”

“Well, I don’t believe it,” said Hugh.

“You needn’t,” said Lambert. “Besides, it’s dinner-time. Come along.” They found Balbus
waiting dinner for them, and to him Hugh at once propounded his difficulty.

“Let’s get you helped first,” said Balbus, briskly cutting away at the joint. “You know the old
proverb, ‘Mutton first, mechanics afterwards’?”

The boys did not know the proverb, but they accepted it in perfect good faith, as they did every
piece of information, however startling, that came from so infallible an authority as their tutor.
They ate on steadily in silence, and, when dinner was over, Hugh set out the usual array of pens,
ink, and paper, while Balbus repeated to them the problem he had prepared for their afternoon’s
task.

— Excerpt from A Tangled Tale, by Lewis Carroll

NOTE: Problem 5 is optional.

1.) Consider the following thought:

“Special relativity holds for frames moving at constant relative velocity, but of course
acceleration requires general relativity because the frames are noninertial.”

Wait, what? Nonsense! Special relativity is a formulation encompassing all nongravitational
physics, and it certainly doesn’t collapse before simple kinematical accleration. On the
other hand, acceleration, even just uniform accleration in one dimension, is not without its
connections to general relativity. We shall explore some of them here. For ease of notation,
let us set c = 1. In part (d) we’ll put c back.

1a.) Let us first ask what we mean by “uniform acceleration.” After all, a rocket approaching
the speed of light c can’t change its velocity at a uniform rate forever without exceeding c at
some point. Go into the frame moving instantaneously at velocity v, with the rocket relative
to the “lab.” By definition, in this frame, the instantaneous rocket velocity v′ is zero. Now,
wait a time dt′ later, as measured in this frame. The rocket will now have a velocity dv′ in
this same frame. What we mean by constant acceleration is that dv′/dt′ ≡ a′ is constant. By
contrast, the acceleration measured in the fixed lab is certainly not constant! The question
is, how is the lab acceleration a = dv/dt related to the truly constant a′?

To answer this, let V = v/
√

1− v2, the spatial part of the 4-vector V α associated with
the ordinary velocity v, and the same for V ′ and v′. Assume, for the moment, that the
primed and unprimed frames differ by some arbitrary velocity w. The 4-velocity differentials
are then given by:

dV ′ = (dV − w dV 0)/
√

1− w2

where V 0 = 1/
√

1− v2. Explain.

1b.) Now, set w = v. We thereby go into the frame in which v′ = 0; the rocket is in-
stantaneously at rest. Prove that dv = dv′(1 − v2). (Remember, v and v′ are the ordinary
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velocities.) From here, prove that

dv

dt
= a′(1− v2)3/2.

1c.) Show that, starting from rest at t = t′ = 0,

v =
a′t√

1 + a′2t2
, a′t = sinh(a′t′),

and hence show that (for x = 0 at t = t′ = 0):

v = tanh(a′t′), x =
1

a′
[cosh(a′t′)− 1]

The integrals are not difficult; do them yourselves.

1d.) Let’s use these results to construct a full coordinate transformation from the lab frame
x, t to the accelerating x′, t′ frame. A good start is to guess a transform of the form

t = A(x′) sinh(a′t′) +B(x′), x = A(x′) cosh(a′t′) + C(x′)

where A, B, and C depend only upon x′. Then on x′ = constant surfaces, dx/dt =
tanh(a′t′) = v, which is indeed what we need.

By definition, constant t′ surfaces are constant-time surfaces in the (x′, t′) frame that
move instantaneously with velocity v = tanh(a′t′) with respect to the (x, t) frame. On such
a surface, dt′/dx′ = 0. We fix the origin by demanding that as t′ → 0, x → x′. We fix our
clock by demanding that as t′ → 0, t→ t′ at the rocket location x′ = 0. (This must be done
locally: since A depends on x′, this time agreement can be exact at only one value of x′.)
Show that these constraints force B and C to be constant, and that B in particular must
vanish.

Finally, put the speed of light c back into the equations, demand that x goes to x′ at
t′ = 0, and show that

ct =

(
c2

a′
+ x′

)
sinh(a′t′/c), x =

(
c2

a′
+ x′

)
cosh(a′t′/c)− c2

a′

1e.) Show that the invariant Minkowski line element may be written in x′, t′ coordinates as:

c2dτ 2 = c2dt2 − dx2 =

(
1 +

a′x′

c2

)2

c2dt′2 − dx′2.

Provide a physical interpretation of your result in terms of a gravitational redshift. How do
you interpret the region x′ ≤ −c2/a′? (Review the results of 1d.)

