
Vectors and Matrices

aka Linear Algebra

Andre Lukas

Revision lectures, TT 2018

course material at:

http://www-thphys.physics.ox.ac.uk/people/AndreLukas/V&M/

http://www-thphys.physics.ox.ac.uk/people/AndreLukas/V&M/V&Mweb/index.html


1) Vector spaces and vectors

Def. of vector space:

Def. of sub-vector space:

Non-empty sub-set            ``closed” under vector addition

and scalar multiplication.

W ⇢ V

“Lines, planes etc. through         ” 0 2 V

Key examples for vector spaces:

Rn, Cn, n⇥m matrices, function vector spaces

V• vectors in   , scalars in field

• two operations: vector addition and scalar multiplication . . .

• . . . subject to a number of rules

F = R, C, . . .



Key concepts in vector spaces:
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{v1, . . . ,vn} V• Basis:                 is basis if it is lin. indep. and spans
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Standard unit vectors in Rn
, Cn

Standard unit vectors in R3
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• Dimension of   : number of vectors in a basis for   VV

dimR(Rn) = dimC(Cn) = n

real n⇥m matrices : dimension = nm

Vector as linear combination of basis

v1 =

✓
1

�1

◆
, v2 =

✓
2

�3

◆
basis of R2

v :=

✓
2

�1

◆
= ↵v1 + �v2 =

✓
↵+ 2�

�↵� 3�

◆

↵+ 2� = 2

�↵� 3� = �1
=) =) � = 4, ⇥ = �1

•  Every vector is a unique linear combination of a basis. 



2) Vector spaces    , geometrical applications Rn

• Scalar (dot) product in Rn

2 Vectors in Rn, geometrical applications

We would now like to pause the general story (before we resume in the next chapter) and focus on a
number of important topics for column vectors in Rn. In particular, we will introduce the scalar and
vector product for column vectors which are widely used in physics and discuss some related geometrical
applications.

2.1 Scalar product in Rn

The scalar (or dot) product for two n-dimensional column vectors

a =

⇤

⌥⇧
a1
...
an

⌅

�⌃ , b =

⇤

⌥⇧
b1
...
bn

⌅

�⌃ (2.1)

is defined as

a · b :=
n⌦

i=1

aibi . (2.2)

In physics it is customary to omit the sum symbol in this definition and simply write a ·b = aibi, adopting
the convention that an index which appears twice in a given term (such as the index i in the present case)
is summed over. This is also referred to as the Einstein summation convention.

The scalar product satisfies a number of obvious properties, namely

(a) a · b = b · a
(b) a · (b+ c) = a · b+ a · c
(c) a · (⇥b) = ⇥a · b
(d) a · a > 0 for all a ⇥= 0

(2.3)

Property (a) means that the dot product is symmetric. Properties (b), (c) can be expressed by saying
that the scalar product is linear in the second argument (vector addition and scalar multiplication can be
“pulled through”) and, by symmetry, it is therefore also linear in the first argument. It is easy to show
these properties using index notation.

(a) a · b = aibi = biai = b · a
(b) a · (b+ c) = ai(bi + ci) = aibi + aici = a · b+ a · c
(c) a · (⇥b) = ai(⇥bi) = ⇥aibi = ⇥a · b
(d) a · a =

 n
i=1 a

2
i > 0 for a ⇥= 0

The last property, (d), allows us to define the length of a vector as

|a| :=
⇤
a · a =

�
n⌦

i=1

a2i

⇥1/2

. (2.4)

It follows easily that |�a| = |�||a| for any real number �. The dot product satisfies an important inequality.

Lemma 2.1. (Cauchy-Schwarz inequality) For any two vectors a and b in Rn we have

|a · b| � |a| |b| .
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Kronecker delta: 

Figure 5: Angle between two vectors

2.2 Vector product in R3

For two three-dimensional vectors a and b the vector product is defined as

a⇥ b =

⇥

⌥
a1
a2
a3

⇤

�⇥

⇥

⌥
b1
b2
b3

⇤

� :=

⇥

⌥
a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

⇤

� . (2.9)

Note that this rule is relatively easy to remember: For the first entry of the cross product consider the
second and third components of the two vectors and multiply them “cross-wise” with a relative minus sign
between the two terms and similarly for the other two entries. So, using this rule a simple cross product
such as ⇥

⌥
1
4
3

⇤

�⇥

⇥

⌥
�2
1
1

⇤

� =

⇥

⌥
1

�7
9

⇤

� (2.10)

can be easily carried out directly. However, calculations with cross products in more complicated expres-
sions can become extremely tedious if done by writing out all three components explicitly. It is therefore
useful to introduce a more economical notation and adopt the Einstein summation convention. To this
end, we introduce the following two objects:

Kronecker delta in Rn The Kronecker delta in Rn is defined by

�ij =

�
1 if i = j
0 if i ⇤= j

, (2.11)

where i, j, . . . = 1, . . . , n. For a vector aj we have �ijaj = ai (recall, a sum over j is implied), so the
Kronecker delta acts as an “index replacer”, substituting the summed over index j by i in the previous
expression. Another useful property is �ii = n (again, note the double appearance of i means it is summed
over). The dot product can also be expressed in terms of the Kronecker delta by writing a · b = aibi =
�ijaibj .

Levi-Civita tensor in R3 The Levi-Civita tensor, ⇥ijk, where i, j, k, . . . = 1, 2, 3 is defined as

⇥ijk =

⌅
⌃

⇧

+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) “cyclic permutations”
�1 if (i, j, k) = (2, 1, 3), (3, 2, 1), (1, 3, 2) “anti-cyclic permutations”
0 otherwise

. (2.12)
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Angle between two vectors: cos(^(a,b)) = a·b
|a| |b| =)

Proof. The proof is a bit tricky. We start with the simplifying assumption that |a| = |b| = 1. Then

0 ⇥ |a± b|2 = (a± b) · (a± b) = |a|2 ± 2a · b+ b2 = 2(1± a · b) ,

which shows that |a · b| ⇥ 1. Now consider arbitrary vectors a and b. If one of these vector is zero then
the inequality is trivially satisfied so we assume that both of them are non-zero. Then the vectors

u =
a

|a| , v =
b

|b|

have both length one and, hence, |u · v| ⇥ 1. Inserting the definitions of u and v into this inequality and
multiplying by |a| and |b| gives the desired result.

A closely related inequality is the famous

Lemma 2.2. (Triangle inequality) For any two vectors a and b in Rn we have

|a+ b| ⇥ |a|+ |b|

Proof.
|a+ b|2 = |a|2 + |b|2 + 2a · b ⇥ |a|2 + |b|2 + 2|a| |b| = (|a|+ |b|)2 ,

where the Cauchy-Schwarz inequality has beed used in the second step.

a+b

a b

Figure 4: Geometric meaning of the triangle inequality: The length |a+b| is always less or equal than the
sum |a|+ |b| for the other two sides.

The triangle inequality has an obvious geometrical interpretation which is illustrated in Fig. 4. For two
non-zero vectors a and b, the Cauchy-Schwarz inequality implies that

�1 ⇥ a · b
|a| |b| ⇥ 1 (2.5)

so that there is a unique angle � ⇧ [0,⇥] such that

cos � =
a · b
|a| |b| . (2.6)

This angle � is called the angle between the two vectors a and b, also denoted �(a,b). With this definition
of the angle we can also write the scalar product as

a · b = |a| |b| cos(�(a,b)) . (2.7)

In particular, we call the two vectors, a and b perpendicular, in symbols a ⌃ b, if �(a,b) = ⇥/2 and,
hence

a ⌃ b ⇤⌅ a · b = 0 . (2.8)
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It has a number of useful properties, namely

(a) it remains unchanged under cyclic index permutations, for example ⇥ijk = ⇥jki (2.13)

(b) it changes sign under anti-cyclic index permutations, for example ⇥ijk = �⇥ikj (2.14)

(c) it vanishes if two indices are identical, for example ⇥ijj = 0 (2.15)

(d) ⇥ijk⇥ilm = �jl�km � �jm�kl (2.16)

(e) ⇥ijk⇥ijm = 2�km (2.17)

(f) ⇥ijk⇥ijk = 6 (2.18)

(g) ⇥ijkajak = 0 . (2.19)

The first three of these properties are obvious from the definition of the Levi-Civita tensor. Property (2.16)
can be reasoned out as follows. If the index pair (j, k) is di�erent from (l,m) (in any order) then clearly
both sides of (2.16) are zero. On the other hand, if the two index pairs equal each other they can do so
in the same or the opposite ordering and these two possibilities correspond precisely to the two terms on
the RHS of (2.16). If we multiply (2.16) by �jl, using the index replacing property of the Kronecker delta,
we obtain

⇥ijk⇥ijm = (�jl�km � �jm�kl)�jl = 3�km � �km = 2�km

and this is property (2.17). Further, multiplying (2.17) with �km we have

⇥ijk⇥ijk = 2�km�km = 2�kk = 6

and, hence, (2.18) follows. Finally, to show (2.19) we write ⇥ijkajak = �⇥ikjakaj = �⇥ijkajak, where the
summation indices j and k have been swapped in the last step, and, hence, 2⇥ijkajak = 0.

We can think of �ij and ⇥ijk as a convenient notation for the 0’s, 1’s and �1’s which appear in the definition
of dot and cross product. Indeed, the dot product can be written as

a · b = aibi = �ijaiaj , (2.20)

while the index version of the cross product takes the form

(a⇥ b)i = ⇥ijkajbk . (2.21)

To verify this last equation focus, for example, on the first component:

⇥1jkajbk = ⇥123a2b3 + ⇥132a3b2 = a2b3 � a3b2 , (2.22)

which indeed equals the first component of the vector product (2.9). Analogously, it can be verified that
the other two components match. Note that the index expression (2.21) for the vector product is much
more concise than the component version (2.9).

Example 2.1: Vector products in physics

Vector products make a frequent appearance in physics. Here are a few basic examples:

(a) In mechanics the angular momentum of a mass m at position r and with velocity ṙ is given by
L = mr⇥ ṙ.

(b) The force a magnetic field B exerts on a particle with charge q and at position r, the so-called Lorentz
force, is given by F = q ṙ⇥B.

(c) The velocity of a point with coordinate r in a rotating coordinate system with angular velocity � is
given by v = � ⇥ r.
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Calculating vector products
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1

A
4
1

2

Proving vector identities with indices

The vector product satisfies the following useful properties.

(a) a⇥ b = �b⇥ a (2.23)

(b) a⇥ (b+ c) = a⇥ b+ a⇥ c (2.24)

(c) a⇥ (⇥b) = ⇥a⇥ b (2.25)

(d) a⇥ a = 0 (2.26)

(e) a⇥ (b⇥ c) = (a · c)b� (a · b)c (2.27)

(f) (a⇥ b) · (c⇥ d) = (a · c)(b · d)� (a · d)(b · c) (2.28)

(g) | a⇥ b |2=| a |2| b |2 �(a · b)2 (2.29)

(h) e1 ⇥ e2 = e3 and cyclic permutations (2.30)

Property (a) means that the vector product is anti-symmetric. Properties (b) and (c) imply linearity in
the second argument (vector addition and scalar multiplication can be “pulled through”) and, from anti-
symmetry, linearity also holds in the first argument. Property (f) is sometimes referred to as Lagrange
identity. The above relations can be verified by writing out all the vectors explicitly and using the
definitions (2.2) and (2.9) of the dot and cross products. However, for some of the identities this leads to
rather tedious calculations. It is much more economical to use index notation and express dot and cross
product via Eqs. (2.20) and (2.21). The proofs are then as follows:

(a) (a⇥ b)i = ⌅ijkajbk = �⌅ikjbkaj = �(b⇥ a)i

(b) (a⇥ (b+ c))i = ⌅ijkaj(bk + ck) = ⌅ijkajbk + ⌅ijkajck = (a⇥ b+ a⇥ c)i

(c) (a⇥ (⇥b))i = ⌅ijkaj⇥bk = ⇥⌅ijkajbk = ⇥(a⇥ b)i

(d) (a⇥ a)i = ⌅ijkajak = 0 (from property (2.19) of ⌅ijk)

(e) (a⇥ (b⇥ c))i = ⌅ijkaj(b⇥ c)k = ⌅ijk⌅kmnajbmnn = ⌅kij⌅kmnajbmcn
(2.16)
= (⇤im⇤jn � ⇤in⇤jm)ajbmcn

= ajcjbi � ajbjci = a · cbi � a · bci = ((a · c)b� (a · b)c)i

f) (a⇥ b) · (c⇥ d) = ⌅ijk⌅imnajbkcmdn
(2.16)
= (⇤jm⇤kn � ⇤jn⇤km)ajbkcmdn = (a · c)(b · d)� (a · d)(b · c)

(g) Set c = a and d = b in property (f).
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Note how expressions in vector notation are converted into index notation in these proofs by working from
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notation, the order of all objects can be exchanged at will - after all they are just numbers. In the proofs
of (e) and (f) the Kronecker delta acts as an index replacer, as explained below Eq. (2.11).

