

Particle Theory Journal Club

k-strings in *SU(N)* gauge theories

Andreas Athenodorou

St. John's College

University of Oxford

Mostly based on:

AA, Barak Brigoltz and Mike Teper: arXiv:0709.0693 and arXiv:0709.2981 (k = 1 in 2+1 dimensions)

Barak Bringoltz and Mike Teper: arXiv:0708.3447 and arXiv:0802.1490 (k > 1 in 2+1 dimensions)

AA, Barak Bringoltz and Mike Teper: Work in progress (excited *k*-strings, 3+1 dimensions)

I. Introduction: General

General question:

 \rightarrow What effective string theory describes *k*-strings in *SU(N)* gauge theories?

Two cases:

- \rightarrow Open *k*-strings —
- \rightarrow Closed *k*-strings \bigcirc

During the last decade:

 \rightarrow 3D, 4D with Z₂, Z₄, U(1), SU(N \leq 6) (Caselle and collaborators, Gliozzi and collaborators, Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 **dimensional** SU(N) **theories:**

- \rightarrow Calculation of excited states, and states with $p_{\parallel} \neq 0$ and $P = \pm$ with k = 1, 2
- \rightarrow What is the degeneracy pattern of these states?
- \rightarrow Do *k*-strings fall into specific irreducible representations?

I. Introduction: General

General question:

 \rightarrow What effective string theory describes *k*-strings in *SU(N)* gauge theories?

Two cases:

- \rightarrow Open *k*-strings –
- \rightarrow Closed *k*-strings \bigcirc

During the last decade:

 \rightarrow 3D, 4D with Z₂, Z₄, U(1), SU(N \leq 6) (Caselle and collaborators, Gliozzi and collaborators, Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questions to be studied in D = 2 + 1 **dimensional** SU(N) **theories:**

- \rightarrow Calculation of excited states, and states with $p_{\parallel} \neq 0$ and $P = \pm$ with k = 1, 2.
- \rightarrow What is the degeneracy pattern of these states?
- \rightarrow Do *k*-strings fall into specific irreducible representations?

I. Introduction: *k***- strings**

What is a *k*-string?

• Confinement in 3-d *SU*(*N*) leads to a linear potential between colour charges in the fundamental representation.

- For $SU(N \ge 4)$ there is a possibility of new stable strings which join test charges in representations higher than the fundamental!
- We can label these by the way the test charge transforms under the center of the group: $\psi(x) \longrightarrow z^k \psi(x), z \in Z_N$.
- The string has *N*-ality *k*, (k = 2 : $\bigcirc \bigcirc \bigcirc = \bigcirc \bigcirc \bigcirc \bigcirc$) (fund. \otimes fund. = symm. \oplus anti.)

I. Introduction: *k***- strings**

- The string tension does not depend on the representation \mathcal{R} but rather on its *N*-ality *k*.
- The fundamental string has: N-ality k = 1, with string tension σ_f .
- A *k*-string can be thought of as a bound state of *k* fundamental strings.
- Operators: $\phi = \text{Tr}\{U^{k-j}\}\text{Tr}\{U\}^{j}$ where U is a Polyakov loop and j = 0, ..., k 1.

- For
$$k = 1, \phi \equiv \bigcirc \equiv \operatorname{Tr}\{U\}$$

- For
$$k = 2$$
, $\phi_1 \equiv \bigcirc \equiv \operatorname{Tr}\{U^2\}, \phi_2 \equiv \bigcirc \equiv \operatorname{Tr}\{U\}\operatorname{Tr}\{U\}$

• Predictions:

- Casimir Scaling:
$$\sigma_{\mathcal{R}} = \sigma_f \cdot \frac{C_{\mathcal{R}}}{C_f} \Longrightarrow \frac{\sigma_k}{\sigma_f} = \frac{k(N-k)}{(N-1)}$$

- MQCD: $\frac{\sigma_k}{\sigma_f} = \frac{\sin \frac{k\pi}{N}}{\sin \frac{\pi}{N}}$

