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Abstract

We calculate the perturbative value of the free energy
in QCD on the lattice. This quantity is directly related
to the average plaquette.

Our calculation is done to 3 loops using the clover ac-
tion for fermions; the results are presented for arbitrary
values of the clover coefficient, and for a wide range of
fermion masses.

In addition, we calculate the 2 loop result for the same

quantity, using the overlap action.



» We compute the perturbative expansion of the average plaque-

tte, in SU(N) gauge theory with Ny fermion flavours.

» We present separate calculations using the clover action (3-
loops), and the overlap action (2-loops). The simpler case of

Wilson fermions was performed in [1].

» The average plaquette can be related to the perturbative free
energy of lattice QCD, as well as to the expectation value of the

action.
» The results can be used:
e In improved scaling schemes, using an appropriately defined

effective coupling.

e In long standing efforts, starting with [2], to determine the

value of the gluon condensate.
e In studies of the interquark potential [3].

e As a test of perturbation theory, at its limits of applicability.



Calculation with Clover Fermions

> The action is, in standard notation:

S = Sw + Sy,
Sy = 6%:EW(D)7 (1)
Sp =2 Ey(z)

with

1
Eyw(0) =1 — -Re Tr (D),

By(w) = 2| (m+4r) plyl - (2)
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where : M = S (Quw—Quu)y Qu=U,,+U,_,+U_,_,+U_,,

Here U, ,(x) is the usual product of link variables U, (x) along a
plaquette in the p-v directions, originating at x; f is a flavor index;

m is the bare fermionic mass; o,, = (1/2)[v,, 7v]; powers of a may
be directly reinserted by dimensional counting. The clover coefficient

csw 1s a free parameter in the present work; it is normally tuned in

a way as to minimize O(a) effects.
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> (Ey) : straightforwardly computed to all orders, rescaling the

action Sy by a factor € under the fermionic path integral Z /

7' (e) = [ D(2)Dyp(x) exp (—eSy) = "N Z (e =1)  (3)

and using
O (InZ/(e)
(Ey) = —%- ( ) = —4ANNj. (4)
Oe Vo).
> (Eyw) is calculated in perturbation theory:
1
<EW>:1—N<TI"(D)>:clg2+0294+03g6+--- (5)

> The n-loop coefficient can be written as ¢, = ¢/ + ¢/ where:
e ¢J : pure Yang-Mills contribution, known to 3-loops [4].
e ¢/ : fermionic contribution, known to 3-loops in the absence of
the clover term [1].

To calculate ¢,, we will first compute the free energy —(In Z)/V up

to 3 loops, Z being the full partition function
7 = | DU,(2)D(z)Dy(x) exp(—S). (6)
The average of Fyy is then extracted as follows

()

(Ew) = —é a5
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Feynman diagrams for the free energy up to 3 loops
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> Lines: Solid (fermions), curly (gluons), dashed (ghosts).

> Filled square: Contribution from the “measure” part of the action.
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> The involved algebra of the lattice perturbation theory was carried
out using our computer package in Mathematica.
> The value for each diagram is computed numerically for a sequence
of finite lattice sizes. Diagrams must be grouped in several infrared-
finite sets, before extrapolating their values to infinite lattice size.
> Extrapolation leads to a (small) systematic error, which is esti-
mated quite accurately.

Results

> Pure gluonic contributions already known:
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> Fermionic contributions take the form:

~1)h o ()
N, Nf)

= (¥
( >(h30Nf+h31 N2+h32 ~

ha, hso, 31, hgo depend polynomially on the clover parameter csyy:

he = B + B esw + B 2y (10)
hai = hs) + B esw + hSY chy + b)) v + b chy
> Our results for hgj ), h;(;g) are shown in the graphs below, for typical
values of the bare mass m. Systematic errors are too small to be
visible.
> As a typical example, setting N = 3, Ny = 2, and m = —0.518106
(corresponding to x = (8 +2m)~! = 0.1436), we obtain:
csw=0: (Eyw) =(1/3)g* +0.026185200(3)g" +0.0119649(3)g"

csw =2 (Ew) = (1/3) g* +0.013663456(3)g* +0.0110200(13)g"
(11)
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