M.Phys Option in Theoretical Physics: C6. Final Problem Sheet and Revision Questions, Quantum Field Theory

1.) (Derivative interactions)

Consider the theory of a real scalar field ϕ given by action

$$
S=\int d^{4} x \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{g}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right) \phi
$$

By carrying out a derivation similar to the usual Feynman propagator, show that

$$
\langle 0| T\left(\phi(x)\left(\partial_{\mu} \phi(y)\right)\right)|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}}\left(i p_{\mu}\right) \frac{i}{p^{2}-m^{2}+i \epsilon} e^{-i p(x-y)} .
$$

By applying the LSZ formula to

$$
\left(\frac{i}{p_{1}^{2}-m^{2}}\right)\left(\frac{i}{p_{2}^{2}-m^{2}}\right)\left(\frac{i}{k^{2}-m^{2}}\right)\left\langle\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}\right| i T|\mathbf{k}\rangle
$$

and carrying out an expansion to order g, find the Feynman rule associated to the interaction vertex. You can assume that the $\partial_{\mu} \phi$ and $\partial^{\mu} \phi$ parts of the interaction are contracted with the fields corresponding to the outgoing particles.
(You may assume that Wick's theorem holds also for contractions of the form $\phi(x) \partial_{\mu} \phi(z)$ with the Feynman propagator modified to the expression of $\langle 0| T\left(\phi(x)\left(\partial_{\mu} \phi(y)\right)\right)|0\rangle$ above.)

2.) (path integrals)

Consider the theory of a real scalar field ϕ given by action

$$
S=\int d^{4} x \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{g}{3!} \phi^{3},
$$

a) Using the path integral formalism, check that the totally connected contribution to $G^{(3)}\left(x_{1}, x_{2}, x_{3}\right)$ to order g is the same as you would obtain in canonical quantization
b) Using the path integral formalism, derive an expression for the totally connected contribution to $G^{(4)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ to order g^{2}.
c) Draw Feynman diagrams and comment briefly on the relation of your results to the scattering process $\phi+\phi \rightarrow \phi+\phi$

3.) (Field theories with global $S O(n)$ symmetry)

a) The group $S O(n)$ consists of the real $n \times n$ matrices R satisfying $R^{T} R=\mathbf{1}_{n}$ and $\operatorname{det}(R)=1$. Consider infinitesimal transformations of the form $R=\mathbf{1}_{n}+i T$ and determine the allowed matrices T, i.e. the Lie algebra of $S O(n)$. Show that the matrices $T_{a b}$, labelled by an antisymmetric pair of indices a, b and defined as $\left(T_{a b}\right)_{c}{ }^{d}=i\left(\delta_{a c} \delta_{b}^{d}-\delta_{a}^{d} \delta_{b c}\right)$
(where $a, b, c, \ldots=1, \ldots, n$) provide a basis for the Lie algebra. What is the dimension of this algebra?
b) A set of n scalar fields $\phi_{a}(x)$, where $a=1, \ldots, n$, has a Lagrangian density $\mathcal{L}=$ $\frac{1}{2} \sum_{a=1}^{n} \partial_{\mu} \phi_{a} \partial^{\mu} \phi_{a}-V$ with scalar potential $V=\frac{1}{2} m^{2} \sum_{a=1}^{n} \phi_{a}^{2}+\frac{\lambda}{4}\left(\sum_{a=1}^{n} \phi_{a}^{2}\right)^{2}$. Show that this Lagrangian density is invariant under $S O(n)$.
c) Compute the Noether currents of this $S O(n)$ symmetry.
d) For $m^{2}<0$ and $\lambda>0$ find the minima of the scalar potential and show that the $S O(n)$ symmetry is broken to $S O(n-1)$. What is the number of Goldstone modes?

4.) (Interacting scalar field theory)

Two real scalar fields ϕ_{1} and ϕ_{2} with masses $m_{1}^{2}>0$ and $m_{2}^{2}>0$ transform as $\phi_{1} \rightarrow-\phi_{1}$ and $\phi_{2} \rightarrow \phi_{2}$ under a \mathbb{Z}_{2} symmetry.
a) Write down the most general \mathbb{Z}_{2} invariant Lagrangian (with standard kinetic terms and up to quartic terms in the fields) for ϕ_{1} and ϕ_{2}.
b) Derive the Feynman rules for the vertices in this theory by computing the appropriate Green's functions.
c) Based on the results in b) and assuming negligible masses m_{1} and m_{2}, find the amplitudes and differential cross sections for $\phi_{1} \phi_{1} \rightarrow \phi_{1} \phi_{1}$ and $\phi_{1} \phi_{1} \rightarrow \phi_{2} \phi_{2}$ scattering.

5.) (Scalar Yukawa theory)

The Lagrangian density of the scalar Yukawa theory is given by

$$
\mathcal{L}=\left(\partial_{\mu} \varphi\right)^{\dagger}\left(\partial^{\mu} \varphi\right)-M^{2} \varphi^{\dagger} \varphi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-g \varphi^{\dagger} \varphi \phi,
$$

where φ and ϕ is a complex and a real scalar, respectively. Assume that $g \ll M, m$.
a) The given Lagrangian density has an internal global symmetry. How does this symmetry act on the fields φ and ϕ ? Calculate the associated Noether current J^{μ} and Noether charge Q.
b) Quantise the free theory $(g=0)$ and show that the normal-ordered Noether charge : Q : can be written in the form $: Q:=N_{+}-N_{-}$, where $N_{ \pm}=\int d^{3} \tilde{p} a_{ \pm}^{\dagger}(p) a_{ \pm}(p)$ are the number operators of the "+" quanta (anti-nucleons, \bar{N}) and "-" quanta (nucleons, N) of the φ field.
c) Starting from the general result

$$
\begin{aligned}
\sigma\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)=\frac{1}{4 \sqrt{\left(p_{1} p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \int \prod_{i=1,2} & d^{3} \tilde{q}_{i}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-q_{1}-q_{2}\right) \\
& \times\left|\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)\right|^{2}
\end{aligned}
$$

evaluate the differential cross section for a generic $2 \rightarrow 2$ process. Work in the center-ofmass frame and assume for simplicity that the masses of all four external particles are equal to m. You should obtain

$$
\frac{d \sigma\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)}{d \Omega}=\frac{1}{64 \pi^{2} E_{\mathrm{CM}}^{2}}\left|\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)\right|^{2},
$$

where $d \Omega=d \phi d \cos \theta$ with $\theta \in[-\pi, \pi]$ and $\phi \in\left[0,2 \pi\left[\right.\right.$, while E_{CM} denotes the total center-of-mass energy.
d) Draw the leading-order Feynman diagrams that describe the process $N \bar{N} \rightarrow M M$, where M denotes the quanta (mesons) of the ϕ field. Write down the matrix element $\mathcal{M}(N \bar{N} \rightarrow M M)$ using the momentum-space Feynman rules

with $\tilde{D}_{F}(p, M)=i /\left(p^{2}-M^{2}+i \epsilon\right)$ and $\tilde{D}_{F}(p, m)=i /\left(p^{2}-m^{2}+i \epsilon\right)$. Employ Mandelstam variables. Using the results of (c) derive the differential cross section for $N \bar{N} \rightarrow M M$ production in the limit $E_{\mathrm{CM}} \gg M, m$ with $m=M$. Consider only the leading term in the expansion in powers of $m^{2} / E_{\mathrm{CM}}^{2}$.