• We expect: $\sigma_k \xrightarrow{N \to \infty} k \sigma_f$

II. Theoretical expectations A.

The Spectrum of the Nambu-Goto (NG) String Model

- Action of Nambu-Goto free bosonic string leads to:
 - \rightarrow Spectrum given by:

$$E_{N_L,N_R,q,w}^2 = (\sigma l w)^2 + 8\pi \sigma \left(\frac{N_L + N_R}{2} - \frac{D - 2}{24}\right) + \left(\frac{2\pi q}{l}\right)^2 + p_{\perp}^2.$$

- \rightarrow Described by:
 - 1. The winding number w (w=1),
 - 2. The winding momentum $p_{\parallel} = 2\pi q/l$ with $q = 0, \pm 1, \pm 2$,
 - 3. The transverse momentum p_{\perp} ($p_{\perp} = 0$),
 - 4. N_L and N_R connected through the relation: $N_R N_L = qw$.

$$N_L = \sum_{k>0} \sum_{n_L(k)>0} n_L(k)k$$
 and $N_R = \sum_{k'>0} \sum_{n_R(k')>0} n_R(k')k'$

 \rightarrow String states are eigenvectors of *P* (In *D* = 2 + 1) with eigenvalues:

$$P = (-1)^{\sum_{i=1}^{m} n_L(k_i) + \sum_{j=1}^{m'} n_R(k'_j)}$$

II. Theoretical expectations A.

The seven lowest NG energy levels for the w = 1 closed string

level	N _R	N _L	q	P = +	P = -
0	0	0	0	0>	
1	1	0	1		$\alpha_{-1} 0 angle$
2	1	1	0	$\alpha_{-1}\bar{\alpha}_{-1} 0 angle$	
3	2	0	2	$\alpha_{-1}\alpha_{-1} 0\rangle$	$\alpha_{-2} 0 angle$
4	2	1	1	$\alpha_{-2}\bar{\alpha}_{-1} 0 angle$	$\alpha_{-1}\alpha_{-1}\bar{\alpha}_{-1} 0\rangle$
5	2	2	0	$\alpha_{-2}\bar{\alpha}_{-2} 0\rangle, \ \alpha_{-1}\alpha_{-1}\bar{\alpha}_{-1}\bar{\alpha}_{-1} 0\rangle$	$\alpha_{-2}\bar{\alpha}_{-1}\bar{\alpha}_{-1} 0\rangle, \ \alpha_{-1}\alpha_{-1}\bar{\alpha}_{-2} 0\rangle$
6	3	1	2	$\alpha_{-3}\bar{\alpha}_{-1} 0\rangle, \ \alpha_{-1}\alpha_{-1}\alpha_{-1}\bar{\alpha}_{-1} 0\rangle$	$\alpha_{-2}\alpha_{-1}\bar{\alpha}_{-1} 0 angle$

II. Theoretical expectations **B**.

Effective string theory

• First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

$$E_n = \sigma l + \frac{4\pi}{l} \left(n - \frac{D-2}{24} \right) + O\left(1/l^2\right).$$

- Lüscher&Weisz effective string action (Lüscher&Weisz. 04):
 - \rightarrow For any *D* the $O(1/l^2(1/l))$ (Boundary term) is absent from $E_n(E_n^2)$
 - \rightarrow Spectrum in D = 2 + 1 (Drummond '04, Dass and Matlock '06 for any D.):

$$E_n = \sigma l + \frac{4\pi}{l} \left(n - \frac{1}{24} \right) - \frac{8\pi^2}{\sigma l^3} \left(n - \frac{1}{24} \right)^2 + O\left(\frac{1}{l^4} \right)$$

 \rightarrow Equivalently:

$$E_n^2 = (\sigma l)^2 + 8\pi\sigma \left(n - \frac{1}{24}\right) + O(1/l^3),$$

II. Theoretical expectations **B**.

Effective string theory

• First prediction for w = 1 and q = 0 (Lüscher, Symanzik&Weisz. 80):

$$E_n = \sigma l + \frac{4\pi}{l} \left(n - \frac{D-2}{24} \right) + O\left(1/l^2\right).$$

- Lüscher&Weisz effective string action (Lüscher&Weisz. 04):
 - \rightarrow For any *D* the $O(1/l^2(1/l))$ (Boundary term) is absent from $E_n(E_n^2)$
 - \rightarrow Spectrum in D = 2 + 1 (Drummond '04, Dass and Matlock '06 for any D.):

$$E_{n} = \sigma l + \frac{4\pi}{l} \left(n - \frac{1}{24} \right) - \frac{8\pi^{2}}{\sigma l^{3}} \left(n - \frac{1}{24} \right)^{2} + O\left(\frac{1}{l^{4}} \right)$$

