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I. Introduction: General

General question:

→What effective string theory describes k-strings in S U(N) gauge theories?

Two cases:

→ Open k-strings

→ Closed k-strings©
During the last decade:

→ 3D, 4D with Z2, Z4,U(1), S U(N ≤ 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 dimensional S U(N) theories:

→ Calculation of excited states, and states with p‖ � 0 and P = ± with k = 1, 2

→ What is the degeneracy pattern of these states?

→ Do k-strings fall into specific irreducible representations?
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I. Introduction: General
Open flux tube (k = 1 string) Closed flux tube (k = 1 string)

x

l
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periodic b.c−→
l t
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Φ(l, t) = φ†(0, t)U(0, l; t)φ(l, t) Φ(l, t) = TrU(l; t)
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→ 3D, 4D with Z2, Z4,U(1), S U(N ≤ 6) (Caselle and collaborators, Gliozzi and collaborators,
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I. Introduction: k- strings

What is a k-string?

• Confinement in 3-d S U(N) leads to a linear potential between colour charges in

the fundamental representation.

• For S U(N ≥ 4) there is a possibility of new stable strings which join test

charges in representations higher than the fundamental!

• We can label these by the way the test charge transforms under the center of the

group: ψ(x) −→ zkψ(x), z ∈ ZN .

• The string has N-ality k, (k = 2 :
⊗

=
⊕

) ( fund.
⊗

fund. = symm.
⊕

anti. )
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I. Introduction: k- strings

• The string tension does not depend on the representation R but rather on its

N-ality k.

• The fundamental string has: N-ality k = 1, with string tension σf .

• A k-string can be thought of as a bound state of k fundamental strings.

• Operators: φ = Tr{Uk− j}Tr{U} j where U is a Polyakov loop and j = 0, .., k − 1.

– For k = 1, φ ≡ ≡ Tr{U}
– For k = 2, φ1 ≡ ≡ Tr{U2}, φ2 ≡ ≡ Tr{U}Tr{U}

• Predictions:

– Casimir Scaling: σR = σ f · CR
C f
=> σk

σ f
=

k(N−k)
(N−1)

– MQCD: σk
σ f
=

sin kπ
N

sin π
N

• We expect: σk
N−→∞−→ kσ f
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II. Theoretical expectations A.

The Spectrum of the Nambu-Goto (NG) String Model

◦ Action of Nambu-Goto free bosonic string leads to:

→ Spectrum given by:

E2
NL ,NR ,q,w

= (σlw)2 + 8πσ
(

NL+NR
2 − D−2

24

)
+

(
2πq

l

)2
+ p2

⊥.

→ Described by:

1. The winding number w (w=1),

2. The winding momentum p‖ = 2πq/l with q = 0,±1,±2,

3. The transverse momentum p⊥ (p⊥ = 0),

4. NL and NR connected through the relation: NR − NL = qw.

NL =
∑
k>0

∑
nL(k)>0

nL(k)k and NR =
∑
k′>0

∑
nR(k′)>0

nR(k′)k′

→ String states are eigenvectors of P (In D = 2 + 1) with eigenvalues:

P = (−1)
∑m

i=1 nL(ki)+
∑m′

j=1 nR(k′j)
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II. Theoretical expectations A.

The seven lowest NG energy levels for the w = 1 closed string

level NR NL q P = + P = −
0 0 0 0 |0〉
1 1 0 1 α−1 |0〉
2 1 1 0 α−1ᾱ−1 |0〉
3 2 0 2 α−1α−1 |0〉 α−2 |0〉
4 2 1 1 α−2ᾱ−1 |0〉 α−1α−1ᾱ−1 |0〉
5 2 2 0 α−2ᾱ−2 |0〉, α−1α−1ᾱ−1ᾱ−1 |0〉 α−2ᾱ−1ᾱ−1 |0〉, α−1α−1ᾱ−2 |0〉
6 3 1 2 α−3ᾱ−1 |0〉, α−1α−1α−1ᾱ−1 |0〉 α−2α−1ᾱ−1 |0〉
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II. Theoretical expectations B.

Effective string theory

◦ First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

En = σl +
4π
l

(
n − D − 2

24

)
+ O

(
1/l2

)
.

◦ Lüscher&Weisz effective string action (Lüscher&Weisz. 04):

→ For any D the O
(
1/l2 (1/l)

)
(Boundary term) is absent from En(E2

n)

→ Spectrum in D = 2 + 1 (Drummond ’04, Dass and Matlock ’06 for any D.):

En = σl +
4π
l

(
n − 1

24

)
− 8π2

σl3

(
n − 1

24

)2

+ O
(
1/l4

)

→ Equivalently:

E2
n = (σl)2 + 8πσ

(
n − 1

24

)
+ O

(
1/l3

)
,
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II. Theoretical expectations B.