Application: Kinetic energy of a rotating rigid body

An example which illustrates some of the above identities and techniques in the context of classical
mechanics is the kinetic energy of a rigid rotating body. Consider a rigid body, as depicted in Fig. 6,
which we would like to think of as consisting of (a possibly large number of) mass points, labeled by an
index �, each with mass m�, position vector r� and velocity v�. The total kinetic energy of this body is of
course obtained by summing over the kinetic energy of all mass points, that is, Ekin = 1
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(r⇥ (rf))i = �ijk⇥j(rf)k = �ijk⇥j⇥kf = 0



Geometrical interpretation: 

It has the following properties

(a) ⇤a,b, c⌅ = ⇤ijkaibjck = a1b2c3 + a2b3c1 + a3b1c2 � a1b3c2 � a2b1c3 � a3b2c1 (2.33)

(b) It is linear in each argument, e.g. ⇤�a+ ⇥b, c,d⌅ = �⇤a, c,d⌅+ ⇥⇤b, c,d⌅ (2.34)

(c) It is unchanged under cyclic permutations, e.g. ⇤a,b, c⌅ = ⇤b, c,a⌅ (2.35)

(d) It changes sign for anti-cyclic permutations, e.g. ⇤a,b, c⌅ = �⇤a, c,b⌅ (2.36)

(e) It vanishes if any two arguments are the same, e.g. ⇤a,b,b⌅ = 0 (2.37)

Property (a) follows easily from the definitions of dot and cross products, Eqs. (2.20) and (2.21), in index
notation and the definition (2.12) of the Levi-Civita tensor. The other properties are a direct consequence
of (a) and the properties of the Levi-Civita tensor. Specifically, (c) and (d) follow from (2.13),(2.14) and
(e) follows from (2.19).

Another notation for the triple product is

det(a,b, c) := ⇤a,b, c⌅ , (2.38)

where “det” is short for determinant. Later we will introduce the determinant in general and for arbitrary
dimensions and we will see that, in three dimensions, this general definition indeed coincides with the
triple product.

Having introduced all the general definitions and properties we should now discuss the geometrical
interpretations of the cross and triple products.

Geometrical interpretation of cross product:
Property (2.37) of the triple product implies that the cross product a⇥b is perpendicular to both vectors
a and b. For the length of a cross product it follows

| a⇥ b |(2.29)= (| a |2| b |2 �(a · b))
1
2 =| a || b | (1� (a · b)2

| a |2| b |2⇤ ⇥� ⌅
=1�cos2(�(a,b))

)
1
2 =| a | · | b | sin�(a,b) (2.39)

From this result and Fig. 7 the length, |a⇥ b|, of the cross product is equal to the area of the rectangle

Figure 7: Shear, leaves the area unchanged

indicated and, as this area is left invariant by a shear, it equals the area of the parallelogram defined
by the vectors a and b. In summary, we therefore see that the vector product a ⇥ b defines a vector
perpendicular to a and b whose length equals the area of the parallelogram defined by a and b.

Geometrical interpretation of triple product
We first note that the triple product of three standard unit vectors is ⇤e1, e2, e3⌅ = e1 · (e2 ⇥ e3) =
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• Triple product in R3

Figure 6: A rotating rigid body

Example (2.1)(c) we know that the velocity of each mass point is related to its position by v� = � ⇥ r�,
where � is the angular velocity of the body.

Ekin =
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2 =

1

2

⇤

a

m� | � ⇥ r� |2(2.29)=
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⇥
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=: Iij

⇥j

The object in the square bracket, denoted by Iij , is called the moment of intertia tensor of the rigid
body. It is obviously symmetric, so Iij = Iji, so we can think of it as forming a symmetric matrix, and
it is a characteristic quantity of the rigid body. We can think of it as playing a role in rotational motion
analogous to that of regular mass in linear motion. Correspondingly, the total kinetic energy of the rigid
body can be written as

Ekin =
1

2

⇤

i,j

Iij⇥i⇥j (2.31)

This relation is of fundamental importance for the mechanics of rigid bodies, in particular the motion of
tops, and we will return to it later.

Dot and cross product can be combined to a third product with three vector arguments, the triple product,
which is defined as

⇤a,b, c⌅ = a · (b⇥ c) . (2.32)
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det(a,b, c) 6= 0 () a,b, c basis of R3



• Lines in R3

vector form

Figure 9: Lines in two dimensions

equations into a vector equation gives

r(t) =

�
x(t)
y(t)

⇥
=

�
0
b

⇥

 �⌥ ⌦
p

+t

�
1
a

⇥

 �⌥ ⌦
q

(2.42)

where the vectors p and q are identified as indicated.
For the opposite direction, to get from the vector to the Cartesian form, simply solve the two compo-

nents of (2.41) for t so that

t =
x� px
qx

=
y � py
qy

=⇥ y =
qy
qx �⌥⌦
a

x+ py �
qy
qx

px
 �⌥ ⌦

b

(2.43)

and a and b are identified as indicated.
Finally, a common problem is to find the intersection of two lines given by r1(t1) = p1 + t1q1 and

r2(t2) = p2 + t2q2. Setting r1(t1) = r2(t2) leads to

t1q1 � t2r2 = p2 � p1 . (2.44)

If q1,q2 are linearly independent then they form a basis of R2 and, in this case, we know from Claim 1.2
that there is a unique solution t1, t2 for this equation. The intersection point is obtained by computing
r1(t1) or r2(t2) for these values. If q1,q2 are linearly dependent then the lines are parallel and either there
is no intersection or the two lines are identical.

2.3.3 Lines in R3

The vector form for 2-dimensional lines (2.41) can be easily generalized to three dimensions:

r(t) =

⇤

⇧
x(t)
y(t)
z(t)

⌅

⌃ = p+ tq . (2.45)
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Cartesian formHere p = (px, py, pz)T and q = (qx, qy, qz)T are fixed vectors. As before, we can get to the Cartesian form
by solving the components of Eq. (2.45) for t resulting in

t =
x� px
qx

=
y � py
qy

=
z � pz
qz

. (2.46)

Note that this amounts to two equations between the three coordinates x, y, z as should be expected for
the definition of a one-dimensional object (the line) in three dimensions. The geometrical interpretation
of the various vectors is indicated in Fig. 10. For the minimum distance of a line from a given point we

Figure 10: Lines in three dimensions

have the following statement.

Claim 2.2. The minimum distance of a line r(t) = p+ tq from a point p0 arises at tmin = � d·q
|q|2 where

d = p� p0. The minimal distance is given by dmin = |d⇥ q|/|q|.

Proof. We simply work out the distance square d2(t) := |r(t) � p0| of an arbitrary point r(t) on the line
from the point p0. This leads to

d2(t) =| d+ tq |2=| q |2 t2 + 2(d · q)t+ | d |2=
⇤
| q | t+ d · q

| q |

⌅2
+ | d |2 �(d · q)2

| q |2 (2.47)

This expression is minimal when the expression inside the square bracket vanishes which happens for
t = tmin = � d·q

|q|2 . This proves the first part of the claim. For the second part we simply compute

d2min := d2(tmin) =
1

| q |2
�
| d |2| q |2 �(d · q)2

⇥ (2.29)
=

| d⇥ q |2

| q |2 . (2.48)

2.3.4 Planes in R3

To obtain the vector form of a plane in three dimensions we can generalize Eq. (2.45), the vector form of
a 3-dimensional line, by introducing two parameters, t1 and t2 and define the plane as all points r(t1, t2)
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Line through two points A = (1, 2,�3)T , B = (2,�1, 1)T
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Minimal distance of line from point    : dmin = |(p�p0)⇥q|
|q|p0

Minimal distance of two lines                    : 

Equating these two, that is rL(t) = rP (t1, t2) leads to

t1q+ t2s� tb = a� p (2.53)

Let us assume that the triple product ⌅b,q, s⇧ is non-zero so that, from Claim (2.1), the vectors b ,q, s
form a basis. In this case, Eq. (2.53) has a unique solution for t1, t2, t which corresponds to the parameter
values of the intersection point. This solution can be found by splitting (2.53) up into its three component
equations and explicitly solving for t1, t2, t. Perhaps a more elegant way to proceed is to multiply (2.53)
by (q ⇥ s), so that the terms proportional to t1 and t2 drop out. The resulting equation can easily be
solved for t which leads to

tisec =
⌅p� a,q, s⇧
⌅b,q, s⇧ . (2.54)

This is the value of the line parameter t at the intersection point and we obtain the intersection point
itself by evaluating rL(tisec).

2.3.6 Minimal distance of two lines

Two lines in three dimensions do not generically intersect but we can still ask about their minimal distance.
We begin with the two lines

ri(ti) = pi + tiqi , where i = 1, 2 (2.55)

in vector form. One way to proceed would be in analogy with the proof of Claim 2.2, that is, by finding the
values of t1, t2 for which the distance |r1(t1)� r2(t2)| is minimal. However, this requires minimization of
a function of two variables, a technique you may not yet be familiar with. Alternatively we can introduce
the unit vector

n =
q1 ⇥ q2

| q1 ⇥ q2 |
(2.56)

which is evidently perpendicular to both lines and start with the intuitive assertion that the vector of
minimal length between the two lines is in the direction of n. This leads to the relation

p1 + t1q1 � p2 � t2q2 = ±dminn , (2.57)

where t1, t2 are the parameter values of the points of minimal distance on the two lines and the sign on
the RHS should be chosen so that dmin ⇤ 0 (since we would like a distance to be positive). By multiplying
the last equation with n it then follows easily that

dmin = |(p1 � p2) · n| (2.58)

2.3.7 Spheres in R3

A sphere in R3 with radius � and center p = (a, b, c)T consists of all points r = (x, y, z)T with |r�p| = �.
Written out in coordinates this reads explicitly

(x� a)2 + (y � b)2 + (z � c)2 = �2 (2.59)

In particular, setting a = b = c = 0, a sphere around the origin is described by x2+y2+z2 = �2. The RHS
of this equation is a particular example of a quadratic form, polynomials which consist of terms quadratic
in the variables. We will study quadratic forms in more detail later.
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In particular, setting a = b = c = 0, a sphere around the origin is described by x2+y2+z2 = �2. The RHS
of this equation is a particular example of a quadratic form, polynomials which consist of terms quadratic
in the variables. We will study quadratic forms in more detail later.
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• Planes in R3

vector form
given by

r(t1, t2) =

�

⇤
x(t1, t2)
y(t1, t2)
z(t1, t2)

⇥

⌅ = p+ t1q+ t2s , (2.49)

where p, q and s are fixed vectors in R3. Of course, for this to really define a plane (rather than a line)
the vectors q and s must be linearly independent. A unit normal vector to this plane is given by

n =
q� s

| q� s | (2.50)

Multiplying the vector form (2.49) by n = (nx, ny, nz)T (and remembering that n · q = n · s = 0) we get
to the Cartesian form of a three-dimensional plane

n · r = d or nxx+ nyy + nzz = d (2.51)

where d = n · p is a constant. From Eq. (2.7) we can re-write the Cartesian form as cos(�)|r| = d, where
� = �(n, r) is the angle between n and r. The distance |r| of the plane from the origin is minimal if
cos(�) = ±1 which shows that the constant d (or rather its absolute value |d|) should be interpreted as the
minimal distance of the plane from the origin. The geometrical meaning of the various objects is indicated
in Fig. 11.

Figure 11: Cartesian and vector descriptions of a plane

Finally, to convert a plane in Cartesian form (2.51) into vector form we must first find a vector p with
p ·n = d (a vector “to the plane”) and then two linearly independent vectors q, r satisfying q ·n = r ·n = 0
(two vectors “in the plane”). These are then three suitable vectors to write down the vector form (2.49).

2.3.5 Intersection of line and plane

To study the intersection of a line and a plane first write down vector equations for each, so

rL(t) = a+ tb , rP (t1, t2) = p+ t1q+ t2s . (2.52)
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Equating these two, that is rL(t) = rP (t1, t2) leads to

t1q+ t2s� tb = a� p (2.53)

Let us assume that the triple product ⌅b,q, s⇧ is non-zero so that, from Claim (2.1), the vectors b ,q, s
form a basis. In this case, Eq. (2.53) has a unique solution for t1, t2, t which corresponds to the parameter
values of the intersection point. This solution can be found by splitting (2.53) up into its three component
equations and explicitly solving for t1, t2, t. Perhaps a more elegant way to proceed is to multiply (2.53)
by (q ⇥ s), so that the terms proportional to t1 and t2 drop out. The resulting equation can easily be
solved for t which leads to

tisec =
⌅p� a,q, s⇧
⌅b,q, s⇧ . (2.54)

This is the value of the line parameter t at the intersection point and we obtain the intersection point
itself by evaluating rL(tisec).

2.3.6 Minimal distance of two lines

Two lines in three dimensions do not generically intersect but we can still ask about their minimal distance.
We begin with the two lines

ri(ti) = pi + tiqi , where i = 1, 2 (2.55)

in vector form. One way to proceed would be in analogy with the proof of Claim 2.2, that is, by finding the
values of t1, t2 for which the distance |r1(t1)� r2(t2)| is minimal. However, this requires minimization of
a function of two variables, a technique you may not yet be familiar with. Alternatively we can introduce
the unit vector

n =
q1 ⇥ q2

| q1 ⇥ q2 |
(2.56)

which is evidently perpendicular to both lines and start with the intuitive assertion that the vector of
minimal length between the two lines is in the direction of n. This leads to the relation

p1 + t1q1 � p2 � t2q2 = ±dminn , (2.57)

where t1, t2 are the parameter values of the points of minimal distance on the two lines and the sign on
the RHS should be chosen so that dmin ⇤ 0 (since we would like a distance to be positive). By multiplying
the last equation with n it then follows easily that

dmin = |(p1 � p2) · n| (2.58)

2.3.7 Spheres in R3

A sphere in R3 with radius � and center p = (a, b, c)T consists of all points r = (x, y, z)T with |r�p| = �.
Written out in coordinates this reads explicitly

(x� a)2 + (y � b)2 + (z � c)2 = �2 (2.59)

In particular, setting a = b = c = 0, a sphere around the origin is described by x2+y2+z2 = �2. The RHS
of this equation is a particular example of a quadratic form, polynomials which consist of terms quadratic
in the variables. We will study quadratic forms in more detail later.
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3) Linear maps and matrices

Def. of linear map              :f : V ! W

Theorem 3.1. The map f : X ⇤ Y has an inverse if and only if f is bijective. If the inverse exists it is
unique and denoted by f�1 : Y ⇤ X.