 \rightarrow Equivalently:

$$E_n^2 = \mathbf{E}_{NG}^2 + O(1/l^3) \longrightarrow \text{Fit} : E_{\text{fit}}^2 = E_{NG}^2 - \sigma \frac{C_p}{\left(l\sqrt{\sigma}\right)^p} \quad (p \ge 3)$$

III. Lattice Calculation: Lattice setup

• Usually we are interested in calculating quantities like:

$$\langle \Psi(A) \rangle = \frac{1}{Z} \int \prod_{\vec{x},\mu} dA_{\mu}(\vec{x}) \Psi(A) e^{-S[A]}$$

• The lattice represents a mathematical trick: It provides a regularisation scheme.

• We define our gauge theory on a 3D discretized periodic Euclidean space-time with $L_{\parallel} \times L_{\perp} \times L_T$ sites.

III. Lattice Calculation: Lattice setup

• Usually we are interested in calculating quantities like:

$$\langle \Psi(A) \rangle = \frac{1}{Z} \int \prod_{\vec{x},\mu} dA_{\mu}(\vec{x}) \Psi(A) e^{-S[A]}$$

• The lattice represents a mathematical trick: It provides a regularisation scheme.

We define our gauge theory on a 3D discretized periodic Euclidean space-time with L_{||} × L_⊥ × L_T sites.

III. Lattice Calculation: On the Lattice

• Using link variables, the EFPI is written as:

$$\langle \Psi_L(U) \rangle = \frac{1}{Z} \int \prod_{n,\mu} dU_\mu(n) \Psi_L(U) e^{-S_L[U]}$$
(1)

Where:

$$S_L = \beta \sum_p \{1 - \frac{1}{N_c} ReTr U_p\}$$
(2)

$$\beta = \frac{2N_c}{ag^2} \qquad (D=2+1) \qquad (3)$$

$$U_{p} = U_{\mu}(\vec{x})U_{\nu}(\vec{x}+a\hat{\mu})U_{\mu}^{\dagger}(\vec{x}+a\hat{\nu})U_{\mu}^{\dagger}(\vec{x})$$
(4)

III. Lattice Calculation: Monte - Carlo Simulations Why Monte - Carlo?:

- We want to calculate the expectation value of colour singlet operators.
- High multidimensionality of these integrals makes traditional mesh techniques impractical.
 - \longrightarrow Monte Carlo Methods.
- We need to generate n_c different field configurations with probability distribution:

$$\prod_{l} dU_{l} e^{-\beta \sum_{p} \{1 - \frac{1}{N_{c}} ReTrU_{p}\}}$$
(5)

• Then the expectation value of $\Psi_L(U)$ will be just the average over these fields.

$$\langle \Psi_L(U) \rangle = \frac{1}{n_c} \sum_{I=1}^{n_c} \Psi_L(U^I) \pm O(\frac{1}{\sqrt{n_c}})$$
(6)

• Masses of certain states can be calculated using the correlation functions of specific operators:

$$\langle \Phi^{\dagger}(t)\Phi(0)\rangle = |\langle \Omega|\Phi^{\dagger}|0\rangle|^{2}e^{-tm_{0}} + \sum_{m\geq 1}|\langle \Omega|\Phi^{\dagger}|m\rangle|^{2}e^{-tm_{m}}$$

$$\xrightarrow{t\to\infty} |\langle \Omega|\Phi^{\dagger}|0\rangle|^{2}e^{-tm_{0}}$$

$$(7)$$

• Let us define the effective mass:

$$am_{eff}(t) = -\ln \frac{\langle \Phi^{\dagger}(t)\Phi(0)\rangle}{\langle \Phi^{\dagger}(t-a)\Phi(0)\rangle}$$
(8)

• The mass will be equal to:

$$am_k \simeq am_{eff}(t_0)$$
 (9)

where t_0 is the lowest value of *t* for which $m_{eff}(t_0) = am_{eff}(t > t_0)$