Effective string theory

◦ First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

En = σl +
4π
l

(
n − D − 2

24

)
+ O

(
1/l2

)
.

◦ Lüscher&Weisz effective string action (Lüscher&Weisz. 04):

→ For any D the O
(
1/l2 (1/l)

)
(Boundary term) is absent from En(E2

n)

→ Spectrum in D = 2 + 1 (Drummond ’04, Dass and Matlock ’06 for any D.):

En = σl +
4π
l

(
n − 1

24

)
− 8π2

σl3

(
n − 1

24

)2

+ O
(
1/l4

)

→ Equivalently:

E2
n = E2

NG + O
(
1/l3

)
−→ Fit : E2

fit = E2
NG − σ

Cp(
l
√
σ
)p (p ≥ 3)
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III. Lattice Calculation: Lattice setup
• Usually we are interested in calculating quantities like:

〈Ψ(A)〉 = 1
Z

∫ ∏
�x,μ

dAμ(�x)Ψ(A)e−S [A]

• The lattice represents a mathematical trick: It provides a regularisation scheme.

• We define our gauge theory on a 3D discretized periodic Euclidean space-time

with L‖ × L⊥ × LT sites.
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III. Lattice Calculation: Lattice setup
• Usually we are interested in calculating quantities like:

〈Ψ(A)〉 = 1
Z

∫ ∏
�x,μ

dAμ(�x)Ψ(A)e−S [A]

• The lattice represents a mathematical trick: It provides a regularisation scheme.

� �� sites, �x

Uμ(�x) ∈ S U(N)
(μ = 1, 2, 3)

�

a

• We define our gauge theory on a 3D discretized periodic Euclidean space-time

with L‖ × L⊥ × LT sites.
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III. Lattice Calculation: On the Lattice

• Using link variables, the EFPI is written as:

〈ΨL(U)〉 = 1
Z

∫ ∏
n,μ

dUμ(n)ΨL(U)e−S L[U] (1)

Where:

S L = β
∑

p

{1 − 1
Nc

ReTrUp} (2)

β =
2Nc

ag2
(D = 2 + 1) (3)

Up = Uμ(�x)Uν(�x + aμ̂)U†μ(�x + aν̂)U†μ(�x) (4)

�
�ν

μ
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III. Lattice Calculation: Monte - Carlo Simulations

Why Monte - Carlo?:

• We want to calculate the expectation value of colour singlet operators.

• High multidimensionality of these integrals makes traditional mesh techniques

impractical.

−→Monte Carlo Methods.

• We need to generate nc different field configurations with probability

distribution: ∏
l

dUle
−β∑

p{1− 1
Nc

ReTrUp} (5)

• Then the expectation value of ΨL(U) will be just the average over these fields.

〈ΨL(U)〉 = 1
nc

nc∑
I=1

ΨL(UI) ± O(
1√
nc

) (6)
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III. Lattice Calculation: Energy Calculation

• Masses of certain states can be calculated using the correlation functions of

specific operators:

〈Φ†(t)Φ(0)〉 = |〈Ω|Φ†|0〉|2e−tm0 +
∑
m≥1

|〈Ω|Φ†|m〉|2e−tmm

t→∞−→ |〈Ω|Φ†|0〉|2e−tm0 (7)

• Let us define the effective mass:

ame f f (t) = −ln
〈Φ†(t)Φ(0)〉
〈Φ†(t − a)Φ(0)〉 (8)

• The mass will be equal to:

amk � ame f f (t0) (9)

where t0 is the lowest value of t for which me f f (t0) = ame f f (t > t0)
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III. Lattice Calculation: Energy Calculation

Example: Closed k = 1 string:

Φ Φ
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III. Lattice Calculation: Energy Calculation
• We expect to calculate masses for some excited states, so we need to use

operators which merely project onto the excited states.

• We construct a basis of operators, Φi : i = 1, ...,NO, with transverse

deformations described by the quantum numbers of parity P, winding number

w, longitudinal momentum p‖ and transverse momentum p⊥ = 0.

For example:

Φ
p‖ ,p⊥
± =

1
L‖L⊥

∑
x‖ ,x⊥
{φu ± φd} eip‖x‖+ip⊥x⊥

k = 1:

φu = Tr { } and φd = Tr { }
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III. Lattice Calculation: Energy Calculation
k = 2:

1st set of operators: φu = Tr { }2 , φd = Tr { }2
2nd set of operators: φu = Tr { · } , φd = Tr { · }
3rd set of operators: φu = Tr { } , φd = Tr { }
Projection onto the Antisymmetric representation:

φu = [Tr { }2 − Tr { · }], φd = [Tr { }2 − Tr { · }]
Projection onto the Symmetric representation:

φu = [Tr { }2 + Tr { · }], φd = [Tr { }2 + Tr { · }]
• We calculate the correlation function (Matrix): Ci j(t) = 〈Φ†i (t)Φ j(0)〉
• We diagonalize the matrix: C−1(0)C(a).