2.) Orbits with relativistic kinematics. The relativistic equations for a test mass with ordi-
nary velocity v in a potential of the form −α/R, where α is a constant, are given by:

γc2 − α

R
= E
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γR2φ̇ = J

where γ = (1 − v2/c2)−1/2 and we use standard R, φ cylindrical coordinates in the orbital

plane. φ̇ is an ordinary time derivative, i.e. the time is measured in the fixed “lab” frame,
and E and J are constants. These equations are in fact the exact classical relativistic
equations for an electron in orbit about a positive point charge, but we can solve them as a
poor man’s substitute for proper general relativity by setting α = GM . (To the best of my
knowledge, no one even tried this during the years between special and general relativity,
when the distinction was less clear. ) Later in the course, we can compare these “ersatz
orbits” with those of the true theory. In any case, you’ll have solved exactly the correct,
classical relativistic atomic orbit problem!

2a.) Give a physical interpretation to each of these equations. What do the constants E and
J represent physically? Be precise.

2b.) Show that(
dR

dφ

)2

=

(
Ṙ

φ̇

)2

=
R4

J2c2

(
E2 − c4 +

2αE

R
+

1

R2
[α2 − J2c2]

)

(You may wish to begin by first solving for φ̇ in terms of R alone.)

2c.) Set u = 1/R and derive a second order linear differential equation for u:

d2u

dφ2
+ µ2u =

αE

J2c2

where

µ2 = 1− α2

J2c2

2d.) Finally, show that, up to an unimportant orbital phase constant, the most general
solution of this equation takes the form

u =
αE

µ2J2c2
[1 + ε cos(µφ)]

where ε is an arbitrary constant of integration. Show that when α � Jc, this orbit corre-
sponds to a near ellipse, but an ellipse in which the point of closest approach advances by
an angle

∆φ =
πα2

J2c2

every orbit. We will see that general relativity also predicts such an advance of the perihelion,
as it is called, but by an amount which is six times larger! The precise match of GR with
observations of Mercury’s orbit was the theory’s first great success.

3.) Recognising tensors. One way to prove that something is a vector or tensor is to show
explicitly that it satisfies the coordinate transformation laws. This can be a long and arduous
procedure if the tensor is complicated with many indices. There is another way, usually much
better!
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Show that if Vν is an arbitrary covariant vector and the combination T µνVν is known to be
a contravariant vector (note the free index µ), then(

T ′µν − T λσ ∂x
′µ

∂xλ
∂x′ν

∂xσ

)
V ′ν = 0

Why does this prove that T µν is a tensor? Does your proof actually depend on the rank of
the tensors involved?

4.) What about d2xµ/dτ
2? The geodesic equation in standard form gives us an expresssion

for d2xµ/dτ 2 in terms of the affine connection, Γµνλ. For the covariant coordinate xµ, show
that

d2xµ
dτ 2

=
1

2

dxν

dτ

dxρ

dτ

∂gνρ
∂xµ

Refer to section 4.7 in the notes if help is needed. Under what conditions is dx0/dτ = V0 ≡ Vt
a constant of the motion?

5∗.) What is “the spatial part” of a metric?: An *optional* problem for further study. It
is easy, even trivial, to get the proper time from a metric. One simply sets all the spatial
dxi = 0 in the invariant interval gµνdx

µdxν , and reads off a proper time of

dτ =
√
−g00 dx0/c.

This is what a local inertial observer reads off on their watch. So to get “ the spatial part”
of the metric, let’s call it dl2, do we just take whatever is left over from setting dx0 = 0,
i.e. dl2 = gijdx

idxj? Not quite; it depends on the application. The point is that one cannot
enforce global simultaneity by setting dx0 everywhere

How does a physical observer actually measure a distance? They take a light ray, bounce
it off a mirror some distance dl away, measure their local (proper) time on their watch dτ
for the light to go and come back, and then determine the distance via dl = cdτ/2. Let’s go
with that.

5a.) Show that for a diagonal metric tensor (all g0i = gi0 = 0), this procedure gives

dl2 = gijdx
idxj,

just as we expect. (In interpreting your results, you will find it useful to think of the light
ray as leaving at a negative time interval, and returning after a positive time interval.)

5b.) Show that for a general metric tensor gµν , with nonvanishing g0i = g0i, this procedure
gives

dl2 = γijdx
idxj, where γij = gij − (g0ig0j/g00)

The metric tensor of a rotating black hole (the Kerr metric) actually has g0φ = gφ0 compo-
nents, so this formula is very relevant here. We see that the spatial part of the metric may
contain mixed time-indexed terms!

5c.) Using the gµνg
νρ = δρµ relations, show that

gijγjk = δik
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and that, defining γij by raising indices via γij ≡ gikgjmγkm, leads to

γij = gij,

the “pure spatial part” of gµν . γij defined this way is indeed the inverse of γij. Hence, we are
justified in regarding γijdx

idxj as the invariant interval in its own three-dimensional space,
with inverse γij, within the more encompassing four-dimensional gµν spacetime. (Note that
this also shows that the indices on γij may be raised with γij.)

5d.) Show that det gµν = g00 det γij, which is consistent with identifying γij as the spatial
metric. You may find it useful to recall that the determinant of a matrix is unchanged when
a multiple of one row is added to another.
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