The XXV International Symposium on Lattice Field Theory

The spectrum of closed loops of fundamental flux in $\mathrm{D}=\mathbf{2 + 1}$ $S U(N)$ gauge theories

Andreas Athenodorou
St. John's College
Oxford University
with Barak Bringoltz and Mike Teper
) xford
hysics ${ }_{w}$

I. Introduction.

General question:
\rightarrow What effective string theory describes flux tubes in $S U(N)$ gauge theories?
Two cases:
\rightarrow Open string
\rightarrow Closed string \leftarrow in $D=2+1$

During the last decade:

$\rightarrow 3 D, 4 D$ with $Z_{2}, Z_{4}, U(1), S U(N \leq 6)$ (Caselle and collaborators, Gliozzi and collaborators,
Kuti and collaborators, Lüscher\&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)
Questions to be studied in $D=2+1$ dimensional $S U(N)$ theories:
\rightarrow Calculation of excited states, and states with $p_{\|} \neq 0$ and $P= \pm$
\rightarrow What is the degeneracy pattern of these states?
\rightarrow What is the leading correction in E_{n}^{2} ?

II. Theoretical expectations A.

The Spectrum of the Nambu-Goto (NG) String Model

- Action of Nambu-Goto free bosonic string leads to:
\rightarrow Spectrum given by:

$$
E_{N_{L}, N_{R}, q, w}^{2}=(\sigma l w)^{2}+8 \pi \sigma\left(\frac{N_{L}+N_{R}}{2}-\frac{D-2}{24}\right)+\left(\frac{2 \pi q}{l}\right)^{2}+p_{\perp}^{2} .
$$

\rightarrow Described by:

1. The winding number $w(w=1)$,
2. The winding momentum $p_{\|}=2 \pi q / l$ with $q=0, \pm 1, \pm 2$,
3. The transverse momentum $p_{\perp}\left(p_{\perp}=0\right)$,
4. N_{L} and N_{R} connected through the relation: $N_{R}-N_{L}=q w$.

$$
N_{L}=\sum_{k>0} \sum_{n_{L}(k)>0} n_{L}(k) k \quad \text { and } \quad N_{R}=\sum_{k^{\prime}>0} \sum_{n_{R}\left(k^{\prime}\right)>0} n_{R}\left(k^{\prime}\right) k^{\prime}
$$

\rightarrow String states are eigenvectors of $P(\operatorname{In} D=2+1)$ with eigenvalues:

$$
P=(-1)^{\sum_{i=1}^{m} n_{L}\left(k_{i}\right)+\sum_{j=1}^{m^{\prime}} n_{R}\left(k_{j}^{\prime}\right)}
$$

II. Theoretical expectations B.

Effective string theory

- First prediction for $w=1$ and $q=0$ (Lüscher, Symanzik\&Weisz. 80):

$$
E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{D-2}{24}\right)+O\left(1 / l^{2}\right) .
$$

- Lüscher\&Weisz effective string action (Lüscher\&Weisz. 04):
\rightarrow Using open-closed string duality:
* For any D the $O\left(1 / l^{2}(1 / l)\right)$ (Boundary term) is absent from $E_{n}\left(E_{n}^{2}\right)$
\rightarrow Spectrum in $D=2+1$ (Drummond '04, Dass and Matlock' 06 for any D.):

$$
E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{1}{24}\right)-\frac{8 \pi^{2}}{\sigma l^{3}}\left(n-\frac{1}{24}\right)^{2}+O\left(1 / l^{4}\right)
$$

\rightarrow Equivalently:

$$
E_{n}^{2}=(\sigma l)^{2}+8 \pi \sigma\left(n-\frac{1}{24}\right)+O\left(1 / l^{3}\right),
$$

II. Theoretical expectations B.

Effective string theory

- First prediction for $w=1$ and $q=0$ (Lüscher, Symanzik\&Weisz. 80):

$$
E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{D-2}{24}\right)+O\left(1 / l^{2}\right) .
$$