Example: Closed *k* = 1 **string:**

- We expect to calculate masses for some excited states, so we need to use operators which merely project onto the excited states.
- We construct a basis of operators, Φ_i : i = 1, ..., N_O, with transverse deformations described by the quantum numbers of parity P, winding number w, longitudinal momentum p_{||} and transverse momentum p_⊥ = 0. For example:

$$\Phi_{\pm}^{p_{\parallel},p_{\perp}} = \frac{1}{L_{\parallel}L_{\perp}} \sum_{x_{\parallel},x_{\perp}} \{\phi_{u} \pm \phi_{d}\} e^{ip_{\parallel}x_{\parallel}+ip_{\perp}x_{\perp}}$$

k = 1:

$$\phi_u = \operatorname{Tr} \{ ____ \}$$
 and $\phi_d = \operatorname{Tr} \{ _____ \}$

k = 2:

1st set of operators:
$$\phi_u = \text{Tr} \{ ___\}^2, \ \phi_d = \text{Tr} \{ ____\}^2$$

2nd set of operators: $\phi_u = \text{Tr} \{ ____ \cdot ___ \}, \phi_d = \text{Tr} \{ ____ \cdot ___ \}$

3rd set of operators: $\phi_u = \text{Tr} \{ ___], \phi_d = \text{Tr} \{ ___] \}$

Projection onto the Antisymmetric representation:

 $\phi_u = [\operatorname{Tr} \{ ___]^2 - \operatorname{Tr} \{ ____], \phi_d = [\operatorname{Tr} \{ ___]^2 - \operatorname{Tr} \{ ____]\}]$

Projection onto the Symmetric representation:

 $\phi_u = [\text{Tr} \{ ___]^2 + \text{Tr} \{ ____], \phi_d = [\text{Tr} \{ ___]^2 + \text{Tr} \{ ____]\}]$

- We calculate the correlation function (Matrix): $C_{ij}(t) = \langle \Phi_i^{\dagger}(t) \Phi_j(0) \rangle$
- We diagonalize the matrix: $C^{-1}(0)C(a)$.
- We extract the correlator for each state.
- By fitting the results, we extract the mass (energy) for each state.

III. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

- We extract masses of excited states. (up to 15 states for k = 1)
- It increases the Overlaps (using single exponential fits):
 - Ground state $\sim 99 100\%$,
 - First excited state ~ 98 100% (~ 90 95 with just $\times 5bl$),
 - Second excited state ~ 95 99% (~ 85 90 with just $\times 5bl$),
- We can extract energies of non-zero winding momentum states.
- We can extract energies of P = states.
- It increases computational time moderately.(ex. $\times 6$ for L = 16a)

IV. Results: Spectrum of S U(3) **and** $\beta = 21.0$ **for** k = 1**Group:** S U(3), $\underline{a} \simeq 0.08 fm$, **Quantum Numbers:** P = +, - and q = 0

<u>**NG Prediction**</u>: $E_n^2 = (\sigma l)^2 + 8\pi\sigma \left(n - \frac{1}{24}\right)$, where $n = N_L = N_R$ since q = 0.

IV. Results: Spectrum of S U(3) **and** $\beta = 40.0$ **for** k = 1**Group:** S U(3), $\underline{a} \simeq 0.04 fm$, **Quantum Numbers:** P = +, - and q = 0

<u>**NG Prediction**</u>: $E_n^2 = (\sigma l)^2 + 8\pi\sigma \left(n - \frac{1}{24}\right)$, where $n = N_L = N_R$ since q = 0.

IV. Results: Spectrum of S U(6) **and** $\beta = 90.0$ **for** k = 1**Group**: SU(6), $\underline{a} \simeq 0.08 fm$, **Quantum Numbers**: P = +, - and q = 012 10 *n* = 3 n = 28 \square ¥ n = 1 $E/\sqrt{\sigma}$ 6 n = 04

<u>**NG Prediction**</u>: $E_n^2 = (\sigma l)^2 + 8\pi\sigma \left(n - \frac{1}{24}\right)$, where $n = N_L = N_R$ since q = 0.

