Higher Loop Results for the Plaquette, Using the Clover and Overlap Actions

A. Athinodorou, H. Panagopoulos, A. Tsapalis

Department of Physics, University of Cyprus

Abstract

We calculate the perturbative value of the free energy in QCD on the lattice. This quantity is directly related to the average plaquette.

Our calculation is done to 3 loops using the clover action for fermions; the results are presented for arbitrary values of the clover coefficient, and for a wide range of fermion masses.

In addition, we calculate the 2 loop result for the same quantity, using the overlap action.

- We compute the perturbative expansion of the average plaquette, in SU(N) gauge theory with N_f fermion flavours.
- ▶ We present separate calculations using the clover action (3-loops), and the overlap action (2-loops). The simpler case of Wilson fermions was performed in [1].
- ▶ The average plaquette can be related to the perturbative free energy of lattice QCD, as well as to the expectation value of the action.
- ▶ The results can be used:
 - In improved scaling schemes, using an appropriately defined effective coupling.
 - In long standing efforts, starting with [2], to determine the value of the gluon condensate.
 - In studies of the interquark potential [3].
 - As a test of perturbation theory, at its limits of applicability.

Calculation with Clover Fermions

▶ The action is, in standard notation:

$$S = S_W + S_f,$$

$$S_W = \beta \sum_{\square} E_W(\square),$$

$$S_f = \sum_{x} E_f(x)$$
(1)

with

$$E_{W}(\square) = 1 - \frac{1}{N} \operatorname{Re} \operatorname{Tr}(\square),$$

$$E_{f}(x) = \sum_{f} \left[(m + 4r) \overline{\psi}_{x}^{f} \psi_{x}^{f} - \frac{1}{2} \sum_{\mu} \left(\overline{\psi}_{x+\hat{\mu}}^{f} (r + \gamma_{\mu}) U_{\mu}^{\dagger}(x) \psi_{x}^{f} + \overline{\psi}_{x}^{f} (r - \gamma_{\mu}) U_{\mu}(x) \psi_{x+\hat{\mu}}^{f} \right) \right]$$

$$+ \frac{i}{4} c_{SW} \sum_{f} \sum_{\mu,\nu} \overline{\psi}_{x}^{f} \sigma_{\mu\nu} \hat{F}_{x}^{\mu\nu} \psi_{x}^{f}.$$

$$(2)$$

where:
$$\hat{F}^{\mu\nu} \equiv \frac{1}{8} (Q_{\mu\nu} - Q_{\nu\mu}), \quad Q_{\mu\nu} = U_{\mu,\nu} + U_{\nu,-\mu} + U_{-\mu,-\nu} + U_{-\nu,\mu}$$

Here $U_{\mu,\nu}(x)$ is the usual product of link variables $U_{\mu}(x)$ along a plaquette in the μ - ν directions, originating at x; f is a flavor index; m is the bare fermionic mass; $\sigma_{\mu\nu} = (i/2)[\gamma_{\mu}, \gamma_{\nu}]$; powers of a may be directly reinserted by dimensional counting. The clover coefficient $c_{\rm SW}$ is a free parameter in the present work; it is normally tuned in a way as to minimize $\mathcal{O}(a)$ effects.

 $\triangleright \langle E_f \rangle$: straightforwardly computed to all orders, rescaling the action S_f by a factor ϵ under the fermionic path integral Z^f

$$Z^{f}(\epsilon) \equiv \int \mathcal{D}\overline{\psi}(x)\mathcal{D}\psi(x) \exp(-\epsilon S_{f}) = \epsilon^{4VNN_{f}}Z^{f}(\epsilon = 1)$$
 (3)

and using

$$\langle E_f \rangle = -\frac{\partial}{\partial \epsilon} \left(\frac{\ln Z^f(\epsilon)}{V} \right)_{\epsilon=1} = -4NN_f.$$
 (4)

 $\triangleright \langle E_W \rangle$ is calculated in perturbation theory:

$$\langle E_W \rangle = 1 - \frac{1}{N} \langle \text{Tr}(\Box) \rangle = c_1 g^2 + c_2 g^4 + c_3 g^6 + \cdots$$
 (5)

- \triangleright The *n*-loop coefficient can be written as $c_n = c_n^g + c_n^f$ where:
 - c_n^g : pure Yang-Mills contribution, known to 3-loops [4].
 - c_n^f : fermionic contribution, known to 3-loops in the absence of the clover term [1].

To calculate c_n we will first compute the free energy $-(\ln Z)/V$ up to 3 loops, Z being the full partition function

$$Z \equiv \int \mathcal{D}U_{\mu}(x)\mathcal{D}\overline{\psi}(x)\mathcal{D}\psi(x)\exp(-S). \tag{6}$$

The average of E_W is then extracted as follows

$$\langle E_W \rangle = -\frac{1}{6} \frac{\partial}{\partial \beta} \left(\frac{\ln Z}{V} \right).$$
 (7)

Feynman diagrams for the free energy up to 3 loops

- ▶ Lines: Solid (fermions), curly (gluons), dashed (ghosts).
- ▶ Filled square: Contribution from the "measure" part of the action.

▶ Filled circle:

- ➤ The involved algebra of the lattice perturbation theory was carried out using our computer package in Mathematica.
- ▶ The value for each diagram is computed numerically for a sequence of finite lattice sizes. Diagrams must be grouped in several infrared-finite sets, before extrapolating their values to infinite lattice size.
- Extrapolation leads to a (small) systematic error, which is estimated quite accurately.

Results

> Pure gluonic contributions already known:

$$c_1^g = \frac{N^2 - 1}{8 N},$$

$$c_2^g = (N^2 - 1) \left(0.0051069297 - \frac{1}{128 N^2} \right),$$

$$c_3^g = (N^2 - 1) \left(\frac{0.0023152583(50)}{N^3} - \frac{0.002265487(17)}{N} + \frac{0.000794223(19) N}{N} \right).$$
(8)

> Fermionic contributions take the form:

$$c_1^f = 0,$$

$$c_2^f = (N^2 - 1) h_2 \frac{N_f}{N},$$

$$c_3^f = (N^2 - 1) \left(h_{30} N_f + h_{31} \frac{N_f}{N^2} + h_{32} \frac{N_f^2}{N} \right).$$
(9)

 $h_2, h_{30}, h_{31}, h_{32}$ depend polynomially on the clover parameter $c_{\rm SW}$:

$$h_{2} = h_{2}^{(0)} + h_{2}^{(1)} c_{SW} + h_{2}^{(2)} c_{SW}^{2}$$

$$h_{3i} = h_{3i}^{(0)} + h_{3i}^{(1)} c_{SW} + h_{3i}^{(2)} c_{SW}^{2} + h_{3i}^{(3)} c_{SW}^{3} + h_{3i}^{(4)} c_{SW}^{4}$$

$$(10)$$

 \triangleright Our results for $h_2^{(j)}$, $h_{3i}^{(j)}$ are shown in the graphs below, for typical values of the bare mass m. Systematic errors are too small to be visible.

 \triangleright As a typical example, setting $N=3, N_f=2,$ and m=-0.518106 (corresponding to $\kappa=(8+2m)^{-1}=0.1436$), we obtain:

$$c_{\text{SW}} = 0$$
: $\langle E_W \rangle = (1/3) g^2 + 0.026185200(3) g^4 + 0.0119649(3) g^6$,
 $c_{\text{SW}} = 2$: $\langle E_W \rangle = (1/3) g^2 + 0.013663456(3) g^4 + 0.0110200(13) g^6$. (11)