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1 Introduction.

• The main analytic method for calculating physics in complex field theories
such as QCD is Pertubation Theory.

• Problem: Pertubation theory works well for problems where the first ap-
proximation is more-or-less a sensible description of what is going on.

– In QED: First approximation is a free field theory of photons and
electrically charched particles (electrons for instance), which has to
do with the real world (electric currents).

– In QCD: First approximation is a free field theory of quarks and
gluons. But QCD is the theory of strong interactions describing
a world of colourless particles like mesons, protons and other color
singlet objects. So the first approximation is nothing at all like the
real world of colourless hadrons. This is a non-perturbative problem!

• Lattice field theory provides a framework within which a numerical solu-
tion of the problem can be attempted.

2 Lattice Field Theory

• We want to calculate the spectrum of a Hamiltonian. As we will see
later, we can calculate this spectrum by calculating correlation functions
of functionals of the fields. A correlator can be expressed as:

〈Φ†(t)Φ(0)〉 =
1
Z

∫ ∏
x,μ

dAμ(x)Φ†(t)Φ(0)eiS (1)

where: S =
∫

dt
∫

d3xL.

• We do not know how to calculate such integrals analytically for non per-
turbative quantities such as the mass spectrum, so we can attempt to
calculate the integrals numerically.

• The presence of an oscillating factor destabilises the numerical approxi-
mation.

– We calculate the correlation function in the Euclidean space-time
(t → −it)

– eiS = ei
∫

dt
∫

d3xL → e−
∫

dt
∫

d3xLE = e−SE

• In an SU(N) gauge theory the Euclidean correlator can be calculated from
the corresponding Euclidean Feynman Path Integral:
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〈Φ†(t)Φ(0)〉E =
1
Z

∫ ∏
x,μ

dAμ(x)Φ†(t)Φ(0)e−
1

g2

∫
Tr{F 2

μν}d4x (2)

• The above Path Integral involves an infinite number of degrees of free-
dom. We want to calculate the integral numerically so we must make the
problem finite introducing ultraviolet and infrared cut-offs.

• We replace the continuous space-time by a (hyper)cubic lattice of points,
of lattice spacing a and volume V (if V = L4, a � 1/Λ and La � 1/Λ
where Λ is the physical length scale of the problem):

• On the lattice, the gauge fields are replaced by some degrees of freedom
caled links ( Uμ(n) where n labels the lattice site and μ the direction of
the link)

– The gauge fields Aμ(x) belong to the SU(N) Lie algebra.

– The variables Uμ(x) belong to the SU(N) group: Uμ(n) = eiagAα
μ(n)λα

,
where λα is a set of Hermitian matrices which generate the group and
Aμ = Aα

μλα.

• Now:

〈ΨL(U)〉 =
1
Z

∫ ∏
n,μ

dUμ(n)ΨL(U)e−SL[U ]a→0−→〈Ψ(A)〉 (3)

Where:
dUμ(n)a→0−→dAμ(x = an)

SL[U ]a→0−→S[A]

ΨL(U)a→0−→Ψ(A)

• Under a gauge transformation G(n) ∈ SU(N):

Uμ(n) → G(n)Uμ(n)G†(n + μ̂) (4)

• A path ordered product of group elements along any closed path (that
starts and ends at the site n) is gauge invariant. The simplest non-trivial
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closed path is around the elementary square of the lattice. This is called
a plaquette p.

TrUp = Tr[Uμ(n)Uν(n + μ̂)U †
μ(n + ν̂)U †

ν (n)] (5)
G.T−→ Tr[Up]

ν n n μ

n

+

+ν+μ+νn

μ
• The action takes the following form:

S = β
∑

p

{1 − 1
Nc

ReTrUp} (6)

where: β = 2Nc

g2

3 Monte-Carlo simulations

• We want to calculate the expectation value of colour singlet operators.

• High multidimensionality of these integrals makes traditional mesh teqniques
impractical.

For example, consider a 104 site lattice. This system has 40000 link vari-
ables. Let us take the simplest possible gauge group Z2. Choosing this
gauge group the partition function becomes an ordinary sum which has
an enormous number of terms (240000 = 1.58 × 1012041)! The appearance
of such large numbers immediately suggests a statistical treatment.

→ Monte Carlo methods.

• We need to generate nc different field configurations with probability dis-
tribution:

∏
l

dUle
−β

∑
p
{1− 1

Nc
ReTrUp} (7)

• Then the expectation value of ΨL(U) will be just the average over these
fields.

〈ΨL(U)〉 =
1
nc

nc∑
I=1

ΨL(U I) ±O(
1√
nc

) (8)
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4 Large-Nc Field Theories

• It was first pointed out by ’t Hooft that many features of QCD can be
understood by studying a gauge theory based on the gauge group SU(N)
in the limit N → ∞ .