Proof. “⇧” We assume that f : X ⇤ Y has an inverse g : Y ⇤ X with f � g = idY and g � f = idX .
To show that f is injective start with f(x) = f(x̃) and apply g from the left. It follows immediately that
x = x̃. To show surjectivity of we need to find, for a given y ⌃ Y , an x ⌃ X such that f(x) = y. We can
choose x = g(y) since f(x) = f � g(y) = idY (y) = y. In conclusion f is bijective.

“⌅” We assume that f is bijective. Hence, for every y ⌃ Y there is precisely one x ⌃ X with f(x) = y.
We define the prospective inverse map by g(y) = x. Then f � g(y) = f(x) = y and g � f(x) = g(y) = x.

To show uniqueness we consider two maps g : Y ⇤ X and g̃ : Y ⇤ X with g �f(x) = x = g̃ �f(x). Setting
y = f(x) it follows that g(y) = g̃(y) and, since f is surjective this holds for all y ⌃ Y . Hence, g = g̃.

If the maps f and g are both bijective, then it is easy to see that the composite map f � g is also bijective
and, hence, has an inverse. This inverse of the composite map can be computed from the formula

(f · g)�1 = g�1 · f�1 . (3.2)

Note the change of order on the RHS of this equation. This relation follows from (f � g)�1 � (f � g) = id
and (g�1 � f�1) � (f � g) = id which implies that both (f � g)�1 and (g�1 � f�1) provide an inverse for
f � g. Uniqueness of the inverse function then leads to Eq. (3.2). Further we have

(f�1)�1 = f (3.3)

from the uniqueness of the inverse and the fact that both f and (f�1)�1 provide an inverse for f�1.

3.1.2 Linear maps: Definition and basic properties

We are now ready to discuss linear maps which are maps between two vector spaces - rather than general
sets as above - which, in addition, are consistent with the two vector space operations, that is, vector
addition and scalar multiplication. More precisely what we mean is:

Definition 3.5. A map f : V ⇤ W between two vector spaces V and W over a field F is called linear if

(L1) f(v1 + v2) = f(v1) + f(v2)
(L2) f(�v) = �f(v)

for all v,v1,v2 ⌃ V and for all � ⌃ F . Further, the set Ker(f) = {v ⌃ V | f(v) = 0} ⇥ V is called the
kernel of f .

A few remarks are in order. First, note that the two conditions for linearity are the obvious ones for
consistency with the vector space structure. Condition (L1) says that vector addition can be “pulled
through” linear maps and condition (L2) is a similar statement for scalar multiplication, that is, scalars
can be “pulled out” of linear maps. In short, linear maps are the maps between vector spaces which
are consistent with vector addition and scalar multiplication. As for any map, we can define the image
Im(f) = {f(v) |v ⌃ V } ⇥ W of the linear map f : V ⇤ W , which is a subset of the co-domain vector
space W . Since vector spaces have a special element - the zero vector 0 - we can define a further set
associated to a linear map, namely the kernel, Ker(f). It is the subset of the domain vector space V which
consists of all vectors v ⌃ V mapped to the zero vector, so f(v) = 0.

Following the standard mathematical approach we have defined linear maps by their properties rather
than by “what they are”. As we proceed we will gain some insight into the structure of linear maps and
also discuss many examples. We begin by summarizing a number of simple but important properties of
linear maps which follow from the above definition.
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Im(f) = {f(v) |v ⇥ V } � W

Kernel and image of a linear map (sub vector spaces):

Rank of a linear map: 

rk(f) = dim Im(f)

and the image of a linear map in this way, the former residing in the domain vector space, the latter in
the co-domain.

To be concrete, let us consider a linear map f : R3 ⇥ R2 and let us assume that dimKer(f) = 2, that
is, the kernel of f is a plane through the origin in R3. This situation is schematically shown in Fig. 17.
Recall that all vectors in the kernel of f , that is all vectors in the corresponding plane (the blue plane in
Fig. 17) are mapped to the zero vector. What is more, consider two vectors v1,v2 ⇤ Ker(f) + k which
both lie in a plane parallel to Ker(f), shifted by a vector k (the pink plane in Fig. 17). Then we have
v1 � v2 ⇤ Ker(f) so that f(v1 � v2) = 0 and, hence, by linearity f(v1) = f(v2). Therefore, not only do
all vectors in the kernel get mapped to the zero vector, but all vectors in a plane parallel to the kernel get
mapped to the same (although non-zero) vector. E�ectively, the action of the linear map “removes” the
two dimensions parallel to the kernel plane and only keeps the remaining dimension perpendicular to it.
Hence, the image of this linear map is one-dimensional, that is a line through the origin, as indicated in
Fig. 17. This structure is indeed general as expressed by the following theorem.

Figure 17: Geometric representation of a linear map f : R3 ⇥ R2. If dim(V ) = 3 and dimKer(f) = 2 it
follows that dim Im(f) = 1.

Theorem 3.2. For a linear map f : V ⇥ W we have

dimKer(f) + rk(f) = dim(V ) (3.4)

Proof. For simplicity of notation, set k = dimKer(f) and n = dim(V ). Let v1, · · · ,vk be a basis of Ker(f)
which we complete to a basis v1, . . . ,vk,vk+1, . . . ,vn of V . We will show that f(vk+1), . . . , f(vn) forms
a basis of Im(f). To do this we need to check the two conditions in Definition 1.4.

(B1) First we need to show that Im(f) is spanned by f(vk+1), . . . , f(vn). We begin with an arbitrary
vector w ⇤ Im(f). This vector must be the image of a v ⇤ V , so that w = f(v). We can expand v as a
linear combination

v =
n�

i=1

�ivi
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Dimension formula:
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Basic matrix properties:

• nxm matrix: 

The solutions to the homogeneous di�erential equation

L(g) = 0 (3.18)

are given by the kernel, Ker(L). For any linear map the kernel is a (sub) vector space and, for the present
example, this means that any linear combination of solutions of the di�erential equation is also a solution.

As an explicit example consider the second order linear di�erential operator

L =
d2

dx2
+ 4

d

dx
� 5 . (3.19)

The associated homogeneous di�erential equation L(g) = 0 has the two solutions, g1(x) = exp(x) and
g1(x) = exp(�5x), but, from linearity, any linear combination g(x) = �g1(x) + ⇥g2(x) = � exp(x) +
⇥ exp(�5x) is also a solution.

3.2 Matrices and their properties

In the previous section we have introduced linear maps and we have seen that a prominent class of exam-
ples for such maps can be obtained from matrices. It is now time to be more serious about matrices and
develop their theory more systematically, both to obtain practical computational tools for matrices and
to gain more insight into the nature of linear maps. We begin low-key by reviewing some of the matrix
properties encountered so far and by adding a few further basic definitions.

3.2.1 Basic matrix properties

We consider matrices of arbitrary size n⇥m (that is, with n rows and m columns) given by

A =

�

⇧⇤
a11 · · · a1m
...

...
an1 · · · anm

⇥

⌃⌅ . (3.20)

Here aij ⌅ F , with i = 1, . . . , n and j = 1, . . . ,m, are the (real or complex) entries. The matrix A is called
quadratic if n = m, that is if it has as many rows as columns. It is often useful to be able to refer to the
entries of a matrix by the same symbol and, by slight abuse of notation, we will therefore also denote the
entries by Aij = aij . We already know that the matrices of a given size form a vector space with vector
addition and scalar multiplication defined component by component, that is, (A + B)ij = Aij + Bij and
(�A)ij = �Aij . We will frequently need to refer to the row and column vectors of a matrix for which we
introduce the following notation:

Ai =

�

⇧⇤
Ai1
...

Aim

⇥

⌃⌅ , Aj =

�

⇧⇤
A1j
...

Anj

⇥

⌃⌅ . (3.21)

Hence, Ai is an m-dimensional column vector which contains the entries in the ith row of A and Aj is
an n-dimensional column vector which contains the entries in the jth column of A. We also recall that A
defines a linear map A : Fm ⇤ Fn via multiplication of matrices and vectors which can be written as

A : v ⇧⇤ Av =

�

⇧⇤
A1 · v

...
An · v

⇥

⌃⌅ or (Av)i =
m⌥

j=1

Aijvj . (3.22)
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The solutions to the homogeneous di�erential equation

L(g) = 0 (3.18)

are given by the kernel, Ker(L). For any linear map the kernel is a (sub) vector space and, for the present
example, this means that any linear combination of solutions of the di�erential equation is also a solution.

As an explicit example consider the second order linear di�erential operator

L =
d2

dx2
+ 4

d

dx
� 5 . (3.19)

The associated homogeneous di�erential equation L(g) = 0 has the two solutions, g1(x) = exp(x) and
g1(x) = exp(�5x), but, from linearity, any linear combination g(x) = �g1(x) + ⇥g2(x) = � exp(x) +
⇥ exp(�5x) is also a solution.

3.2 Matrices and their properties

In the previous section we have introduced linear maps and we have seen that a prominent class of exam-
ples for such maps can be obtained from matrices. It is now time to be more serious about matrices and
develop their theory more systematically, both to obtain practical computational tools for matrices and
to gain more insight into the nature of linear maps. We begin low-key by reviewing some of the matrix
properties encountered so far and by adding a few further basic definitions.

3.2.1 Basic matrix properties

We consider matrices of arbitrary size n⇥m (that is, with n rows and m columns) given by

A =

�

⇧⇤
a11 · · · a1m
...

...
an1 · · · anm

⇥

⌃⌅ . (3.20)

Here aij ⌅ F , with i = 1, . . . , n and j = 1, . . . ,m, are the (real or complex) entries. The matrix A is called
quadratic if n = m, that is if it has as many rows as columns. It is often useful to be able to refer to the
entries of a matrix by the same symbol and, by slight abuse of notation, we will therefore also denote the
entries by Aij = aij . We already know that the matrices of a given size form a vector space with vector
addition and scalar multiplication defined component by component, that is, (A + B)ij = Aij + Bij and
(�A)ij = �Aij . We will frequently need to refer to the row and column vectors of a matrix for which we
introduce the following notation:

Ai =

�

⇧⇤
Ai1
...

Aim

⇥

⌃⌅ , Aj =

�

⇧⇤
A1j
...

Anj

⇥

⌃⌅ . (3.21)

Hence, Ai is an m-dimensional column vector which contains the entries in the ith row of A and Aj is
an n-dimensional column vector which contains the entries in the jth column of A. We also recall that A
defines a linear map A : Fm ⇤ Fn via multiplication of matrices and vectors which can be written as

A : v ⇧⇤ Av =

�

⇧⇤
A1 · v

...
An · v

⇥

⌃⌅ or (Av)i =
m⌥

j=1

Aijvj . (3.22)
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• Row and column vectors: 

The solutions to the homogeneous di�erential equation

L(g) = 0 (3.18)

are given by the kernel, Ker(L). For any linear map the kernel is a (sub) vector space and, for the present
example, this means that any linear combination of solutions of the di�erential equation is also a solution.

As an explicit example consider the second order linear di�erential operator

L =
d2

dx2
+ 4

d

dx
� 5 . (3.19)

The associated homogeneous di�erential equation L(g) = 0 has the two solutions, g1(x) = exp(x) and
g1(x) = exp(�5x), but, from linearity, any linear combination g(x) = �g1(x) + ⇥g2(x) = � exp(x) +
⇥ exp(�5x) is also a solution.

3.2 Matrices and their properties

In the previous section we have introduced linear maps and we have seen that a prominent class of exam-
ples for such maps can be obtained from matrices. It is now time to be more serious about matrices and
develop their theory more systematically, both to obtain practical computational tools for matrices and
to gain more insight into the nature of linear maps. We begin low-key by reviewing some of the matrix
properties encountered so far and by adding a few further basic definitions.

3.2.1 Basic matrix properties

We consider matrices of arbitrary size n⇥m (that is, with n rows and m columns) given by

A =

�

⇧⇤
a11 · · · a1m
...

...
an1 · · · anm

⇥

⌃⌅ . (3.20)

Here aij ⌅ F , with i = 1, . . . , n and j = 1, . . . ,m, are the (real or complex) entries. The matrix A is called
quadratic if n = m, that is if it has as many rows as columns. It is often useful to be able to refer to the
entries of a matrix by the same symbol and, by slight abuse of notation, we will therefore also denote the
entries by Aij = aij . We already know that the matrices of a given size form a vector space with vector
addition and scalar multiplication defined component by component, that is, (A + B)ij = Aij + Bij and
(�A)ij = �Aij . We will frequently need to refer to the row and column vectors of a matrix for which we
introduce the following notation:

Ai =

�

⇧⇤
Ai1
...

Aim

⇥

⌃⌅ , Aj =

�

⇧⇤
A1j
...

Anj

⇥

⌃⌅ . (3.21)

Hence, Ai is an m-dimensional column vector which contains the entries in the ith row of A and Aj is
an n-dimensional column vector which contains the entries in the jth column of A. We also recall that A
defines a linear map A : Fm ⇤ Fn via multiplication of matrices and vectors which can be written as

A : v ⇧⇤ Av =

�

⇧⇤
A1 · v

...
An · v

⇥

⌃⌅ or (Av)i =
m⌥

j=1

Aijvj . (3.22)
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• Multiplication of matrices and vectors:

Av =

0

B@
A1 · v
...
An · v

1

CA (Av)i =
mX

j=1

Aijvj

Av =

0

@
1 �2
0 3
5 �1

1

A
✓

�1
5

◆
=

0

@
(1,�2)T · (�1, 5)T

(0, 3)T · (�1, 5)T

(5,�1)T · (�1, 5)

1

A =

0

@
�11
15

�10

1

A

Multiplying matrices and vectors



Every linear map                 given by a matrix    in this way. f : Fm ! Fn A

How to find   ?A f(ej) =
X

i

Aijei

• Lin. maps from matrices: A : Fm ! Fn

v ! Av

f(ej) = (a · ej)b = ajb =
3X

i=1

biajei =) Aij = biaj

Matrix for a linear map f : R3 ! R3

f(v) := (a · v)b , a, b 2 R3
fixed



• Unit matrix: 

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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• Diagonal matrix: 

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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• Transpose and herm. conjugate: 

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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B =

0

@
1 i

1� 2i �2i
3 + i 4

1

A , B† =

✓
1 1 + 2i 3� i
�i 2i 4

◆

• Symmetric and anti-symmetric: 

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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• Hermitian and anti-hermitian: 

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.