• We extract the correlator for each state.

• By fitting the results, we extract the mass (energy) for each state.
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III. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

• We extract masses of excited states. (up to 15 states for k = 1)

• It increases the Overlaps (using single exponential fits):

– Ground state ∼ 99 − 100%,

– First excited state ∼ 98 − 100% (∼ 90 − 95 with just ×5bl),

– Second excited state ∼ 95 − 99% (∼ 85 − 90 with just ×5bl),

• We can extract energies of non-zero winding momentum states.

• We can extract energies of P = − states.

• It increases computational time moderately.(ex. ×6 for L = 16a)
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III. Lattice Calculation: Operators for P = + and k = 1

×5 bl ×5 bl ×5 bl + ×4 bl ×5 bl ×5 bl

×5 bl ×5 bl ×5 bl ×5 bl f (L‖, L⊥, bl)

×5 bl + ×5 bl ×5 bl ×5 bl ×5 bl ×5 bl
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III. Lattice Calculation: Operators for P = − and k = 1

×5 bl ×5 bl ×5 bl + ×4 bl ×5 bl ×5 bl

×5 bl ×5 bl ×5 bl

×5 bl + ×5 bl ×5 bl ×5 bl ×5 bl ×5 bl
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IV. Results: Spectrum of S U(3) and β = 21.0 for k = 1

Group: S U(3), a � 0.08 f m, Quantum Numbers: P = +,− and q = 0

√
σl

E/
√
σ

654321

12

10

8

6

4

2

0

n = 0

n = 1

n = 2

n = 3

NG Prediction: E2
n = (σl)2 + 8πσ

(
n − 1

24

)
, where n = NL = NR since q = 0.
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IV. Results: Spectrum of S U(3) and β = 40.0 for k = 1

Group: S U(3), a � 0.04 f m, Quantum Numbers: P = +,− and q = 0

√
σl

E/
√
σ

654321

12

10

8

6

4

2

0

n = 0

n = 1

n = 2

n = 3

NG Prediction: E2
n = (σl)2 + 8πσ

(
n − 1

24

)
, where n = NL = NR since q = 0.
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IV. Results: Spectrum of S U(6) and β = 90.0 for k = 1

Group: S U(6), a � 0.08 f m, Quantum Numbers: P = +,− and q = 0

√
σl

E/
√
σ

654321

12

10

8

6

4

2

0

n = 0

n = 1

n = 2

n = 3

NG Prediction: E2
n = (σl)2 + 8πσ

(
n − 1

24

)
, where n = NL = NR since q = 0.
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IV. Results: Spectrum of S U(N) for k = 1

Groups: S U(3) and S U(6), a � 0.04 f m and 0.08 f m,

Quantum Numbers: P = ± and q = 0

√
σl

E/
√
σ

654321

9

8

7

6

5

4

3

2

1

0

n = 0

n = 1

n = 2

E1 = σl + 4π
l

(
1 − 1

24

)
− 8π2

σl3

(
1 − 1

24

)2

E1 = σl + 4π
l

(
1 − 1

24

)

NG Prediction: E2
n = (σl)2 + 8πσ

(
n − 1

24

)
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IV. Results: Non-zero winding momentum for k = 1.
Group: S U(3), a � 0.08 f m, Quantum Numbers: P = +,−, q = 1, 2 and w = 1

l
√
σ

√ E
2
/σ
−(

2π
q/
√ σ

l)
2

4.543.532.52

9

8

7

6

5

4

q = 1, NR = 1, NL = 0

q = 2, NR = 2, NL = 0

q = 1, NR = 2, NL = 1

q = 2, NR = 3, NL = 1

q = 1, NR = 3, NL = 2

NG Prediction: E2 − (2πq/l)2 = (σlw)2 + 8πσ
(

NR+NL
2 − D−2

24

)
.

Constraint: NR − NL = qw

26



IV. Results: Spectrum of S U(4) for P = + and k = 2.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = +, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Basis: TrU2
(w=1)+ + TrU2

(w=1)−, Tr(U(w=1)+)2 + Tr(U(w=1)−2), TrU(w=2)+ + TrU(w=2)−
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IV. Results: Spectrum of S U(4) for P = + and k = 2.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = +, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5

7

6

5

4

3

2

1

Basis: TrU2
(w=1)+ + TrU2

(w=1)−, Tr(U(w=1)+)2 + Tr(U(w=1)−2)
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IV. Results: Spectrum of S U(4) for P = + and k = 2A.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = +, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Basis: [TrU2
(w=1)+ − Tr(U(w=1)+)2] + [TrU2

(w=1)− − Tr(U(w=1)−2)]
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IV. Results: Spectrum of S U(4) for P = + and k = 2S .