• Two questions:

 Does N → ∞ limit make the analysis more complicated? (more dynam-
ical degrees of freedom).


 How much is SU(N) related to SU(3)?

• SU(N) gauge theory simplifies in the N → ∞ where the expansion pa-
rameter is 1/N .

• Results for SU(3) can be obtained from the N → ∞ limit by expanding
in 1/N = 1/3.

 Is 1/N a small enough expansion parameter for QCD?

 In QED the coupling constant is equal to e =

√
4πα = 0.30, which is

not so different from 1/3 = 0.333....

• Examples:

 ’t Hooft’s coupling: λ = g2Nc


 ’t Hooft’s double line diagrammatic representation:
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j

j
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i
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 Planar diagram:

k

  j  j
ii

i

  j

k

∼ g2 × Nc(1 closed loop) =
λ

Nc
× Nc = λ


 Non-Planar diagram:

j

i
j

i

i
j ∼ g6 × Nc(1 closed loop) =

λ3

N3
c

× Nc =
λ3

N2
c

Nc→∞−→ 0
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5 SU(Nc) and Strings

• What string theory describes SU(Nc = ∞)?
It is an old idea that large-N QCD might be exactly reformulated as
a string theory. This connection has never been made precise, but the
topological structure of the pertubation theory makes it plausible that
one could first recast it as a string theory, and then apply string methods
to determine the spectrum and amplitudes.

• Effective string theory models describe the confining flux tube.
A Flux tube is the storage medium for the linearly rising interquark poten-
tial. The basic assumption of this model is that at low spatial resolution,
a (lattice spacing), the quantum field theory of the gluon fields, can be
modelled by the quantum mechanics of a string like object (this model
involves mechanical degrees of freedom only), the flux tube.
A quark-antiquark pair will experience an attractive force which remains
non-vanishing even for asymptotically large separations. This linearly
increasing long-distance potential energy form the basis of essentially all
models of quark confinement.

x

l

t

periodic b.c−→
l t

x

Φ(l, t) = φ†(0, t)U(0, l; t)φ(l, t) Φ(l, t) = TrU(l; t)

• Nambu-Goto effective string theory for a closed string (winding flux tube)
gives the following relation:

E2
n,N+Ñ

= σ2l2w2 − π

3
σ(D − 2) + 4πσ(N + Ñ) + 	p2

n|| + 	p2
n⊥ (9)

where:
N + Ñ describes the sum of right and left movers (String theory),
w is the winding number,
	p2

n|| = (2πn/l)2 (n=0,1,2, ...) is the momentum square along the com-
pactified dimension of length l,
σ � (440±30MeV )2 is the string tension, the coefficient of the linear part
of the confining potential which dominates at large separations between
charges of colour (e.g. quarks) (V (l)t→∞= σl). If one uses a potential that is
the sum of Columb and linear terms in the calculation of the charmonium
spectrum one finds that to reproduce the experimental spectrum one needs
the above value of σ. The error is large due to the inherent ambiguity in
trying to introduce physical MeV units into the calculation.
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6 Energy calculation

• Masses of certain states can be calculated, using the correlation functions
of specific operators:

〈Φ†(t)Φ(0)〉 = |〈Ω|Φ†|0〉|2e−tm0 +
∑
m≥1

|〈Ω|Φ†|m〉|2e−tmm

t→∞−→ |〈Ω|Φ†|0〉|2e−tm0 (10)

Φ Φ

• Let us define the effective mass:

ameff (t) = −ln
〈Φ†(t)Φ(0)〉

〈Φ†(t − a)Φ(0)〉 (11)

• The mass will be equal to:

am0 � ameff (t0) (12)

where t0 is the lowest value of t for which meff (t0) = meff (t > t0)

• For examle:

7



 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0  1  2  3  4  5  6  7

E
ff

. M
as

s
t

’Error1.dat’
f

• The basis of the operators is not complete.

• Using this procedure it is impossible to extract the masses of the excited
states.

• We need to construct ’good’ operators.

• The best operator would be the one that maximises:

C(t) =
〈Φ†(t)Φ(0)〉
〈Φ†(0)Φ(0)〉 (13)

• So, we must use variational calculation!

– We expect to calculate masses for some excited states, so we need to
use operators which merely project onto the excited states.

– We construct a basis of operators, φi : i = 1, ..., NO, with transverse
deformations described by the quantum numbers of parity, winding
number, longitudinal momentum and transverse momentum. For
example:
If

φL = Tr

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

and φR = Tr

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(14)

then:

Φpx,py

± =
1

LxLy

∑
x,y

{φL ± φR} eipxx+ipyy (15)
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– We calculate the correlation function (Matrix):

Cij(t) = 〈φ†
i (t)φj(0)〉 (16)

– We diagonalize the matrix: C−1(0)C(a).

– We extract the correlator for each state.

– By fitting the results, we extract the mass (energy) for each state.
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