3

4

5

6

2

2

0

1

 $\sqrt{\sigma}l$

IV. Results: Spectrum of S U(N) **for** k = 1

Groups: SU(3) and SU(6), $\underline{a} \simeq 0.04 fm$ and 0.08 fm,

Quantum Numbers: $P = \pm$ and q = 0

IV. Results: Non-zero winding momentum for k = 1.

Group: SU(3), $\underline{a} \simeq 0.08 fm$, **Quantum Numbers**: P = +, -, q = 1, 2 and w = 1

<u>NG Prediction</u>: $E^2 - (2\pi q/l)^2 = (\sigma lw)^2 + 8\pi\sigma \left(\frac{N_R + N_L}{2} - \frac{D-2}{24}\right).$ <u>Constraint</u>: $N_R - N_L = qw$

IV. Results: Spectrum of S U(4) **for** P = + **and** k = 2**. Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = +, q = 0 and k = 26 5.5 -5 Ŧ 4.5 4 $E/(\sigma l)$ 3.5 3 ŧ 2.5 2 1.5 1 3.5 1.5 2.5 4.5 2 3 4 $\sqrt{\sigma}l$ **<u>Basis:</u>** $\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} U_{(w=1)-}^2$, $\operatorname{Tr} (U_{(w=1)+})^2 + \operatorname{Tr} (U_{(w=1)-}^2)$, $\operatorname{Tr} U_{(w=2)+} + \operatorname{Tr} U_{(w=2)-}$

IV. Results: Spectrum of S U(4) **for** P = + **and** k = 2**. Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = +, q = 0 and k = 27 6 5 Ξ Ŧ $E/(\sigma l)$ 4 3 ≢ ≢ 2 1 2.5 3.5 1.5 2 4.5 3 4 $\sqrt{\sigma}l$ **<u>Basis</u>:** $\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} U_{(w=1)-}^2$, $\operatorname{Tr} (U_{(w=1)+})^2 + \operatorname{Tr} (U_{(w=1)-}^2)$

IV. Results: Spectrum of SU(4) **for** P = + **and** k = 2A. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = +, q = 0 and k = 25.5 5 4.5 - <u>±</u> Ŧ 4 3.5 Ĩ $E/(\sigma l)$ 3 ± ± 2.5 Ξ 2 1.5 1 2.5 3.5 1.5 4.5 2 3 4 $\sqrt{\sigma}l$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 - \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 - \operatorname{Tr} (U_{(w=1)-}^2)]$

IV. Results: Spectrum of SU(4) **for** P = + **and** k = 2S. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = +, q = 0 and k = 28 7 6 5 $E/(\sigma l)$ 4 ŧ 3 2 1 2.5 3.5 1.5 2 4.5 3 4 $\sqrt{\sigma l}$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 + \operatorname{Tr} (U_{(w=1)-}^2)]$

IV. Results: Spectrum of S U(4) **for** P = - **and** k = 2**. Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 0 and k = 25.5 5 ŧ Ŧ 4.5 Ī 4 Ŧ Ŧ 3.5 ŧ $E/(\sigma l)$ Ŧ 3 Ŧ Ŧ 2.5 Ξ Ŧ 2 1.5 1 2.5 3 3.5 1.5 4.5 2 4 $\sqrt{\sigma}l$ **<u>Basis</u>:** $\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} U_{(w=1)-}^2$, $\operatorname{Tr} (U_{(w=1)+})^2 + \operatorname{Tr} (U_{(w=1)-}^2)$

IV. Results: Spectrum of S U(4) for P = - and k = 2. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 0 and k = 25.5 5 ± ≢ Ŧ 4.5 4 ± 3.5 $E/(\sigma l)$ Ŧ 3 Ŧ ŧ ≢ ∓ 2.5 Ŧ 2 1.5 1 2.5 3.5 1.5 3 4.5 2 4 $\sqrt{\sigma}l$ **<u>Basis:</u>** $\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} U_{(w=1)-}^2$, $\operatorname{Tr} (U_{(w=1)+})^2 + \operatorname{Tr} (U_{(w=1)-}^2)$, $\operatorname{Tr} U_{(w=2)+} + \operatorname{Tr} U_{(w=2)-}$

IV. Results: Spectrum of S U(4) **for** P = -, q = 1, k = 2A. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 1 and k = 2A7 6.5 6 5.5 5 4.5 Ŧ $E/(\sigma l)$ 4 3.5 3 2.5 2 1.5 1.5 2 2.5 3.5 4.5 3 4 $\sqrt{\sigma}l$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 - \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 - \operatorname{Tr} (U_{(w=1)-}^2)]$