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = +, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5

8

7

6

5

4

3

2

1

Basis: [TrU2
(w=1)+ + Tr(U(w=1)+)2] + [TrU2

(w=1)− + Tr(U(w=1)−2)]
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IV. Results: Spectrum of S U(4) for P = − and k = 2.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Basis: TrU2
(w=1)+ + TrU2

(w=1)−, Tr(U(w=1)+)2 + Tr(U(w=1)−2)
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IV. Results: Spectrum of S U(4) for P = − and k = 2.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 0 and k = 2

√
σl

E/(σl)

4.543.532.521.5
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1

Basis: TrU2
(w=1)+ + TrU2

(w=1)−, Tr(U(w=1)+)2 + Tr(U(w=1)−2), TrU(w=2)+ + TrU(w=2)−
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IV. Results: Spectrum of S U(4) for P = −, q = 1, k = 2A.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 1 and k = 2A

√
σl

E/(σl)

4.543.532.521.5

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

Basis: [TrU2
(w=1)+ − Tr(U(w=1)+)2] + [TrU2

(w=1)− − Tr(U(w=1)−2)]
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IV. Results: Spectrum of S U(4) for P = −, q = 2, k = 2A.

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 2 and k = 2A

√
σl

E/(σl)

4.543.532.521.5

9
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6

5

4

3

2

Basis: [TrU2
(w=1)+ − Tr(U(w=1)+)2] + [TrU2

(w=1)− − Tr(U(w=1)−2)]
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IV. Results: Spectrum of S U(4) for P = −, q = 1, k = 2S .

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 1 and k = 2S

√
σl

E/(σl)

4.543.532.521.5

9

8

7

6

5

4

3

2

Basis: [TrU2
(w=1)+ + Tr(U(w=1)+)2] + [TrU2

(w=1)− + Tr(U(w=1)−2)]
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IV. Results: Spectrum of S U(4) for P = −, q = 2, k = 2S .

Group: S U(4), a � 0.06 f m, Quantum Numbers: P = −, q = 2 and k = 2S

√
σl

E/(σl)

4.543.532.521.5

11

10

9

8

7

6

5

4

3

Basis: [TrU2
(w=1)+ + Tr(U(w=1)+)2] + [TrU2

(w=1)− + Tr(U(w=1)−2)]
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V. Summary
We constructed a large basis of operators characterized by the quantum

numbers of parity P, and winding momentum 2πq/l,

We calculated the energies of closed k-strings in D=2+1 described by P = ±
for:

→ S U(3) with k = 1, β = 21.0 (a � 0.08fm) and q = 0,±1,±2,

→ S U(3) with k = 1, β = 40.0 (a � 0.04fm) and q = 0,

→ S U(4) with k = 1, 2, β = 50.0 (a � 0.06fm) and q = 0,±1,±2,

→ S U(5) with k = 1, 2, β = 80.0 (a � 0.06fm) and q = 0,±1,±2,

→ S U(6) with k = 1, β = 90.0 (a � 0.08fm) and q = 0.

We fit our data for the ground state using E2
fit = E2

NG − σCp/
(
l
√
σ
)p

and p = 3,

and extract σ.

Using σ we compare our results to Nambu-Goto:

→ Nambu-Goto is VERY good
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V. Summary

k-strings know about the full S U(N) gauge group.

We observe additional states...
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VI. Future project: 3 + 1 Dimensions.

Example of Operators:

Operators CP J

+ 0

+ 0

ii - 1

+ 2

± 0

i

i i

i ± 1

± 2
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VII. Appendix 1: Large-Nc

• Quantum chromodynamics is the theory of strong interactions based on the

gauge group S U(Nc = 3).

• Yet some of its essential properties including confinement, are poorly

understood.

• It is useful to find a ’Neighbouring’ field theory that one can analyze more

simply.

• ’Neighbouring Theory’ −→ S U(Nc −→ ∞).

• Expansion parameter: −→ 1
Nc

.
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VII. Appendix 2: ’T Hooft’s coupling

• ’T Hooft’s coupling: λ = g2Nc.

• ’T Hooft’s double line diagrammatic representation:

j

j

j

k

i

k
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VII. Appendix 3. Planar Diagram

k

  j  j
ii

i

  j

k

∼ g2 × Nc(1 closed loop) =
λ

Nc
× Nc = λ
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VII. Appendix 4. Non-Planar Diagram

j

i
j

i

i
j

∼ g6 × Nc(1 closed loop) =
λ3

N3
c

× Nc =
λ3

N2
c

Nc→∞−→ 0
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VII. Appendix 2: Contribution of Operators

2nd excited state
1st excited state

Operators, i

|ui|2

0.3

0.25

0.2

0.15

0.1

0.05

0
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

S U(3), β = 21.000, and L = 16a

�
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