42

A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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A very specific matrix is the unit matrix n : Fn ⇤ Fn given by

n =

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ (3.23)

Its row and columns vectors are given by the standard unit vectors, so Ai = ei and Aj = ej , and its
components ( n)ij = �ij equal the Kronecker delta symbol introduced earlier. For its action on a vector
we have

( v)i = �ijvj = vi (3.24)

so, seen as a linear map, the unit matrix corresponds to the identity map.
More generally, a diagonal matrix is a matrix D with non-zero entries only along the diagonal, so

Dij = 0 for all i ⌅= j. It can be written as

D =

⇤

⌥⇧
d1 0

. . .

0 dn

⌅

�⌃ =: diag(d1, . . . , dn) (3.25)

The complex conjugate A⇥ : Fm ⇤ Fn of a matrix A : Fm ⇤ Fn is simply the matrix whose entries are
the complex conjugates of the entries in A, so in component form, (A⇥)ij = (Aij)⇥. Of course, for matrices
with only real entries complex conjugation is a trivial operation which leaves the matrix unchanged.

The transpose AT : Fn ⇤ Fm of an n ⇥ m matrix A : Fm ⇤ Fn is an m ⇥ n matrix obtained by
exchanging the rows and columns of A. In component form, this means (AT )ij := Aji. A matrix A is said
to be symmetric if A = AT or, in index notation, if all entries satisfy Aij = Aji. It is called anti-symmetric
if A = �AT or, Aij = �Aji for all entries. Note that all diagonal entries Aii of an anti-symmetric matrix
vanish. Clearly, only quadratic matrices can be symmetric or anti-symmetric.

Example 3.3: Transpose of a matrix, symmetry and anti-symmetry

(a) An explicit example for a matrix and its transpose is

A =

⇤

⇧
1 3
2 �1
0 4

⌅

⌃ , AT =

�
1 2 0
3 �1 4

⇥
(3.26)

Note that, for non-quadratic matrices, the transpose changes the “shape” of the matrix. While A above
is a 3⇥ 2 matrix defining a linear map A : R2 ⇤ R3, its transpose is a 2⇥ 3 matrix which defines a linear
map AT : R3 ⇤ R2.

(b) Simple 2⇥ 2 examples for symmetric and anti-symmetric matrices are

Asymm =

�
1 2
2 �3

⇥
, Aanti�symm =

�
0 4

�4 0

⇥
(3.27)

Finally, a combination of the previous two operations is the hermitian conjugate A† : Fn ⇤ Fm of a
matrix A : Fm ⇤ Fn which leads to an m ⇥ n matrix obtained by taking the complex conjugate of the
transpose of A, that is, A† := (AT )⇥. For matrices with only real entries, hermitian conjugation is of
course the same as transposition. A matrix A is said to be hermitian if the matrix is invariant under
hermitian conjugation, that is, A = A†, and anti-hermitian if A = �A†.
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Bherm =

✓
2 3 + 4i

3� 4i 1

◆
, Banti�herm =

✓
2i 2� 5i

�2� 5i �i

◆

Rank of a matrix:

3.2.2 Rank of a matrix

Previously, we have defined the rank of a linear map as the dimension of its image. Since every matrix
defines a linear map we can, therefore, talk about the rank of a matrix. Can we be more specific about
what the rank of a matrix is and how it can be determined?

Consider an n ⇥ m matrix A : Fm ⇤ Fn with columns A1, · · · ,Am, and a vector v ⌅ Fm with
components vi. The image of v under the action of A can then be written as

Av =
m⌦

i=1

viA
i , (3.28)

and is hence given by a linear combination of the column vectors Aj with the coe⇥cients equal to the
components of v. This observation tells us that

Im(A) = Span(A1, · · · ,Am) , (3.29)

so the image of the matrix is spanned by its column vectors. For the rank of the matrix this implies that

rk(A) = dimSpan(A1, · · · ,Am) = maximal number of lin. indep. column vectors of A . (3.30)

For obvious reasons this is also sometimes called the column rank of the matrix A. This terminology
suggests we can also define the row rank of the matrix A as the maximal number of linearly independent
row vectors of A. Having two types of ranks available for a matrix seems awkward but fortunately we
have the following

Theorem 3.3. Row and column rank are equal for any matrix.

Proof. Suppose one row, say A1, of a matrix A can be written as a linear combination of the others.
Then, by dropping A1 from A we arrive at a matrix with one less row, but its row rank unchanged from
that of A. The key observation is that the column rank also remains unchanged under this operation.
This can be seen as follows. Write

A1 =
n⌦

j=2

�jAj , � =

⇤

⌥⇧
�2
...
�n

⌅

�⌃

with some coe⇥cients �2, . . . ,�n which we have arranged into the vector �. Further, let us write the
column vectors of A as

Ai =

�
ai
bi

⇥
,

that is, we split o� the entries in the first row, denoted by ai, from the entries in the remaining n� 1 rows
which are contained in the vectors bi. It follows that ai = A1i = (A1)i =

 n
j=2 �jAji =

 n
j=2 �j(Ai)j =

� · bi, so that the column vectors can also be written as

Ai =

�
� · bi

bi

⇥
,

Hence, the entries in the first row are not relevant for the linear independence of the column vectors Ai -
merely using the vectors bi will lead to the same conclusions for linear independence. As a result we can
drop a linearly dependent row without changing the row and the column rank of the matrix. Clearly, an
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Note: Row rank equals column rank for any matrix.

Rank of a matrix by inspection

=) rk(A) = 2

A1 , A2 lin. indep. and A3 = A1 +A2A =

0

@
�1 2 1
4 �3 1
3 �1 2

1

A



Matrix multiplication: 

whereA is the matrix with components aij , these being the coe�cients which appear in the parametrization
of the images (3.32). We have therefore succeeded in expressing the action of our arbitrary linear map f
in terms of a matrix and we conclude that all linear maps between column vectors are given by matrices.
We summarize this in the following

Lemma 3.3. Every linear map f : Fm ⌅ Fn can be written in terms of an n ⇥m matrix A, such that
f(v) = Av for all v ⇧ Fm. If f(ei) =

↵n
i=1 aij ẽi for the standard unit vector ei of Fm and ẽi of Fn, then

aij are the entries of A.

3.2.4 Matrix multiplication

We have seen earlier that the composition of linear maps is again linear and we have just shown that all
linear maps between column vectors are matrices. Hence, the composition of two matrices must again be
a matrix. To work this out more explicitly, we start with an n⇥m matrix A and r ⇥ n matrix B which

generate linear maps according to the chain Fm A�⌅ Fn B�⌅ F r. We would like to determine the matrix
C which describes the composite map B ⇤A : Fm ⌅ F r. By a straightforward computation we find

(B(Av))i =
n�

j=1

Bij(Av)j =
n�

j=1

⇤
m�

k=1

BijAjk

⌅

✏ �� ⇣
Cik

vk
!
=

m�

k=1

Cikvk = (Cv)i (3.35)

so that the components Cij of C are given by

Cik =
n�

j=1

BijAjk = Bi ·Ak (3.36)

This equation represents the component version of what we refer to as matrix multiplication. We obtain
the entries of the new matrix C - which corresponds to the composition of B and A - by performing the
summating over the entries of B and A as indicated in the middle of (3.36) or, equivalently, by dotting
the columns of A into the rows of B, as indicated on the RHS of (3.36). In matrix notation this can also
be written as

C = BA :=

⇧

 ⌥
B1 ·A1 · · · B1 ·Am

...
...

Br ·Am · · · Br ·Am

⌃

⌦� . (3.37)

Note that the product of the r⇥n matrix B with the n⇥m matrix A results in the r⇥m matrix C = BA.
The important conclusion is that composition of matrices - in their role as linear maps - is accomplished
by matrix multiplication.

We should discuss some properties of matrix multiplication. First note that the matrix product BA
only makes sense if “sizes fit”, that is, if A has as many rows as B columns - otherwise the dot products
in (3.37) do not make sense. This consistency condition is of course a direct consequence of the role of
matrices as linear maps. The maps B and A can only be composed to BA if the co-domain of A has the
same dimension as the domain of B. Let us illustrate this with the following

Example 3.5: Matrix multiplication

Consider the two matrices

B =

�
1 0 �1
2 3 �2

⇥
, A =

⇧

⌥
0 1 1
2 0 1
1 �1 1

⌃

� (3.38)
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whereA is the matrix with components aij , these being the coe�cients which appear in the parametrization
of the images (3.32). We have therefore succeeded in expressing the action of our arbitrary linear map f
in terms of a matrix and we conclude that all linear maps between column vectors are given by matrices.
We summarize this in the following

Lemma 3.3. Every linear map f : Fm ⌅ Fn can be written in terms of an n ⇥m matrix A, such that
f(v) = Av for all v ⇧ Fm. If f(ei) =

↵n
i=1 aij ẽi for the standard unit vector ei of Fm and ẽi of Fn, then

aij are the entries of A.

3.2.4 Matrix multiplication

We have seen earlier that the composition of linear maps is again linear and we have just shown that all
linear maps between column vectors are matrices. Hence, the composition of two matrices must again be
a matrix. To work this out more explicitly, we start with an n⇥m matrix A and r ⇥ n matrix B which

generate linear maps according to the chain Fm A�⌅ Fn B�⌅ F r. We would like to determine the matrix
C which describes the composite map B ⇤A : Fm ⌅ F r. By a straightforward computation we find

(B(Av))i =
n�

j=1

Bij(Av)j =
n�

j=1

⇤
m�

k=1

BijAjk

⌅

✏ �� ⇣
Cik

vk
!
=

m�

k=1

Cikvk = (Cv)i (3.35)

so that the components Cij of C are given by

Cik =
n�

j=1

BijAjk = Bi ·Ak (3.36)

This equation represents the component version of what we refer to as matrix multiplication. We obtain
the entries of the new matrix C - which corresponds to the composition of B and A - by performing the
summating over the entries of B and A as indicated in the middle of (3.36) or, equivalently, by dotting
the columns of A into the rows of B, as indicated on the RHS of (3.36). In matrix notation this can also
be written as

C = BA :=

⇧

 ⌥
B1 ·A1 · · · B1 ·Am

...
...

Br ·Am · · · Br ·Am

⌃

⌦� . (3.37)

Note that the product of the r⇥n matrix B with the n⇥m matrix A results in the r⇥m matrix C = BA.
The important conclusion is that composition of matrices - in their role as linear maps - is accomplished
by matrix multiplication.

We should discuss some properties of matrix multiplication. First note that the matrix product BA
only makes sense if “sizes fit”, that is, if A has as many rows as B columns - otherwise the dot products
in (3.37) do not make sense. This consistency condition is of course a direct consequence of the role of
matrices as linear maps. The maps B and A can only be composed to BA if the co-domain of A has the
same dimension as the domain of B. Let us illustrate this with the following

Example 3.5: Matrix multiplication

Consider the two matrices

B =

�
1 0 �1
2 3 �2

⇥
, A =

⇧

⌥
0 1 1
2 0 1
1 �1 1

⌃

� (3.38)
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associative,                   , but in general not commutative. 

of sizes 2⇥ 3 and 3⇥ 3, respectively. Dotting the column vectors of A into the rows of B we can compute
their product

BA =

�
1 0 �1
2 3 �2

⇥⇤

⇧
0 1 1
2 0 1
1 �1 1

⌅

⌃ =

�
�1 2 0
4 4 3

⇥
, (3.39)

a 2 ⇥ 3 matrix. Note, however, that the product AB is ill-defined since B has two rows but A has 3
columns.

Matrix multiplication is associative, so

A(BC) = (AB)C . (3.40)

This is a direct consequence of the associativity of map composition (see the discussion around Eq. (3.1))
but can also be verified directly from the definition of matrix multiplication. This is most easily done in
index notation (using Eq. (3.36)) which gives

(A(BC))ij = Aik(BC)kj = AikBklClj = (AB)ilClj = ((AB)C)ij . (3.41)

However, matrix multiplication is not commutative, that is, typically, AB ⇤= BA. The “degree of non-
commutativity” of two matrices is often measured by the commutator defined as

[A,B] := AB �BA (3.42)

Evidently, the matrices A, B commute if and only if [A,B] = 0.

Example 3.6: Non-commutativity of matrix product

(a) Consider the two matrices

A =

�
1 2

�1 0

⇥
, B =

�
3 �1
0 2

⇥
(3.43)

By straightforward computation we have

AB =

�
1 2

�1 0

⇥�
3 �1
0 2

⇥
=

�
3 0

�3 1

⇥
, BA =

�
3 �1
0 2

⇥�
1 2

�1 0

⇥
=

�
2 6
2 0

⇥
, (3.44)

so that indeed AB ⇤= BA.

(b) Note that matrices with a specific structure may still commute. For example, it is easy to check that
the matrices

A =

�
a b
b a

⇥
, B =

�
c d
d c

⇥
(3.45)

for arbitrary real numbers a, b, c, d satisfy [A,B] = 0.

What is the relation between multiplication and transposition of matrices? The answer is

(AB)T = BTAT . (3.46)
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n⇥mr ⇥ nr ⇥m

3⇥ 3

whereA is the matrix with components aij , these being the coe�cients which appear in the parametrization
of the images (3.32). We have therefore succeeded in expressing the action of our arbitrary linear map f
in terms of a matrix and we conclude that all linear maps between column vectors are given by matrices.
We summarize this in the following

Lemma 3.3. Every linear map f : Fm ⌅ Fn can be written in terms of an n ⇥m matrix A, such that
f(v) = Av for all v ⇧ Fm. If f(ei) =

↵n
i=1 aij ẽi for the standard unit vector ei of Fm and ẽi of Fn, then

aij are the entries of A.

3.2.4 Matrix multiplication

We have seen earlier that the composition of linear maps is again linear and we have just shown that all
linear maps between column vectors are matrices. Hence, the composition of two matrices must again be
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generate linear maps according to the chain Fm A�⌅ Fn B�⌅ F r. We would like to determine the matrix
C which describes the composite map B ⇤A : Fm ⌅ F r. By a straightforward computation we find

(B(Av))i =
n�

j=1

Bij(Av)j =
n�

j=1

⇤
m�

k=1

BijAjk

⌅

✏ �� ⇣
Cik

vk
!
=

m�

k=1

Cikvk = (Cv)i (3.35)

so that the components Cij of C are given by

Cik =
n�

j=1

BijAjk = Bi ·Ak (3.36)

This equation represents the component version of what we refer to as matrix multiplication. We obtain
the entries of the new matrix C - which corresponds to the composition of B and A - by performing the
summating over the entries of B and A as indicated in the middle of (3.36) or, equivalently, by dotting
the columns of A into the rows of B, as indicated on the RHS of (3.36). In matrix notation this can also
be written as

C = BA :=

⇧

 ⌥
B1 ·A1 · · · B1 ·Am

...
...

Br ·Am · · · Br ·Am

⌃

⌦� . (3.37)

Note that the product of the r⇥n matrix B with the n⇥m matrix A results in the r⇥m matrix C = BA.
The important conclusion is that composition of matrices - in their role as linear maps - is accomplished
by matrix multiplication.

We should discuss some properties of matrix multiplication. First note that the matrix product BA
only makes sense if “sizes fit”, that is, if A has as many rows as B columns - otherwise the dot products
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same dimension as the domain of B. Let us illustrate this with the following

Example 3.5: Matrix multiplication

Consider the two matrices

B =

�
1 0 �1
2 3 �2

⇥
, A =

⇧

⌥
0 1 1
2 0 1
1 �1 1

⌃

� (3.38)
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of sizes 2⇥ 3 and 3⇥ 3, respectively. Dotting the column vectors of A into the rows of B we can compute
their product

BA =

�
1 0 �1
2 3 �2

⇥⇤

⇧
0 1 1
2 0 1
1 �1 1

⌅

⌃ =

�
�1 2 0
4 4 3

⇥
, (3.39)

a 2 ⇥ 3 matrix. Note, however, that the product AB is ill-defined since B has two rows but A has 3
columns.

Matrix multiplication is associative, so

A(BC) = (AB)C . (3.40)

This is a direct consequence of the associativity of map composition (see the discussion around Eq. (3.1))
but can also be verified directly from the definition of matrix multiplication. This is most easily done in
index notation (using Eq. (3.36)) which gives

(A(BC))ij = Aik(BC)kj = AikBklClj = (AB)ilClj = ((AB)C)ij . (3.41)

However, matrix multiplication is not commutative, that is, typically, AB ⇤= BA. The “degree of non-
commutativity” of two matrices is often measured by the commutator defined as

[A,B] := AB �BA (3.42)

Evidently, the matrices A, B commute if and only if [A,B] = 0.
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⇥
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⇥
(3.43)
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⇥�
3 �1
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⇥
=

�
3 0

�3 1

⇥
, BA =

�
3 �1
0 2

⇥�
1 2

�1 0

⇥
=

�
2 6
2 0

⇥
, (3.44)

so that indeed AB ⇤= BA.

(b) Note that matrices with a specific structure may still commute. For example, it is easy to check that
the matrices

A =

�
a b
b a

⇥
, B =

�
c d
d c

⇥
(3.45)

for arbitrary real numbers a, b, c, d satisfy [A,B] = 0.

What is the relation between multiplication and transposition of matrices? The answer is

(AB)T = BTAT . (3.46)
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so that indeed AB ⇤= BA.

(b) Note that matrices with a specific structure may still commute. For example, it is easy to check that
the matrices

A =
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⇥
, B =
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c d
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for arbitrary real numbers a, b, c, d satisfy [A,B] = 0.

What is the relation between multiplication and transposition of matrices? The answer is

(AB)T = BTAT . (3.46)
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Matrix inverse: 

Note the change of order on the RHS! A proof of this relation is most easily accomplished in index notation:

�
(AB)T

⇥
ij
= (AB)ji = AjkBki = BkiAjk = (BT )ik(A

T )kj = (BTAT )ij . (3.47)

For the complex conjugation of a matrix product we have of course (AB)⇥ = A⇥B⇥, so together with
Eq. (3.46) this means for the hermitian conjugate that

(AB)† = B†A† . (3.48)

Finally, using matrix terminology, we can think of vectors in a slightly di�erent way. A column vector v
with components v1, . . . , vm can also be seen as an m� 1 matrix and the action Av of an n�m matrix A
on v as a matrix multiplication. The transpose, vT = (v1, . . . , vm) is an m dimensional row vector and,
hence, the dot product of two m-dimensional (column) vectors v and w can also be written as

v ·w = vTw , (3.49)

that is, as a matrix product between the 1�m matrix vT and the m� 1 matrix w.

3.2.5 The inverse of a matrix

Recall from Claim 3.1, that a linear map f : V ⇥ W can only have an inverse if dim(V ) = dim(W ).
Hence, for a matrix A : Fm ⇥ Fn to have an inverse it must be quadratic, so that n = m. Focusing
on quadratic n � n matrices A we further know from Claim 3.1 that we have an inverse precisely when
rk(A) = n, that is, when the rank of A is maximal. In this case, the inverse of A, denoted A�1, is the
unique linear map (and, therefore, also a matrix) satisfying

AA�1 = A�1A = n . (3.50)

Note that this is just the general Definition (3.4) of an inverse map applied to a matrix, using the fact
that matrices correspond to linear maps and map composition corresponds to matrix multiplication. We
summarize the properties of the matrix inverse in the following

Lemma 3.4. (Properties of matrix inverse) A quadratic n � n matrix A is invertible if and only if its
rank is maximal, that is, i� rk(A) = n. If A, B are two invertible n� n matrices we have

(a) The inverse matrix, denoted A�1, is the unique matrix satisfying AA�1 = A�1A = n.
(b) (AB)�1 = B�1A�1

(c) ((A)�1)�1 = A
(d) (AT )�1 = (A�1)T

Proof. (a) This has already been shown above.
(b) (c) These are direct consequences of the corresponding properties (3.2), (3.3) for general maps.
(d) By transposing A�1A = AA�1 = , using Eq. (3.46), it follows that AT (A�1)T = (A�1)TAT = .
On the other hand, from the definition of the inverse for AT , we have AT (AT )�1 = (AT )�1AT = .
Comparing the two equations shows that both (A�1)T and (AT )�1 provide an inverse for AT and, hence,
from the uniqueness of the inverse, they must be equal.

Application: Matrices in cryptography

Matrices can be used for encryption. Here is a basic example for how this works. Suppose we would like to
encrypt the text: ”linear�algebra�”. First, we translate this text into numerical form using the simple
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row operations: 

code �⇤ 0, a ⇤ 1, b ⇤ 2, · · · and then we split the resulting sequence of numbers into blocks of the same
size. Here we use blocks of size three for definiteness. Next, we arrange these numbers into a matrix, with
each block forming a column of the matrix. For our sample text this results in

T =

�

⇤
12 5 0 7 18
9 1 1 5 1

14 18 12 2 0

⇥

⌅ for
l e � g r

i a a e a

n r l b �

.

So far, this is relatively easy to decode, even if we had decided to permute the assignment of letters to
numbers. As long as same letters are represented by same numbers, the code can be deciphered by a
frequency analysis, at least for a su⇥ciently long text. To do this, the relative frequency of each number
is determined and compared with the typical frequency with which letters appear in the English language.
Matching similar frequencies leads to the key.

For a more sophisticated encryption, define a quadratic “encoding” matrix whose size equals the length
of the blocks, so a 3⇥ 3 matrix for our case. Basically, the only other restriction on this matrix is that it
should be invertible. For our example, let us choose

A =

�

⇤
�1 1 1
2 0 �1

�2 1 1

⇥

⌅

To encode the text, carry out the matrix multiplication

Tenc = AT =

�

⇤
�1 1 1
2 0 �1

�2 1 1

⇥

⌅

�

⇤
12 5 0 7 18
9 1 1 5 1

14 18 12 2 0

⇥

⌅ =

�

⇤
�7 12 11 �10 �19
10 �8 �12 12 36
�1 9 13 �7 �35

⇥

⌅

Note that in Tenc same letters are now represented by di�erent numbers. For example, the letter “a" which
appears three times, and corresponds to the three 1’s in T , is represented by three di�erent numbers in
Tenc. Without knowledge of the encoding matrix A it is quite di⇥cult to decypher Tenc, particularly for
large block sizes. The legitimate receiver of the text should be provided with the inverse A�1 of the
encoding matrix, for our example given by

A�1 =

�

⇤
1 2 1
0 1 1
2 3 2

⇥

⌅

and can then recover the message by the simply matrix multiplication

T = A�1Tenc .

3.3 Row/column operations, Gaussian elimination

We should now develop more systematic, algorithmic methods to compute properties of matrices. At the
heart of these methods are elementary row operations which are defined as follows.

Definition 3.7. The following manipulations of a matrix are called elementary row operations.

(R1) Exchange two rows.
(R2) Add a multiple of one row to another.
(R3) Multiply a row with a non-zero scalar.

Analogous definitions hold for elementary column operations.
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upper echelon form: 

For definiteness, we will focus on elementary row operations but most of our statements have analogues for
elementary column operations. As we will see, elementary row operations will allow us to devise methods
to compute the rank and the inverse of matrices and, later on, to formulate a general algorithm to solve
linear systems of equations.

A basic but important observation about elementary row operations (which is indeed the main mo-
tivation for defining them) is that they do not change the span of the matrix row vectors. Recall that
the rank of a matrix is given by the maximal number of linearly independent row (or column) vectors.
Hence, the rank of a matrix is also unchanged under elementary row operations. This suggests a possible
strategy to compute the rank of a matrix: By a succession of elementary row operations, we should bring
the matrix into a (simpler) form where the rank can easily be read o�. Suppose a matrix has the form

A =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

· · · a1j1 ⇤

a2j2
...

. . .
... arjr · · ·

0
...

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

where the entries aiji are non-zero for all i = 1, . . . , r, all other entries above the solid line are arbitrary
(indicated by the ⇤) and all entries below the solid line are zero. This form of a matrix is called (upper)
echelon form. Clearly, the first r row vectors in this matrix are linearly independent and, hence, the rank
of a matrix in upper echelon form can be easily read o� and is given by

rk(A) = r = (number of steps in upper echelon form) . (3.51)

The important fact is that every matrix can be brought into upper echelon form by a sequence of elementary
row operations. This works as follows.

Algorithm to bring matrix into upper echelon form

We consider an n⇥m matrix. The algorithm proceeds row by row. Let us assume that we have already
dealt with the first i� 1 rows of the matrix. Then, for the ith row we should carry out three steps.

(1) Find the leftmost column j which has at least one non-zero entry in rows i, . . . , n.

(2) If the (i, j) entry is zero exchange row i with one of the rows i + 1, . . . , n (the one which contains
the non-zero entry identified in step 1) so that the new (i, j) entry is non-zero.

(3) Subtract suitable multiples of row i from all rows i+1, . . . , n such that all entries (i+1, j), . . . , (n, j)
in column j and below row i vanish.

Continue with the next row until no more non-zero entries can be found in step 1.

This procedure of bringing a matrix into its upper echelon form using elementary row operations is
called Gaussian elimination (sometimes also referred to as row reduction). In summary, our procedure to
compute the rank of a matrix involves, first, to bring the matrix into upper echelon form using Gaussian
elimination and then to read o� the rank from the number of steps in the upper echelon form. This is
probably best explained with an example.

Example 3.7: Gaussian elimination and rank of a matrix
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Hence, the rank of a matrix is also unchanged under elementary row operations. This suggests a possible
strategy to compute the rank of a matrix: By a succession of elementary row operations, we should bring
the matrix into a (simpler) form where the rank can easily be read o�. Suppose a matrix has the form

A =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

· · · a1j1 ⇤

a2j2
...

. . .
... arjr · · ·

0
...

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

where the entries aiji are non-zero for all i = 1, . . . , r, all other entries above the solid line are arbitrary
(indicated by the ⇤) and all entries below the solid line are zero. This form of a matrix is called (upper)
echelon form. Clearly, the first r row vectors in this matrix are linearly independent and, hence, the rank
of a matrix in upper echelon form can be easily read o� and is given by

rk(A) = r = (number of steps in upper echelon form) . (3.51)

The important fact is that every matrix can be brought into upper echelon form by a sequence of elementary
row operations. This works as follows.

Algorithm to bring matrix into upper echelon form

We consider an n⇥m matrix. The algorithm proceeds row by row. Let us assume that we have already
dealt with the first i� 1 rows of the matrix. Then, for the ith row we should carry out three steps.

(1) Find the leftmost column j which has at least one non-zero entry in rows i, . . . , n.

(2) If the (i, j) entry is zero exchange row i with one of the rows i + 1, . . . , n (the one which contains
the non-zero entry identified in step 1) so that the new (i, j) entry is non-zero.

(3) Subtract suitable multiples of row i from all rows i+1, . . . , n such that all entries (i+1, j), . . . , (n, j)
in column j and below row i vanish.

Continue with the next row until no more non-zero entries can be found in step 1.