IV. Results: Spectrum of SU(4) **for** P = -, q = 2, k = 2A. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 2 and k = 2A9 8 7 6 $E/(\sigma l)$ 5 4 3 2 2.5 1.5 2 3.5 4.5 3 4 $\sqrt{\sigma l}$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 - \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 - \operatorname{Tr} (U_{(w=1)-}^2)]$

IV. Results: Spectrum of SU(4) **for** P = -, q = 1, k = 2S. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 1 and k = 2S9 8 7 6 $E/(\sigma l)$ 5 4 3 2 2.5 3.5 1.5 2 4.5 3 4 $\sqrt{\sigma l}$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 + \operatorname{Tr} (U_{(w=1)-}^2)]$

IV. Results: Spectrum of SU(4) **for** P = -, q = 2, k = 2S. **Group**: SU(4), $\underline{a} \simeq 0.06 fm$, **Quantum Numbers**: P = -, q = 2 and k = 2S11 10 9 8 $E/(\sigma l)$ 7 6 ŧ 5 4 3 2 2.5 3.5 4.5 1.5 3 4 $\sqrt{\sigma}l$ **<u>Basis</u>:** $[\operatorname{Tr} U_{(w=1)+}^2 + \operatorname{Tr} (U_{(w=1)+})^2] + [\operatorname{Tr} U_{(w=1)-}^2 + \operatorname{Tr} (U_{(w=1)-}^2)]$

V. Summary

We constructed a large basis of operators characterized by the quantum numbers of **parity** *P*, and **winding momentum** $2\pi q/l$,

We calculated the energies of closed *k*-strings in D=2+1 described by $P = \pm$ for:

→
$$S U(3)$$
 with $k = 1, \beta = 21.0$ ($a \simeq 0.08$ fm) and $q = 0, \pm 1, \pm 2$,

 $\rightarrow SU(3)$ with $k = 1, \beta = 40.0$ ($a \simeq 0.04$ fm) and q = 0,

→
$$SU(4)$$
 with $k = 1, 2, \beta = 50.0$ ($a \simeq 0.06$ fm) and $q = 0, \pm 1, \pm 2, \beta = 50.0$ ($a \simeq 0.06$ fm)

$$\rightarrow SU(5)$$
 with $k = 1, 2, \beta = 80.0$ ($a \simeq 0.06$ fm) and $q = 0, \pm 1, \pm 2, \beta = 80.0$ ($a \simeq 0.06$ fm)

 $\rightarrow SU(6)$ with $k = 1, \beta = 90.0$ ($a \simeq 0.08$ fm) and q = 0.

We fit our data for the ground state using $E_{\text{fit}}^2 = E_{NG}^2 - \sigma C_p / (l\sqrt{\sigma})^p$ and p = 3, and extract σ .

Using σ we compare our results to Nambu-Goto:

 \rightarrow Nambu-Goto is <u>VERY</u> good

V. Summary

k-strings know about the full S U(N) gauge group.

We observe additional states...

VI. Future project: 3 + 1 **Dimensions.**

Example of Operators:

Operators	CP	J
	+	0
	+	0
	-	1
	+	2
┙ <u></u> ╱┍+╼╱╾┾╼╱┶┶ ±[-╱┎┍+┙╱╾┾╼╱┖╌┽╼╅╱─]	±	0
┘ <u></u>)+iz _\ _ _ ₋ , _z _ ₋ , _z ↓ ±[_\ _+i_ ¹ √z z i ₋₄ -]	±	1
$ \begin{array}{c} - 1 \\ - 2 \\ + 2 \\ - 2 $	±	2

VII. Appendix 1: Large-*N_c*

- Quantum chromodynamics is the theory of strong interactions based on the gauge group $SU(N_c = 3)$.
- Yet some of its essential properties including confinement, are poorly understood.
- It is useful to find a 'Neighbouring' field theory that one can analyze more simply.
- 'Neighbouring Theory' $\longrightarrow SU(N_c \longrightarrow \infty)$.
- Expansion parameter: $\longrightarrow \frac{1}{N_c}$.

VII. Appendix 2: 'T Hooft's coupling

- 'T Hooft's coupling: $\lambda = g^2 N_c$.
- 'T Hooft's double line diagrammatic representation:

