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|. Introduction: General

General question:

— What effective string theory describes k-strings in SU(N) gauge theories?

TwWO cases.

— Open k-strings —
— Closed k-strings O
During the last decade:

— 3D, 4D with Z;, Z4,U(1), SU(N < 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Liischer&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questionsto be studied in D = 2 + 1 dimensional SU(N) theories:

— Calculation of excited states, and states with py #0and P = + withk=1,2

— What is the degeneracy pattern of these states?

— Do k-strings fall into specific irreducible representations?
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|. Introduction: General

General question:

— What effective string theory describes k-strings in SU(N) gauge theories?

TwWO cases.

—>  Open k-strings —
— Closed k-strings O
During the last decade:

— 3D, 4D with Z;, Z4,U(1), SU(N < 6) (Caselle and collaborators, Gliozzi and collaborators,

Kuti and collaborators, Liischer&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)

Questionsto be studied in D = 2 + 1 dimensional SU(N) theories:

— Calculation of excited states, and states with p; # 0and P = + with k=1, 2.

— What is the degeneracy pattern of these states?

— Do k-strings fall into specific irreducible representations?




|. Introduction: k- strings

What isak-string?

e Confinement in 3-d SU(N) leads to a linear potential between colour charges in
the fundamental representation.

e For SU(N > 4) there is a possibility of new stable strings which join test
charges in representations higher than the fundamental!

e \We can label these by the way the test charge transforms under the center of the
group: ¥ (X) — Zy(X), z € Zy.

e The string has N-ality k, (k=2: [ ][ 1=[ T 1D H} (fund. & fund = symm, @ ant




|. Introduction: k- strings

The string tension does not depend on the representation R but rather on its
N-ality k.

The fundamental string has: N-ality k = 1, with string tension os.
A k-string can be thought of as a bound state of k fundamental strings.
Operators: ¢ = Tr{U 1 Tr{U} where U is a Polyakov loop and j =0, ..,k — 1.
— Fork=1,¢=0)=Tr{U}
— Fork=2,¢1 =0 = Tr{U?%}, ¢, = (O) = Tr{U}Tr{U}
Predictions:

— Casimir Scaling: o = o - g—f => & = T
sin"W’T
sing

— MQCD: g—‘; =

N— o

We expect: oy — kos




|I. Theoretical expectations A.
The Spectrum of the Nambu-Goto (NG) String M odel

o Action of Nambu-Goto free bosonic string leads to:
— Spectrum given by:
EﬁlL,NR,Q»W
— Described by:

1. The winding number w (w=1),
. The winding momentum p, = 27q/l with q = 0, +1, +2,

2
= (olw)? + SNG(NLZNR — sz) + (@) + P2

2
3. The transverse momentum p, (p, = 0),
4. N_ and Ng connected through the relation: Ng — N_ = gw.

Ne=> > n(k and Ne= > > ne(k)K

k>0 ni_(k)>0 k’>0 nr(k’)>0

— String states are eigenvectors of P (In D = 2 + 1) with eigenvalues:

P = (-1)%% e (k) + 2 nR(K)




|I. Theoretical expectations A.

The seven lowest NG energy levelsfor thew = 1 closed string
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|I. Theoretical expectations B.

Effective string theory

o First prediction for w = 1 and g = O (Liischer, Symanzik&Weisz. 80):

En:O'|+4—7T(n— D2:I-2)+O<1/|2)

o LuUscher&Weisz effective string action (Lischer&Weisz. 04):
— For any D the O(l/l2 (1/I)) (Boundary term) is absent from E,(E?)

— Spectrum in D = 2 + 1 (Drummond 04, Dass and Matlock *06 for any D.):

4 1\ 82 1\ .
En—0'|+|—(n—ﬂ)—m(n—ﬂ) +O(1/|)

— Equivalently:

E2 = (o) + 8n0 (n E %) -+ O(l/l?’),




|I. Theoretical expectations B.
Effective string theory

o First prediction for w = 1 and g = O (Liischer, Symanzik&Weisz. 80):

)+0(1/|2).

47 D-2
E.=o0l+ —|n-
n=ol+ - (n 5

o Luscher&Weisz effective string action (Lischer&Weisz. 04):
— Forany D the O(1/1% (1/1)) (Boundary term) is absent from Eq(E?)
— Spectrum in D = 2 + 1 (Drummond ’04, Dass and Matlock *06 for any D.):

47'[' 1 87'('2 1 2 4
En—0'|+|—(n—2—4)—m(n—ﬁ) +O<1/| )

— Equivalently:
Cp

E; = EXc +O(1/1°) — Fit: B = E{g - am (p=3)
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|I1. Lattice Calculation: Lattice setup

e Usually we are interested in calculating quantities like:

(P(A) = % f [ ]dA.e(A)e s
X.u

e The lattice represents a mathematical trick: It provides a regularisation scheme.

o

%

— T

P

— "]

e \We define our gauge theory on a 3D discretized periodic Euclidean space-time
with L, x L, X Ly sites.
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|I1. Lattice Calculation: Lattice setup

e Usually we are interested in calculating quantities like:

(P(A) = % f [ ]dA.e(A)e s
X.u

e The lattice represents a mathematical trick: It provides a regularisation scheme.

T <« U,(%) € SU(N)

/;*X/-/ (u=1,23)

a s
{/ \sites, X

e \We define our gauge theory on a 3D discretized periodic Euclidean space-time
with L, x L, x Ly sites.
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1. Lattice Calculation: On theL attice

e Using link variables, the EFPI is written as:

(PL(U)) = %fl—[duﬂ(n)\{’L(U)e—SL[U]

1
S B (1- nReTr Ul
p

2N,
ag?
U.(QU, (X + a@)U (X + an)U/(X)

1]

13

B (D=2+1)




|11. Lattice Calculation: Monte- Carlo Simulations

Why Monte - Carlo?:

We want to calculate the expectation value of colour singlet operators.

High multidimensionality of these integrals makes traditional mesh techniques
Impractical.
— Monte Carlo Methods.

We need to generate n. different field configurations with probability
distribution:

l_[ dUIe—ﬁzp{l—NAcReTrup} (5)
|

Then the expectation value of ¥, (U) will be just the average over these fields.

(LU = 1D WU £ 02) )

14



|11. Lattice Calculation: Energy Calculation

e Masses of certain states can be calculated using the correlation functions of
specific operators:
@ HPO) = KQAPOYFE™ + > (QID ImPert™

m>1
t—o0

—  (Q|DT|0)[Fe M
e Let us define the effective mass:
(@7 (t)@(0))
(@7 (t — a)®(0))

ames ¢ (t) = —In

e The mass will be equal to:
amy ~ ames+ (to)

where t; 1s the lowest value of t for which my¢(tp) = ames¢ (t > tp)

15
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Example: Closed k = 1 string:
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|11. Lattice Calculation: Energy Calculation

We expect to calculate masses for some excited states, so we need to use
operators which merely project onto the excited states.

We construct a basis of operators, ®@; : i = 1, ..., No, with transverse
deformations described by the quantum numbers of parity P, winding number
w, longitudinal momentum p, and transverse momentum p, = 0.

For example:

(Dpu,pl _ 1
: L.

Z {¢u + ¢d} eip||X||+iplxl

X X1

17



|11. Lattice Calculation: Energy Calculation

k =2:
15t set of operators: ¢y =Tr { 11}, ¢pg=Tr{ 11 )

2" set of operators: ¢, = Tr { 11 - 1}, ¢g=Tr{ 1 1}

3" set of operators: ¢, = Tr { N b, g = Tr L )

Projection onto the Antisymmetric representation:
Gu=[Tr{ o P =Tr{ - )] ga=[Tr{ 7 P=Tr{ 1 1]
Projection onto the Symmetric representation:
po=[Tr{ 7 YP+Tr{ - 00U )], da=[Tr{ v P+Tr{ 11 - 15 ]
o \We calculate the correlation function (Matrix): Cj;(t) = <<I>;’(t)<1>j(0)>
o We diagonalize the matrix: C™1(0)C(a).
e \We extract the correlator for each state.

e By fitting the results, we extract the mass (energy) for each state.

18



|I1. Lattice Calculation: Large Basis of Operators

Using this large basis of operators:

e \\e extract masses of excited states. (up to 15 states for k = 1)

e It increases the Overlaps (using single exponential fits):
— Ground state ~ 99 — 100%,
— First excited state ~ 98 — 100% (~ 90 — 95 with just} x5bl),

— Second excited state ~ 95 — 99% (~ 85 — 90 with just} x5hl),
We can extract energies of non-zero winding momentum states.

We can extract energies of P = — states.

It increases computational time moderately.(ex. x6 for L = 16a)

19



IIl. Lattice Calculation: Operatorsfor P=+and k=1

%% SN
1T

x5 bl x5 bl

=

f(Ly, L., bl)

x5 bl + x5 bl
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I1l. Lattice Calculation: Operatorsfor P=-and k=1

2l

x5 bl x5 bl

x5 bl + x5 bl
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V. Results: Spectrum of SU(3)and 8 =21.0for k=1
Group: SU(3), a=~0.08fm, Quantum Numbers: P=+,—-andq=0

12 I I

NG Prediction: E? = (c1)? + 870 (n — 2—14) where n = N_ = Nr since g = 0.
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V. Results: Spectrum of SU(3) and 8 =40.0for k=1
Group: SU(3), a=0.04fm, Quantum Numbers: P=+,—andq=0

12 I

10

NG Prediction: E? = (c1)? + 870 (n — 2—14) where n = N_ = Nr since g = 0.
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V. Results: Spectrum of SU(6) and 8 =90.0for k=1
Group: SU(6), a=~0.08fm, Quantum Numbers: P=+,—andq=0

12

NG Prediction: E? = (c1)? + 870 (n — 2—14) where n = N_ = Nr since g = 0.
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V. Results: Spectrum of SU(N) for k=1
Groups. SU(3)and SU(6), a=0.04fmand 0.08fm,

Quantum Numberss P=+andq=0
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V. Results. Non-zero winding momentum for k = 1.
Group: SU(3), a=0.08fm, Quantum Numbers:P=+,—-,g=1,2andw=1

VE/r = 2/ VY

| Vo

NG Prediction: E? — (27q/1)* = (olw)? + 87ro-(NR;NL - B

Constraint: Nr — N_. = gw
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V. Results: Spectrum of SU(4) for P = + and k = 2.
Group: SU(4), a=0.06fm, Quantum Numbers:P=+,q=0andk=2

6

Vol

Bagss: TI‘U(ZW:1)+ + TI'U(ZW:1)_, Tr(U(W:1)+)2 + Tr(U(Wzl)_Z), TrU(W:2)+ + TrU(Wzg)_
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V. Results: Spectrum of SU(4) for P = + and k = 2.
Group: SU(4), a=0.06fm, Quantum Numbers:P=+,q=0andk=2

7

Basis: TrU?

(w=

1)+ T TrU(ZW:l)—’ Tr(Uw=1)+)% + Tr(Ugw=1)-)
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V. Results: Spectrum of SU(4) for P = + and k = 2A.
Group: SU(4), a=0.06fm, Quantum Numbers:P=+,q=0andk=2
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Basis: [TrU(2W21)+ — TF(U(W:1)+)2] + [TrU(ZW:1)_ — Tr(U(Wzl)_z)]
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V. Results: Spectrum of SU(4) for P = + and k = 2S.
Group: SU(4), a=0.06fm, Quantum Numbers:P=+,q=0andk=2