This procedure of bringing a matrix into its upper echelon form using elementary row operations is
called Gaussian elimination (sometimes also referred to as row reduction). In summary, our procedure to
compute the rank of a matrix involves, first, to bring the matrix into upper echelon form using Gaussian
elimination and then to read o� the rank from the number of steps in the upper echelon form. This is
probably best explained with an example.

Example 3.7: Gaussian elimination and rank of a matrix
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For n⇥ n matrix A
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Rank of a matrix by Gaussian elimination

Consider the 3⇥ 3 matrix

A =

⇤

⇧
0 1 �1
2 3 �2
2 1 0

⌅

⌃ .

Then, Gaussian elimination amounts to
⇤

⇧
0 1 �1
2 3 �2
2 1 0

⌅

⌃ R1⇤R3

����⇤

⇤

⇧
2 1 0
2 3 �2
0 1 �1

⌅

⌃ R2⇥R2�R1

�������⇤

⇤

⇧
2 1 0
0 2 �2
0 1 �1

⌅

⌃
R3⇥R3�R2/3
���������⇤

⇤

⇧
2 1 0
0 2 �2
0 0 0

⌅

⌃

We have indicated the row operation from one step to the next above the arrow, referring to the ith row
by Ri. The final matrix is in upper echelon form. There are two steps so that rk(A) = 2.

A neat and very useful fact about elementary row operations is that they can be generated by multiplying
with certain, specific matrices from the left. In other words, to perform a row operation on a matrix A, we
can find a suitable matrix P such that the row operation is generated by A ⇤ PA. For example, consider
a simple 2⇥ 2 case where

A =

�
a b
c d

⇥
, P =

�
1 �
0 1

⇥
. (3.52)

Then

PA =

�
1 �
0 1

⇥�
a b
c d

⇥
=

�
a+ �c b+ �d

c d

⇥
. (3.53)

Evidently, multiplication with the matrix P from the left has generated the elementary row operation
R1 ⇤ R1 + �R2 on the arbitrary 2 ⇥ 2 matrix A. This works in general and the appropriate matrices,
generating the three types of elementary row operations in Def. 3.7, are given by

P (I)
Ri⇤Rj

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

1
. . .

1
0 1 ith row

. . .

1 0 jth row
1

. . .

1

⌅

������������⌃

P (III)
Ri⇥�Ri

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⇧

1
. . .

1
� ith row

1
. . .

ith col 1

⌅

��������⌃

P (II)
Ri⇥Ri+�Rj

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

1
. . .

1 · · · � ith row
. . .

...
1

. . .

jth col 1

⌅

���������⌃

. (3.54)

This means we can bring a matrix A into upper echelon form by matrix multiplications P1 · · ·PkA where
the matrices P1, . . . , Pk are suitably chosen from the above list. Note that all the above matrices are
invertible. This is clear, since we can always “undo” an elementary row operations by the inverse row
operation or, alternatively, it can be seen directly from the above matrices. The matrices P (II) and
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The important fact is that every matrix can be brought into upper echelon form by a sequence of elementary
row operations. This works as follows.

Algorithm to bring matrix into upper echelon form

We consider an n⇥m matrix. The algorithm proceeds row by row. Let us assume that we have already
dealt with the first i� 1 rows of the matrix. Then, for the ith row we should carry out three steps.

(1) Find the leftmost column j which has at least one non-zero entry in rows i, . . . , n.

(2) If the (i, j) entry is zero exchange row i with one of the rows i + 1, . . . , n (the one which contains
the non-zero entry identified in step 1) so that the new (i, j) entry is non-zero.

(3) Subtract suitable multiples of row i from all rows i+1, . . . , n such that all entries (i+1, j), . . . , (n, j)
in column j and below row i vanish.

Continue with the next row until no more non-zero entries can be found in step 1.

This procedure of bringing a matrix into its upper echelon form using elementary row operations is
called Gaussian elimination (sometimes also referred to as row reduction). In summary, our procedure to
compute the rank of a matrix involves, first, to bring the matrix into upper echelon form using Gaussian
elimination and then to read o↵ the rank from the number of steps in the upper echelon form. This is
probably best explained with an example.

Example 3.8: Gaussian elimination and rank of a matrix

Consider the 3⇥ 3 matrix

A =

0

@
0 1 �1
2 3 �2
2 1 0

1

A .

Then, Gaussian elimination amounts to

0

@
0 1 �1
2 3 �2
2 1 0

1

A R1$R3����!
0

@
2 1 0
2 3 �2
0 1 �1

1

A R2!R2�R1�������!
0

@
2 1 0
0 2 �2
0 1 �1

1

A
R3!R3�R2/2���������!

0

@
2 1 0
0 2 �2
0 0 0

1

A

We have indicated the row operation from one step to the next above the arrow, referring to the ith row
by R

i

. The final matrix is in upper echelon form. There are two steps so that rk(A) = 2.

A neat and very useful fact about elementary row operations is that they can be generated by multiplying
with certain, specific matrices from the left. In other words, to perform a row operation on a matrix A, we
can find a suitable matrix P such that the row operation is generated by A ! PA. For example, consider
a simple 2⇥ 2 case where

A =

✓
a b
c d

◆
, P =

✓
1 �
0 1

◆
. (3.60)

Then

PA =

✓
1 �
0 1

◆✓
a b
c d

◆
=

✓
a+ �c b+ �d

c d

◆
. (3.61)
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Our next task is to devise an algorithm to compute the inverse of a matrix, using elementary row opera-
tions. The basic observation is that every quadratic, invertible n⇥ n matrix A can be converted into the
unit matrix n by a sequence of row operations. Schematically, this works as follows:

A
echelon form

���������⇧

⇤

⌥⌥⌥⇧

a⇥11 ⇤
a⇥22

. . .

0 a⇥nn

⌅

���⌃
(R1), (R2)
�������⇧

⇤

⌥⌥⌥⇧

a⇥11 0
a⇥22

. . .

0 a⇥nn

⌅

���⌃
(R3)
���⇧

⇤

⌥⇧
1 0

. . .

0 1

⌅

�⌃ = n

In the first step, we bring A into upper echelon form, by the algorithm already discussed. At this point
we can read o� the rank of the matrix. If rk(A) < n the inverse does not exist and we can stop. On the
other hand, if rk(A) = n then all diagonal entries a⇥ii in the upper echelon form must be non-zero (or else
we would not have n steps). This means, in a second step, we can make all entries above the diagonal
zero. We start with the last column and subtract suitable multiples of the last row from the others until
all entries in the last column except a⇥nn are zero. We proceed in a similar way, column by column from
the right to the left, using row operations of type (R1) and (R2). In this way we arrive at a diagonal
matrix, with diagonal entries a⇥ii ⌥= 0 which, in the final step, can be converted into the unit matrix by
row operations of type (R3).

This means we can find a set of matrices P1, . . . , Pk of the type (3.54), generating the appropriate
elementary row operations, such that

n = P1 · · ·Pk↵ ⌦ �
A�1

A ⌃ A�1 = P1 · · ·Pk n . (3.55)

These equations imply an explicit algorithm to compute the inverse of a square matrix. We convert A
into the unit matrix n using elementary row operations as described above, and then simply carry out
the same operations on n in parallel. When we are done the unit matrix will have been converted into
A�1. Again, we illustrate this procedure by means of an example.

Example 3.8: Computing the inverse of a matrix with row operations

A =

�
1 0 �2
0 3 �2
1 �4 0

⇥

3 =

�
1 0 0
0 1 0
0 0 1

⇥

R3 ⇧ R3 �R1 :

�
1 0 �2
0 3 �2
0 �4 2

⇥ �
1 0 0
0 1 0

�1 0 1

⇥

R3 ⇧ R3 +
4

3
R2 :

�
1 0 �2
0 3 �2
0 0 � 2

3

⇥
⌅ rk(A) = 3

�
1 0 0
0 1 0

�1 4
3 1

⇥

R2 ⇧ R2 � 3R3 :

�
1 0 �2
0 3 0
0 0 � 2

3

⇥ �
1 0 0
3 �3 �3

�1 4
3 1

⇥

R1 ⇧ R1 � 3R3 :

�
1 0 0
0 3 0
0 0 � 2

3

⇥ �
4 �4 �3
3 �3 �3

�1 4
3 1

⇥

R2 ⇧
R2

3
:

�
1 0 0
0 1 0
0 0 � 2

3

⇥ �
4 �4 �3
1 �1 �1

�1 4
3 1

⇥

R3 ⇧ �3

2
R3 :

�
1 0 0
0 1 0
0 0 1

⇥
= 3

�
4 �4 �3
1 �1 �1
3
2 �2 � 3

2

⇥
= A�1
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Relation between linear maps and matrices:

Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then

B

�
1
8

⇥
=

�
1

�16

⇥

⌅ ⌅

B�
�

3
2

⇥
=

�
�5
�6

⇥ (3.66)
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Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then

B

�
1
8

⇥
=

�
1

�16

⇥

⌅ ⌅

B�
�

3
2

⇥
=

�
�5
�6

⇥ (3.66)
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Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then

B

�
1
8

⇥
=

�
1

�16

⇥

⌅ ⌅

B�
�

3
2

⇥
=

�
�5
�6

⇥ (3.66)
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A = (aij)describes f

Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then

B

�
1
8

⇥
=

�
1

�16

⇥

⌅ ⌅

B�
�

3
2

⇥
=

�
�5
�6

⇥ (3.66)
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: R2 ! R2

Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then

B

�
1
8

⇥
=

�
1

�16

⇥

⌅ ⌅

B�
�

3
2

⇥
=

�
�5
�6

⇥ (3.66)
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Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-

clusion. To find the matrix A which represents a linear map relative to a basis, compute the images f(vj)
of the (domain) basis vectors and write them as a linear combinations of the (co-domain) basis vectors
wi, as in Eq. (3.57). The coe�cients in these linear combinations form the matrix A. More precisely, by
careful inspection of the indices in Eq. (3.57), it follows that the coe�cients which appear in the image of
the jth basis vector form the jth column of the matrix A. We summarize these conclusions in

Lemma 3.5. Let f : V ⇤ W be a linear map, v1, . . . ,vn a basis of V and w1, . . . ,wm a basis of W . The
entries aij of the m ⇥ n matrix A which describes this linear map relative to this choice of basis can be
read o� from the images of the basis vectors as

f(vj) =
m⇤

i=1

aijwi . (3.61)

The relation between linear maps and matrices is a key fact of linear algebra which we would like to
illustrate with two examples.

Example 3.9: Relation between linear maps and matrices

(a) Consider the linear map B : R2 ⇤ R2 defined by the matrix

B =

�
1 0
0 �2

⇥
. (3.62)

For simplicity, we choose the same basis for the domain and the co-domain, namely v1 = w1 = (1, 2)T

and v2 = w2 = (�1, 1)T . Then, the images of the basis vector under B, written as linear combinations of
the same basis, are

Bv1 =

�
1

�4

⇥
= �1v1 � 2v2 , Bv2 =

�
�1
�2

⇥
= �1v1 + 0v2 . (3.63)

Arranging the coe�cients from Bv1 into the first column of a matrix and the coe�cients from Bv2 into
the second column we find

B� =

�
�1 �1
�2 0

⇥
. (3.64)

This is the matrix representing the linear map B relative to the basis {v1,v2}. It might be useful to be
explicit about what exactly this means. Write an arbitrary 2-dimensional vector as

�
x
y

⇥
= x�v1 + y�v2 =

�
x� � y�

2x� + y�

⇥
(3.65)

so that a vector (x, y)T is described, relative to the basis {v1,v2}, by the coordinate vector (x�, y�)T .
Consider the example (x, y) = (1, 8) with associated coordinate vector (x�, y�) = (3, 2). Then
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Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-
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Comparing with Lemma 3.3 it follows that aij are the entries of the desired matrix A.
While this discussion might have been somewhat abstract it has a simple and practically useful con-
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=) describes B relative to {v1,v2}

vector spaces is a straightforward generalization.) The two sets of basis vectors, coordinate maps and
representing matrices are then denoted by

basis of V coordinate map coordinate vector representing matrix

v1, ...,vn ⇥(�) =
n⇤

i=1
�ivi � = (�1, . . . ,�n)T A

v⇥
1, ...,v

⇥
n ⇥⇥(�⇥) =

n⇤
i=1

�⇥
iv

⇥
i �⇥ = (�⇥

1, . . . ,�
⇥
n)

T A⇥

(3.69)

We would like to find the relationship between A and A’, that is, between the representing matrices for
f relative to the unprimed and the primed basis. From Eq. (3.59) we know that the two matrices can be
written as A = ⇥�1 ⇥ f ⇥ ⇥ and A⇥ = ⇥⇥�1 ⇥ f ⇥ ⇥⇥.

A⇥ = ⇥⇥�1 ⇥ f ⇥ ⇥⇥ = ⇥⇥�1 ⇥ ⇥ ⇥ ⇥�1 ⇥ f ⇥ ⇥ ⇥ ⇥�1 ⇥ ⇥⇥

= ⇥⇥�1 ⇥ ⇥⌥ ⌃⇧ �
=: P

⇥⇥�1 ⇥ f ⇥ ⇥⌥ ⌃⇧ �
= A

⇥⇥�1 ⇥ ⇥⇥
⌥ ⌃⇧ �
= P�1

= PAP�1 (3.70)

Note that all we have done is to insert two identity maps, ⇥ ⇥ ⇥�1, in the second step and then combined
maps di�erently in the third step. What is the interpretation of P = ⇥⇥�1 ⇥ ⇥? For coordinate vectors �
and �⇥ which correspond to the same vector we have

⇥⇥(�⇥) =
⌅

i

�⇥
iv

⇥
i =

⌅

i

�ivi = ⇥(�) . (3.71)

Composing this equation from the left with ⇥⇥�1⇥ it follow that

�⇥ = P� . (3.72)

Hence, P converts unprimed coordinate vectors � into the corresponding primed coordinate vector �⇥

and, as a linear map between column vector, it is a matrix. In short, P describes the change of basis
under consideration. The corresponding transformation of the representing matrix under this basis change
is then

A⇥ = PAP�1 . (3.73)

This is one of the key equations of linear algebra. For example, we can ask if we can choose a basis
for which the representing matrix is particularly simple. Eq. (3.73) is the starting point for answering
this question to which we will return later. Note that Eq. (3.73) makes intuitive sense. Acting with
the equation on a primed coordinate vector �⇥, the first we obtain on the RHS is P�1�⇥. This is the
corresponding unprimed coordinate vector on which the matrix A can sensibly act, thereby converting it
into another unprimed coordinate vector. The final action of P converts this back into a primed coordinate
vector. Altogether, this is the action of the matrix A⇥ on �⇥ as required by the equation.

