
Problem Set 5. General Relativity, HT24

Working with the FRW metric

RECALL:

Dynamical evolution equation:

Ṙ2 − 8πGρR2

3
= 2E (Energy Form) = − c2

a2
(Curvature Form) = −kc2 (FRW Form)

FRW metric, R dimensions of length, k = 0,±1:

−c2dτ 2 = −c2dt2 +
R2dr2

1− kr2
+R2r2(dθ2 + sin2 θdϕ2)

Curvature form, with R0 = 1 and R dimensionless, a2 positive or negative:

−c2dτ 2 = −c2dt2 +
R2dr2

1− r2/a2
+R2r2(dθ2 + sin2 θdϕ2)

1a.) A big bang, but in empty space you say. Really? Show that the dynamical field equation
for the scale factor R(t) for an empty space ρ = 0 leads to an FRW metric of the form

−dτ 2 = −dt2 +
t2dr2

1 + r2
+ r2t2(dθ2 + sin2 θdϕ2)

Use c = 1 for this problem!

1b.) Wait...Surely empty space must be Minkowski spacetime. Though this metric does not
look static, there must be a coordinate transformation that turns this metric into a static
Minkowski form. In other words, we ought to be able to find two functions, s and T ,

s = s(r, t), T = T (r, t) or equivalently r = r(s, T ), t = t(s, T )

that transform the metric of part (1a) into an old friend:

−dτ 2 = −dT 2 + ds2 + s2(dθ2 + sin2 θdϕ2)

By inspection, we must have
s(r, t) = rt.

Why “by inspection?” Explain convincingly why it is as simple as this, in just one to two
sentences.

1c.) Using s = rt, and by then demanding that the coefficient of dT 2 be −1 after the
coordinate change, show that T =

√
s2 + t2 (up to an additive function of s which you may

safely discard), and thereby derive the second coordinate transformation:

T = t
√
1 + r2.
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Give the explicit functional forms for r(s, T ) and t(s, T ).

1d.) Complete the full coordinate transformation for dτ 2 and verify in detail that the
Minkowski metric emerges. You may find it to your advantage to express ∂t/∂s and ∂r/∂s
in terms of r and t, and ∂r/∂T in terms of ∂t/∂T , before you begin. This is a valuable
lesson: it is easy to be fooled by coordinates.

2.) A radiation/matter universe. Fire and brimstone! Solve the dynamical cosmological
equation (Energy Form) for R(t) for the case of an arbitrary mixture of radiation and non-
relativistic matter in a spatially flat universe (E = 0). Assume a current energy density of
ργ0c

2, and a matter density ρm0. In terms of the “inferno ratio” I = ργ0/ρm0, you should
find

(R + I)3/2 − 3I(R + I)1/2 + 2I3/2 =
3Ω

1/2
m0H0t

2

(Note: This cubic equation is simple enough that the analytic solution is useful. Here it is
[no need to prove]:

R

I
= 4 cos2

[
1

3
cos−1Q

]
− 1 = 1 + cos

(
2

3
cos−1Q

)
, Q =

3H0tΩ
1/2
m0

4I3/2
− 1

This holds as long as −1 ≤ Q < 1. When Q ≥ 1, replace cos and cos−1 with cosh and
cosh−1.)

3.) A bullet in an E-dS universe. Shoot a bullet into an Einstein-de Sitter universe at start
of time. Nothing is actually pushing or pulling the bullet, but each comoving observer will
see the bullet fly by at a different velocity as it passes. The question is, how far does the
bullet get? More precisely, what is the largest comoving coordinate distance r the bullet
attains if it starts at r = 0, R = 0? The metric is standard E-dS:

−c2dτ 2 = −c2dt2 +R2dr2 +R2r2dΩ2

R(t) is the usual scale factor. We will use dϖ = Rdr for the proper physical distance. Other
standard notation and results for reference: t0 is the current age of the universe, R = (t/t0)

2/3

for E-dS, H0 ≡ Ṙ0.

3a.) The quantity dϖ/dt measures the bullet’s velocity relative to expanding, comoving
observers who are all moving away. Show that if the bullet has a measured velocity V1

at some instant when it passes one such observer, then when the bullet overtakes another
observer, a tiny distance dϖ farther away, the velocity V2 this observer measures is

V2 = V1 −
Ṙ dϖ

R

(
1− V 2

1

c2

)
to first order in dϖ. (You will need the special relativity velocity addition formula and a
local Hubble’s law. Full special relativity works locally because dϖ is a tiny distance, and
in this tiny, comoving frame special relativity holds. The relativity bit only matters when V1

is comparable to c, but we allow for that!) From this equation, show that the rate at which
the measured V = dϖ/dt is changing with cosmic time is given by the differential equation

V̇

V (1− V 2/c2)
= −Ṙ

R
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where V̇ = (V2 − V1)/dt = dV/dt. Solve this equation and show that with V = V0 at t = t0,
the solution is

V√
1− V 2/c2

=
U0

R

where U0 is the spatial component of the bullet 4-velocity corresponding to V0 at time t0.
(N.B.: In this problem, subscript 0 will always denote “current time,” not the 4-vector
time-like component.)

3b.) The result of (3a.) shows that the product PR is constant, where P is the spatial
component of the bullet 4-momentum. Show that, in this form, this is equivalent to an
adiabatic expansion, either of photons (extreme relativistic particles), or classical particles
(classical nonrelativistic gas). [Cosmic adiabatic expansion for photons correponds to the
temperature T obeying TR ∼ constant, while for a classical gas, adiabatic behaviour is
Tρ−2/3 ∼ constant, where ρ is the mass (or in this case number) density.] In other words, a
gas of bullets would “cool” like an ordinary gas!

3c.) Solve the equation dϖ/dt = V (R) for the comoving coordinate r in an E-dS universe
to obtain for our problem:

r(R) =
c

H0

∫ R

0

dx

[x+ c2x3/U2
0 ]

1/2

and show therefore that as R → ∞, the comoving coordinate r → rmax, where

rmax =
3.708

√
U0c

H0

The numerical factor is

3.708 =

∫ ∞

0

dy

(y + y3)1/2

Even after an infinite amount of time, and even though this universe is decelerating, a fired
bullet only reaches a finite value of comoving coordinate r for any finite U0. But the bullet
can reach arbitrarily large r, if V0 approaches the speed of light.

4.) Schwarzschild and FRW geometries. How long does it take a classical matter dominated
closed universe to collapse, starting at its maximum extent? Express your answer two ways:
in terms of the current value of the density ρ0 and Ωm0, and then in terms of the density
at maximum extent ρm. Now, suppose we take all the mass in a small sphere of radius r0
with density ρm (the sphere is small so that we don’t have to worry about non-Euclidian
curvature: the mass is just 4πr30ρm/3), and turn the matter into a Schwarzschild black hole.
Calculate the proper time for a test particle to fall into the hole from radial coordinate r0
in a Schwarzschild geometry. You should find exactly the same answer for the universe as a
whole. (Sections 6.5 and 10.5 in the notes will be useful.) Can you account for this amazing
agreement in a simple way?

5a.) There and back again: a photon’s tale. For a closed, matter-dominated universe with
current mass density ρ0, show that

H2
0 (ΩM0 − 1) = c2/a2
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where

ΩM0 =
8πGρ0
3H2

0

5b.) Consider the path of a photon (null geodesic) through this universe. With η defined in
§10.5 in the notes:

R =
1− cos η

2(1− Ω−1
M0)

show that the comoving photon coordinate satisfies

r = a sin η

Describe the path of a photon through this universe if launched at r = 0 at R = t = 0.
(Hint: Is the photon at the same location at η = 0 and η = π?)
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