NG

Basis: [TrUZ, .y, + Tr(Uw=n.)2] + [TrUZ,_1y + Tr(Uw=1-°)]
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V. Results: Spectrum of SU(4) for P = — and k = 2.
Group: SU(4), a=~0.06fm, Quantum Numbers:P=—-,q=0andk=2
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V. Results: Spectrum of SU(4) for P = — and k = 2.
Group: SU(4), a=~0.06fm, Quantum Numbers:P=—-,q=0andk=2

Vol

Bagss: TI‘U(ZW:1)+ + TI'U(ZW:1)_, Tr(U(W:1)+)2 + Tr(U(Wzl)_Z), TrU(W:2)+ + TrU(Wzg)_
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V. Results: Spectrum of SU(4) for P=—,q=1, k= 2A.
Group: SU(4), a=0.06fm, Quantum Numbers: P=—-,q=1andk=2A
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V. Results: Spectrum of SU(4) for P=—,q =2, k= 2A.
Group: SU(4), a=0.06fm, Quantum Numbers: P=—-,q=2andk=2A

NG

Basis: [TrU(2W21)+ — TF(U(W:1)+)2] + [TrU(ZW:1)_ — Tr(U(Wzl)_z)]
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V. Results: Spectrum of SU(4) for P=—-,q=1,k=2S.
Group: SU(4), a=0.06fm, Quantum Numbers: P=—-,g=1andk=2S

N

Basis: [TrUZ, .y, + Tr(Uw=n.)2] + [TrUZ,_1y + Tr(Uw=1-°)]
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V. Results: Spectrum of SU(4) for P=—,q=2,k=2S.
Group: SU(4), a=0.06fm, Quantum Numbers: P=—-,qg=2andk=2S

11

NG

Basis: [TrUZ, .y, + Tr(Uw=n.)2] + [TrUZ,_1y + Tr(Uw=1-°)]
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V. Summary

We constructed a large basis of operators characterized by the quantum
numbers of parity P, and winding momentum 2rq/I,

We calculated the energies of closed k-strings in D=2+1 described by P = +
for:

SUR)withk=1,8=210(a=0.08fm)andq=0, 1, +2,
SU3) withk=1,8=40.0 (a=~0.04fm) and q = 0,
SU4)withk=1,2,8=50.0(a=~0.06fm)and q=0, 1, +2,
SU(B)withk=1,2,8=280.0(a=~0.06fm)and q=0, 1, +2,
SU(6) withk =1, 8 =290.0 (a~ 0.08fm) and q = 0.

We fit our data for the ground state using E2, = E2 — 0Cy/ | \/E)p and p = 3,
and extract o

Using o we compare our results to Nambu-Goto:
— Nambu-Gotois VERY good
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V. Summary

k-strings know about the full SU(N) gauge group.

We observe additional states...
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VI. Futureproject: 3+ 1 Dimensions.

Example of Operators:

Operators
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VII. Appendix 1. Large-N;

Quantum chromodynamics is the theory of strong interactions based on the
gauge group SU(N. = 3).

Yet some of its essential properties including confinement, are poorly
understood.

It is useful to find a ’Neighbouring’ field theory that one can analyze more
simply.

’Neighbouring Theory’ — SU (N, — ).

: . 1
Expansion parameter: — N
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VII. Appendix 2: ' T Hooft’s coupling

e T Hooft’s coupling: 1 = g?NL.

e T Hooft’s double line diagrammatic representation:

41



VII. Appendix 3. Planar Diagram

J

A
~ g% X N¢(1 closed loop) = N x N. = A

C
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VII. Appendix 4. Non-Planar Diagram

3 /‘1«3 NC—)OO

~ @® x N¢(1 closed loop) = — x Ng = — - 0

N3 N2
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VII. Appendix 2: Contribution of Operators

SU(3), 8 = 21.000, and L = 16a
| | | | | | |
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2nd excited state T
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