- Lüscher\&Weisz effective string action (Lüscher\&Weisz. 04):
\rightarrow Using open-closed string duality:
* For any D the $O\left(1 / l^{2}(1 / l)\right)$ (Boundary term) is absent from $E_{n}\left(E_{n}^{2}\right)$
\rightarrow Spectrum in $D=2+1$ (Drummond '04, Dass and Matlock' 06 for any D.):

$$
E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{1}{24}\right)-\frac{8 \pi^{2}}{\sigma l^{3}}\left(n-\frac{1}{24}\right)^{2}+O\left(1 / l^{4}\right)
$$

\rightarrow Equivalently:

$$
E_{n}^{2}=E_{N G}^{2}+O\left(1 / l^{3}\right) \longrightarrow \text { Fit }: E_{\mathrm{fit}}^{2}=E_{N G}^{2}-\sigma \frac{C_{p}}{(l \sqrt{\sigma})^{p}} \quad(p \geq 3)
$$

III. Lattice Calculation

Our approach:

- Construct a large basis of operators $(80-200)$ with transverse deformations.
- Calculate the correlation matrix $\left.C_{i j, p, \pm}(t)=\left\langle\Phi_{i, p, \pm}^{\dagger}(t) \Phi_{j, p, \pm}(0)\right\rangle\right)$.
- Use the variational technique to extract correlators of different states.
- Fit our results using single cosh fits, and look at large t mass plateaus. Example:

$\begin{aligned} & \phi_{L}=\operatorname{Tr}\left\{\begin{array}{l} \downarrow \end{array}\right\} \text { and } \phi_{\mathrm{R}}=\operatorname{Tr}\left\{\begin{array}{l} L^{2} \end{array}\right\} \\ & \Phi_{p, \pm}=\frac{1}{L_{\\|} L_{\perp}} \sum_{x_{\\|}, x_{\perp}}\left\{\phi_{L} \pm \phi_{R}\right\} e^{i p x_{\\|}} \end{aligned}$	

III. Lattice Calculation

Monte-Carlo:

- We define our gauge theory on a 3D discretized periodic Euclidean space-time with $L \times L_{\perp} \times L_{T}$ sites.
- We choose to use the standard Wilson action:

$$
S_{\mathrm{W}}=\beta \sum_{P}\left[1-\frac{1}{N} \operatorname{Re} \operatorname{Tr} U_{P}\right]
$$

with: $\beta=\frac{2 N}{a g^{2}}$.

- Simulation:
- We use a mixture of Kennedy-Pendelton heat bath and over-relaxation steps for updating $S U(2)$ subgroups of $S U(N)$.
- We use Cabibbo-Marinary for updating $S U(N)$.
III. Lattice Calculation: Operators for $P=+$

	$\times 5 b l$	$\times 5 b l$	$\times 5 b l+\times 4 b l$	$\times 5 b l$

III. Lattice Calculation: Operators for $P=-$

III. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

- We extract masses of excited states.(up to 15 states)
- It increases the Overlaps (using single exponential fits):
- Ground state ~ $99-100 \%$,
- First excited state $\sim 98-100 \%$ ($\sim 90-95$ with just $\mid \times 5 b l$),
- Second excited state ~ 95 - 99\% ($\sim 85-90$ with just $\mid \times 5 b l$,
- We can extract energies of non-zero winding momentum states.
- We can extract energies of $P=-$ states.
- It increases computational time moderately.(ex. $\times 6$ for $L=16 a$)

IV. Results: Spectrum of $S U(3)$ and $\beta=21.0$

Group: $S U(3), \quad \underline{a} \simeq 0.08 \mathrm{fm}, \quad \underline{\text { Quantum Numbers: }} P=+,-$ and $q=0$

NG Prediction: $E_{n}^{2}=(\sigma l)^{2}+8 \pi \sigma\left(n-\frac{1}{24}\right)$, where $n=N_{L}=N_{R}$ since $q=0$.