Example 3.10: Basis transformation of a matrix

Start with the matrix

A =

�
1 0
0 �1

⇥

in the unprimed basis which describes a reflection on the x-axis and a basis transformation

P =
1⇤
2

�
1 �1
1 1

⇥
, P�1 =

1⇤
2

�
1 1

�1 1

⇥
.
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Change of basis: 

f : V ! V

basis of V matrix
v1, . . . ,vn

v0
1, . . . ,v

0
n

A
A0

�

3.5 Change of basis

We have seen that a linear map can be described, relative to a basis in the domain and co-domain, by a
matrix. It is clear from the previous discussion that, for a fixed linear map, this matrix depends on the
specific choice of basis. In other words, if we choose another basis the matrix describing the same linear
map will change. We would now like to work out how precisely the representing matrix transforms under
a change of basis.

To simplify the situation, we consider a linear map f : V ! V from a vector space to itself and choose
the same basis on domain and co-domain. (The general situation of a linear map between two di↵erent
vector spaces is a straightforward generalization.) The two sets of basis vectors, coordinate maps and
representing matrices are then denoted by

basis of V coordinate map coordinate vector representing matrix

v
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n
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↵
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v
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n
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nP

i=1

↵0
i

v0
i

↵0 = (↵0
1

, . . . , ↵0
n

)T A0 = '0�1 � f � '0

(3.93)

We would like to find the relationship between A and A0, that is, between the representing matrices for
f relative to the unprimed and the primed basis. From Eq. (3.82) we know that the two matrices can be
written as A = '�1 � f � ' and A0 = '0�1 � f � '0, so that

A0 = '0�1 � f � '0 = '0�1 � ' � '�1 � f � ' � '�1 � '0

= '0�1 � '| {z }
=: P

�'�1 � f � '| {z }
= A

�'�1 � '0
| {z }
= P

�1

= PAP�1 . (3.94)

Note that all we have done is to insert two identity maps, ' � '�1, in the second step and then combined
maps di↵erently in the third step. What is the interpretation of P = '0�1 � '? For a given vector v 2 V
and its coordinate vectors ↵ = '�1(v) and ↵0 = '0�1(v) relative to the unprimed and primed basis we
have ↵0 = '0�1(v) = '0�1 � '(↵) = P↵, so in summary

↵0 = P↵ . (3.95)

Hence, P converts unprimed coordinate vectors ↵ into the corresponding primed coordinate vector ↵0

and, as a linear map between column vector, it is a matrix. In short, P describes the change of basis
under consideration. The corresponding transformation of the representing matrix under this basis change
is then

A0 = PAP�1 . (3.96)

This is one of the key equations of linear algebra. For example, we can ask if we can choose a basis
for which the representing matrix is particularly simple. Eq. (3.96) is the starting point for answering
this question to which we will return later. Note that Eq. (3.96) makes intuitive sense. Acting with
the equation on a primed coordinate vector ↵0, the first we obtain on the RHS is P�1↵0. This is the
corresponding unprimed coordinate vector on which the matrix A can sensibly act, thereby converting it
into another unprimed coordinate vector. The final action of P converts this back into a primed coordinate
vector. Altogether, this is the action of the matrix A0 on ↵0 as required by the equation.

Another way to think about the matrix P is by relating the primed and the unprimed basis vectors.
In general, from Lemma 3.3, we can write Pe

j

=
P

i

P
ij

e
i

. Multiplying this equation with '0 from the
left and using v

j
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j
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i

) we find
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3) Systems of linear equations
• m equations in n variables:

Ker(f)=solution to 
homogeneous system

x0+Ker(f)=solution to 
inhomogeneous system

x0

Figure 18: Solutions to homogeneous and inhomogenous linear equations.

is a sin(x) + b cos(x) for arbitrary real constants a, b. Hence, the general solution to the inhomogenous
equation is

y(x) = x+ a sin(x) + b cos(x) .

Our main interest is of course in systems of linear equations, that is, in the case where the linear map
is an m ⇥ n matrix A : Fn ⇤ Fm with entries aij . For x = (x1, . . . , xn)T ⌅ Fn and a fixed vector
b = (b1, . . . , bm)T ⌅ Fm the system of linear equations can be written as

Ax = b or

a11x1 + · · · + a1nxn = b1
...

...
...

...
am1x1 + · · · + amnxn = bm

(4.3)

This is a system of m equations in n variables with associated homogeneous system

Ax = 0 or

a11x1 + · · · + a1nxn = 0
...

...
...

...
am1x1 + · · · + amnxn = 0

(4.4)

The solution space of the homogenous system is Ker(A), a (sub) vector space whose dimensions is given
by the dimension formula dimKer(A) = n � rk(A) (see Eq. (3.4)). If the inhomogenous system has a
solution, x0, then its general solution is x0 +Ker(A) and such a “special” solution x0 exists if and only if
b ⌅ Im(A). If rk(A) = m then Im(A) = Fm and a solution exists for any choice of b. On the other hand,
if rk(A) < m, there is no solution for “generic” choices of b. For example, if m = 3 and rk(A) = 2 then
the image of A is a plane in a three-dimensional space and we need to choose b to lie in this plane for a
solution to exist. Clearly this corresponds to a very special choice of b and generic vectors b will not lie
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m⇥ n

• associated homogeneous system:

Ker(f)=solution to 
homogeneous system

x0+Ker(f)=solution to 
inhomogeneous system

x0

Figure 18: Solutions to homogeneous and inhomogenous linear equations.
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Interpret matrix    as linear map A : Fn ! FmA

solutions of hom. system = Ker(A)

with dimKer(A) = n� rk(A) free parameters

solution of inhom. system = x0 +Ker(A)

inhom. system has a solution x0 , b 2 Im(A)



• structure of solution: 
in this plane. To summarize the general structure of the solution to Ax = b, where A is an m⇥n matrix,
we should, therefore distinguish two cases.

(1) rk(A) = m
In this case there exists a solution, x0, for any choice of b and the general solution is given by

x0 +Ker(A) (4.5)

The number of free parameters in this solution equals dimKer(A) = n� rk(A) = n�m.

(2) rk(A) < m
(a) If b ⇤ Im(A) we have a solution with dimKer(A) = n� rk(A) free parameters.
(b) If b /⇤ Im(A) there is no solution.

For a quadratic n⇥ n matrix A we can be slightly more specific and the above cases are as follows.

(1) rk(A) = n
A solution exists for any choice of b and there are no free parameters since dimKer(A) = n�n = 0.
Hence, the solution is unique. Indeed, in this case, the matrix A is invertible (see Lemma 3.4) and
the unique solution is given by x = A�1b.

(2) rk(A) < n
(a) If b ⇤ Im(A) we have a solution with n� rk(A) free parameters.
(b) If b /⇤ Im(A) there is no solution.

The main message of this discussion is that, given the size of the matrix A and its rank, we are able to draw
a number of conclusions about the qualitative structure of the solution, without any explicit calculation.
We will see below how this can be applied to explicit examples.

We can also think about the solutions to a system of linear equations in a geometrical way. With
the row vectors Ai of the matrix A, the linear system (4.3) can be re-written as m equations for (hyper)
planes (that is n� 1-dimensional planes) in n dimensions:

Ai · x = bi , i = 1, . . . ,m . (4.6)

Geometrically, we should then think of the solutions to the linear system as the common intersection
of these m (hyper) planes. For example, if we consider a 3 ⇥ 3 matrix we should consider the common
intersection of three planes in three dimensions. Clearly, depending on the case, these planes can intersect
in a point, a line, a plane or not intersect at all. In other words, we may have no solution or the solution
may have 0, 1 or 2 free parameters. This corresponds precisely to the cases discussed above.

4.2 Solution by ”explicit calculations”

We begin our discussion of solution methods and examples with the most basic approach: Explicit cal-
culation by which we mean the addition of suitable multiples of the various equations so solve for the
variables. To be specific, we consider the following system with three variables x = (x, y, z)T and three
equations

E1 : 2x+ 3y � z = �1 (4.7)

E2 : �x� 2y + z = 3 (4.8)

E3 : ax+ y � 2z = b . (4.9)
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: solution x0 +Ker(A)

dimKer(A) = n�m free parameters
exists for any b

in this plane. To summarize the general structure of the solution to Ax = b, where A is an m⇥n matrix,
we should, therefore distinguish two cases.

(1) rk(A) = m
In this case there exists a solution, x0, for any choice of b and the general solution is given by

x0 +Ker(A) (4.5)

The number of free parameters in this solution equals dimKer(A) = n� rk(A) = n�m.

(2) rk(A) < m
(a) If b ⇤ Im(A) we have a solution with dimKer(A) = n� rk(A) free parameters.
(b) If b /⇤ Im(A) there is no solution.

For a quadratic n⇥ n matrix A we can be slightly more specific and the above cases are as follows.

(1) rk(A) = n
A solution exists for any choice of b and there are no free parameters since dimKer(A) = n�n = 0.
Hence, the solution is unique. Indeed, in this case, the matrix A is invertible (see Lemma 3.4) and
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planes (that is n� 1-dimensional planes) in n dimensions:

Ai · x = bi , i = 1, . . . ,m . (4.6)
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intersection of three planes in three dimensions. Clearly, depending on the case, these planes can intersect
in a point, a line, a plane or not intersect at all. In other words, we may have no solution or the solution
may have 0, 1 or 2 free parameters. This corresponds precisely to the cases discussed above.
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We begin our discussion of solution methods and examples with the most basic approach: Explicit cal-
culation by which we mean the addition of suitable multiples of the various equations so solve for the
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To make matters more interesting, we have introduced two parameters a, b ⇥ R. We would like to find the
solution to this system for arbitrary real values of these parameters. We can also write the above system
in matrix form, Ax = b, with

A =

�

⇤
2 3 �1

�1 �2 1
a 1 �2

⇥

⌅ b =

�

⇤
�1
3
b

⇥

⌅ . (4.10)

Before we embark on the explicit calculation, let us apply the results of our previous general discussion
and predict the qualitative structure of the solution. The crucial piece of information required for this
discussion is the rank of the matrix A. Of course, this can be determined from the general methods based
on row reduction which we have introduced in Section 3.3. But, as explained before, for small matrices
the rank can often be inferred “by inspection”. For the matrix A in (4.10) it is clear that the second
and third row vectors, A2 and A3, are linearly independent. Hence, its ranks is at least two. The first
column vector, A1, depends on the parameter a so we have to be more careful. For generic a values A1

does not lie in the plane spanned by A2, A3, so the generic rank of A is three. In this case, from our
general results, there is a unique solution to the linear system for any value of the other parameter b. For
a specific a value A1 will be in the plane spanned by A2, A3 and the rank is reduced to two. Then, the
image of A is two-dimensional, that is a plane. For generic values of b the vector b will not lie in this
plane so there is no solution. However, for a specific b value, when b does lie in this plane, there is a
solution with dimKer(A) = 3� rk(A) = 1 parameter, that is, a solution line. So, in summary we expect
the following qualitative structure for the solution to the system (4.7).

1) For generic values of a the rank of A is three and there is a unique solution for all values of b.

2a) For a specific value of a (when rk(A) = 2) and for a specific value of b there is a line of solutions.

2b) For the above specific value of a and generic b there is no solution.

Let us now confirm this expectation by an explicit calculation. We begin by adding appropriate multiples
of Eqs. (4.7), namely

E1 + E2 : x+ y = 2 (4.11)

E3 + 2E2 : (a� 2)x� 3y = b+ 6 . (4.12)

Eliminating y from these two equations then leads to

(a+ 1)x = b+ 12 . (4.13)

This equation allows us to explicitly identify the various cases we expect.

1) a ⇤= �1: We can divide Eq. (4.13) by (a+ 1) to solve for x and then insert into Eqs. (4.11), (4.7) to
get y and z. So in this case we have a unique solution for any b given by

x =
b+ 12

a+ 1
, y =

2a� b� 10

a+ 1
, z =

7a� b� 5

a+ 1
. (4.14)

2a) a = �1 and b = �12: In this case, Eq. (4.13) becomes trivial and we are left with only two indepen-
dent equations. Solving Eqs. (4.11), (4.7) for x and z in terms of y we find

x = 2� y z = 5 + y . (4.15)

that is, a line of solutions parametrized by y.

2b) a = �1 and b ⇤= �12: In this case, Eq. (4.13) leads to a contradiction so there is no solution.
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and predict the qualitative structure of the solution. The crucial piece of information required for this
discussion is the rank of the matrix A. Of course, this can be determined from the general methods based
on row reduction which we have introduced in Section 3.3. But, as explained before, for small matrices
the rank can often be inferred “by inspection”. For the matrix A in (4.10) it is clear that the second
and third row vectors, A2 and A3, are linearly independent. Hence, its ranks is at least two. The first
column vector, A1, depends on the parameter a so we have to be more careful. For generic a values A1

does not lie in the plane spanned by A2, A3, so the generic rank of A is three. In this case, from our
general results, there is a unique solution to the linear system for any value of the other parameter b. For
a specific a value A1 will be in the plane spanned by A2, A3 and the rank is reduced to two. Then, the
image of A is two-dimensional, that is a plane. For generic values of b the vector b will not lie in this
plane so there is no solution. However, for a specific b value, when b does lie in this plane, there is a
solution with dimKer(A) = 3� rk(A) = 1 parameter, that is, a solution line. So, in summary we expect
the following qualitative structure for the solution to the system (4.7).