IV. Results: Spectrum of $S U(3)$ and $\beta=40.0$

Group: $S U(3), \quad \underline{a} \simeq 0.04 \mathrm{fm}, \quad \underline{\text { Quantum Numbers: }} P=+,-$ and $q=0$

NG Prediction: $E_{n}^{2}=(\sigma l)^{2}+8 \pi \sigma\left(n-\frac{1}{24}\right)$, where $n=N_{L}=N_{R}$ since $q=0$.

IV. Results: Spectrum of $S U(6)$ and $\beta=90.0$

Group: $S U(6), \quad \underline{a} \simeq 0.08 \mathrm{fm}, \quad \underline{\text { Quantum Numbers: }} P=+,-$ and $q=0$

NG Prediction: $E_{n}^{2}=(\sigma l)^{2}+8 \pi \sigma\left(n-\frac{1}{24}\right)$, where $n=N_{L}=N_{R}$ since $q=0$.

IV. Results: Spectrum of $S U(N)$

Groups: $S U(3)$ and $S U(6), \quad \underline{a} \simeq 0.04 \mathrm{fm}$ and 0.08 fm ,
Quantum Numbers: $P= \pm$ and $q=0$

IV. Results: Non-zero winding momentum.

Group: $S U(3), \quad \underline{a} \simeq 0.08 \mathrm{fm}, \quad \underline{\text { Quantum Numbers: }} P=+,-, q=1,2$ and $w=1$

NG Prediction: $E^{2}-(2 \pi q / l)^{2}=(\sigma l w)^{2}+8 \pi \sigma\left(\frac{N_{R}+N_{L}}{2}-\frac{D-2}{24}\right)$.
Constraint: $N_{R}-N_{L}=q w$

IV. Results: Fits.

Ansatz: $E_{\text {fit }}^{2}=E_{N G}^{2}-\sigma \frac{C_{p}}{(l \sqrt{\sigma})^{p}}$,
String tension: Calculated using the ground state, fixing $p=3$

First excited states exclude $p=1$ (Boundary term)!
Also second excited states exclude $p=1$

V. Summary

$\underset{\sim}{\square}$

We constructed a large basis of operators characterized by the quantum numbers of parity P, and winding momentum $2 \pi q / l$,

We calculated the energies of closed flux tubes in $\mathrm{D}=2+1$ described by $P= \pm$ for:
$\rightarrow S U(3)$ with $\beta=21.0(a \simeq 0.08 \mathrm{fm})$ and $q=0, \pm 1, \pm 2$,
$\rightarrow S U(3)$ with $\beta=40.0(a \simeq 0.04 \mathrm{fm})$ and $q=0$,
$\rightarrow S U(6)$ with $\beta=90.0(a \simeq 0.08 \mathrm{fm})$ and $q=0$,
We fit our data for the ground state using $E_{\text {fit }}^{2}=E_{N G}^{2}-\sigma C_{p} /(l \sqrt{\sigma})^{p}$ and $p=3$, and extract σ.
\#
Using σ we compare our results to Nambu-Goto:
\rightarrow Nambu-Goto is VERY good
葠
We fit our data for the $1^{s t}$ and $2^{\text {nd }}$ excited states with $E_{\text {fit }}^{2}$, and extract p
$\rightarrow 1^{\text {st }}$ and $2^{\text {nd }}$ excited states exclude $\underline{p=1}$ (boundary term Lüscher\& Weisz. 04)
IV. Appendix 1: Contribution of Operators

IV. Appendix 2: Why E_{n}^{2} ?

Ground state:
$S U(3)$ and $\beta=14.7172$

$S U(5)$ and $\beta=80.00$

Fit 1: $E_{0}(l, \sigma)=\sigma l-\frac{\pi}{6 l} \times C_{\text {eff }}^{(1)}(l)$
Fit 2: $E_{0}^{2}(l, \sigma)=(\sigma l)^{2}-\frac{\pi \sigma}{3} \times C_{\text {eff }}^{(2)}(l)$.