1) For generic values of a the rank of A is three and there is a unique solution for all values of b.

2a) For a specific value of a (when rk(A) = 2) and for a specific value of b there is a line of solutions.

2b) For the above specific value of a and generic b there is no solution.

Let us now confirm this expectation by an explicit calculation. We begin by adding appropriate multiples
of Eqs. (4.7), namely

E1 + E2 : x+ y = 2 (4.11)

E3 + 2E2 : (a� 2)x� 3y = b+ 6 . (4.12)

Eliminating y from these two equations then leads to

(a+ 1)x = b+ 12 . (4.13)

This equation allows us to explicitly identify the various cases we expect.

1) a ⇤= �1: We can divide Eq. (4.13) by (a+ 1) to solve for x and then insert into Eqs. (4.11), (4.7) to
get y and z. So in this case we have a unique solution for any b given by

x =
b+ 12

a+ 1
, y =

2a� b� 10

a+ 1
, z =

7a� b� 5

a+ 1
. (4.14)

2a) a = �1 and b = �12: In this case, Eq. (4.13) becomes trivial and we are left with only two indepen-
dent equations. Solving Eqs. (4.11), (4.7) for x and z in terms of y we find

x = 2� y z = 5 + y . (4.15)

that is, a line of solutions parametrized by y.

2b) a = �1 and b ⇤= �12: In this case, Eq. (4.13) leads to a contradiction so there is no solution.
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(line)

• Augmented matrix: 

4.3 Solution by row reduction

While “explicit calculation” as in the previous sub-section is probably the fastest “by hand” method for
relatively small systems, larger linear systems require a more systematic method. For a specific case, a
linear system Ax = b with a quadratic and invertible matrix A, we already know how this works. The
unique solution in this case is x = A�1b and the inverse of A can be computed by the row reduction
method introduced in Section (3.3). We will now generalize this method so it can be applied to all linear
systems.

So let us start with an arbitrary linear system with m equations for n variables, so a system of the
form Ax = b with an m � n matrix A, inhomogeneity b ⇧ Fm and variables x ⇧ Fn. We can multiply
the linear system with one of the m � m matrices P from Eq. (3.54), generating the elementary row
operations, to get the linear system PAx = Pb. This new system has the same solutions as the original
one since P is invertible. This means we do not change the solutions to the linear system if we carry out
elementary row operations simultaneously on the matrix A and the inhomogeneity b. This suggests we
should encode the linear system by the augmented matrix defined by

A⇥ = (A|b) , (4.16)

an m�(n+1) matrix which consists of A plus one additional column formed by the vector b. We can now
reformulate our previous observation by stating that elementary row operations applied to the augmented
matrix do not change the solutions of the associated linear system. So our solution strategy will be to
simplify the augmented matrix by successive elementary row operations until the solution can be easily
“read o�”. Before we formulate this explicitly, we note a useful criterion which helps us to decide whether
or not b ⇧ Im(A), that is, whether or not the linear system has solutions.

Lemma 4.2. b ⇧ Im(A) ⇤⌅ rk(A) = rk(A⇥)

Proof. “ ⌅ ”: If b ⇧ Im(A) it is a linear combination of the column vectors of A and adding it to the
matrix does not increase the rank.
“ ⇤ ”: If rk(A) = rk(A⇥) the rank does not increase when b is added to the matrix. Therefore, b ⇧
Span(A1, . . . ,An) = Im(A).

Let us now describe the general algorithm.

1. Bring the augmented matrix A⇥ into upper echelon form using the row reduction method from
Section (3.3). The resulting matrix has the form

A⇥ ⇥

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

· · · a1j1 � b�1

a2j2

...
...

. . .
...

... arjr · · · b�r
0 b�r+1

...
b�n

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

where aiji ⌃= 0 for i = 1, . . . r so that A has rank r. In this form is it easy to apply the criterion,
Lemma 4.2. If b⇥i ⌃= 0 for any i > r then rk(A⇥) > rk(A) and the linear system has no solutions. In
this case we can stop. On the other hand, if b⇥i = 0 for all i > r which we assume from hereon, then
rk(A⇥) = rk(A) and the system has a solution.
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Solving linear eqs. with row reduction

2. As explained we assume that b�i = 0 for all i > r. For ease of notation we also permute the columns
of A (this corresponds to a permutation of the variables that we will have to keep track of) so that
the columns with the non-zero entries aiji become the first r of the matrix. The result is

A� ⇤

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

a1j1 b�1

a2j2 � �
...

. . .
...

0 arjr b�r
0

0
...
0

⌅

���������⌃

3. By further row operations we can convert the r ⇥ r matrix in the upper left corner of the previous
matrix into a unit matrix r. Schematically, the result is

A�
fin =

�
r B c
0 0 0

⇥
(4.17)

where B is an r ⇥ (n� r) matrix and c is an r-dimensional column vector.

4. Recall that r = rk(A) is the rank and n � r = dimKer(A) is the number of free parameters of the
solution. For this reason it makes sense to split our variables as

x =

�
�
t

⇥
(4.18)

into an r-dimensional vector � and an (n� r)-dimensional vector t. Note that this split is adapted
to the form of the matrix A�

fin so that the associated linear system takes the simple form

� +Bt = c . (4.19)

The point is that this system can be easily solved for � in terms of t. This leads to the general
solution

x =

�
c�Bt

t

⇥
, (4.20)

which depends on n� r free parameters t, as expected.

Let us see how this works for an explicit example.

Example 4.2: Solving linear systems with row reduction of the augmented matrix

Consider the following system of linear equations and its augmented matrix

x+ y � 2z = 1
2x� y + 3z = 0
x� 4y + 9z = b

A� =

⇤

⇧
1 1 �2 1
2 �1 3 0

�1 �4 9 b

⌅

⌃ , (4.21)

where b ⌅ R is an arbitrary real parameter. We proceed in the four steps outlined above.

1. First we bring A� into upper echelon form which results in

A� ⇤

⇤

⇧
1 1 �2 1
0 �3 7 �2
0 0 0 b+ 3

⌅

⌃

For b ⇧= �3 we have rk(A�) = 3 > 2 = rk(A) so there are no solutions. So we assume from hereon
that b = �3.
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2.) Set b = �3 :

2. Setting b = �3 we have �

⇤
1 1 �2 1
0 �3 7 �2
0 0 0 0

⇥

⌅ .

In this case, we do not have to permute columns since the (two) steps of the upper echelon form
already arise in the first two columns.

3. By further elementary row operations we convert the 2 ⇥ 2 matrix in the upper left corner into a
unit matrix.

A�
fin =

�

⇤
1 0 1

3
1
3

0 1 �7
3

2
3

0 0 0 0

⇥

⌅

4. We have r = rk(A) = 2 and dimKer(A) = 3 � rk(A) = 1 so we expect a solution with one free
variable t (a line). Accordingly, we split the variables as

x =

�

⇤
x
y
t

⇥

⌅ , (4.22)

where � = (x, y)T in our general notation. Writing the linear system for A�
fin in those variables

results in

x+
1

3
t =

1

3
(4.23)

y � 7

3
t =

2

3
(4.24)

This can be easily solved for x, y in terms of t which was really the point of the exercise. The result
is x = 1

3 � 1
3 t and y = 2

3 + 7
3 t and, inserting into Eq. (4.22), this results in the vector form

x =

�

⇤
1
3
2
3
0

⇥

⌅+ t

�

⇤
�1

3
7
3
1

⇥

⌅

for the line of solutions.
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3.) Red block ! unit matrix:
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4.) Convert into lin. eqs.:
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2. As explained we assume that b�i = 0 for all i > r. For ease of notation we also permute the columns
of A (this corresponds to a permutation of the variables that we will have to keep track of) so that
the columns with the non-zero entries aiji become the first r of the matrix. The result is

A� ⇤

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

a1j1 b�1

a2j2 � �
...

. . .
...

0 arjr b�r
0

0
...
0

⌅

���������⌃

3. By further row operations we can convert the r ⇥ r matrix in the upper left corner of the previous
matrix into a unit matrix r. Schematically, the result is

A�
fin =

�
r B c
0 0 0

⇥
(4.17)

where B is an r ⇥ (n� r) matrix and c is an r-dimensional column vector.

4. Recall that r = rk(A) is the rank and n � r = dimKer(A) is the number of free parameters of the
solution. For this reason it makes sense to split our variables as

x =

�
�
t

⇥
(4.18)

into an r-dimensional vector � and an (n� r)-dimensional vector t. Note that this split is adapted
to the form of the matrix A�

fin so that the associated linear system takes the simple form

� +Bt = c . (4.19)

The point is that this system can be easily solved for � in terms of t. This leads to the general
solution

x =

�
c�Bt

t

⇥
, (4.20)

which depends on n� r free parameters t, as expected.

Let us see how this works for an explicit example.

Example 4.2: Solving linear systems with row reduction of the augmented matrix

Consider the following system of linear equations and its augmented matrix

x+ y � 2z = 1
2x� y + 3z = 0
x� 4y + 9z = b

A� =

⇤

⇧
1 1 �2 1
2 �1 3 0

�1 �4 9 b

⌅

⌃ , (4.21)

where b ⌅ R is an arbitrary real parameter. We proceed in the four steps outlined above.

1. First we bring A� into upper echelon form which results in

A� ⇤

⇤

⇧
1 1 �2 1
0 �3 7 �2
0 0 0 b+ 3

⌅

⌃

For b ⇧= �3 we have rk(A�) = 3 > 2 = rk(A) so there are no solutions. So we assume from hereon
that b = �3.
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5) Determinants

Definition: 

5 Determinants

Determinants are multi-linear objects and are a useful tool in linear algebra. In Section 2 we have
introduced the three-dimensional determinant as the triple product of three vectors. Here we will study
the generalization to arbitrary dimensions and verify that the three-dimensional case coincides with our
previous definition. As with the other general concepts, we first define the determinant by its properties
before we derive its explicit form and study a few applications.

5.1 Definition of a determinant

Definition 5.1. A determinant maps n vectors a1, · · · ,an ⌅ Fn to a number, denoted det(a1, · · · ,an) ⌅
F , such that the following properties are satisfied:

(D1) det(· · · ,�a+ ⇥b, · · · ) = � det(· · · ,a, · · · ) + ⇥ det(· · · ,b, · · · )
This means the determinant is linear in each argument.

(D2) det(· · · ,a, · · · ,b, · · · ) = � det(· · · ,b, · · · ,a · · · )
This means the determinant is completely anti-symmetric.

(D3) det(e1, · · · , en) = 1
The determinant of the standard unit vectors is one.

The determinant of an n⇥ n matrix A is defined as the determinant of its column vectors, so det(A) :=
det(A1, . . . ,An).

An easy but important conclusion from these properties is that a determinant with two same arguments
must vanish. Indeed, from the anti-symmetry property (D3) it follows that det(· · · ,a, · · · ,a, · · · ) =
� det(· · · ,a, · · · ,a, · · · ), which means that

det(· · · ,a, · · · ,a, · · · ) = 0 . (5.1)

Of course, a priori we do not know if an object with the above properties exist and, if so, how it can
be explicitly computed. To address these points we first need to understand a few basic facts about
permutations. Here, we will just present a brief account of the relevant facts. For the formal-minded,
Appendix B contains a more complete treatment which includes the relevant proofs.

Permutations
You probably have an intuitive understanding of a permutation as an operation which changes the order
of a certain set of n objects. Here, we take this set to be the numbers {1, . . . , n}. Mathematically, a
permutation is defined as a bijective map from this set to itself. So the set of all permutations of n objects
is given by

Sn := {⇤ : {1, · · · , n} ⇤ {1, · · · , n} |⇤ is bijective} , (5.2)

and this set has n! elements. The basic idea is that, under a permutation ⇤ ⌅ Sn, a number i ⌅ {1, . . . , n}
is permuted to its image ⇤(i). A useful notation for a permutation mapping 1 ⇤ ⇤(1), . . . , n ⇤ ⇤(n) is 2

⇤ =

�
1 · · · n

⇤(1) . . . ⇤(n)

⇥
. (5.3)

For a example, for n = 3, a permutation which swaps 2 and 3 is written as

⌅1 =

�
1 2 3
1 3 2

⇥
. (5.4)

2Note, despite the similar notation, this is not a matrix in the sense introduced earlier.
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Formula for determinant:

By using the properties of the determinant from Def. (5.1) we can then attempt to work out the determi-
nant of A. We find

det(A) = det(A1, · · · ,An)
(5.10)
= det

⇤

�
n⌦

j1=1

aj11ej1 , · · · ,
n⌦

jn=1

ajnnejn

⌅

 (D1)
=

⌦

j1,··· ,jn

aj11 · · · ajnn det(ej1 , · · · , ejn)

(5.1),ja=�(a)
=

⌦

��Sn

a�(1)1 · · · a�(n)n det(e�(1), · · · , e�(n))
(D2)
=
⌦

��Sn

sgn(⇥)a�(1)1 · · · a�(n)n det(e1, · · · , en)

(D3)
=
⌦

��Sn

sgn(⇥)a�(1)1 · · · a�(n)n

Hence, having just used the general properties of determinants and some facts about permutations, we
have arrived at a unique expression for the determinant. Conversely, it is straightforward to show that
this expression satisfies all the requirements of Def. 5.1. In summary, we conclude that the determinant,
as defined in Def. 5.1, is unique and explicitly given by

det(A) = det(A1, · · · ,An) =
⌦

��Sn

sgn(⇥)a�(1)1 · · · a�(n)n , (5.11)

where aij are the entries of the n⇥n matrix A. Note that the sum on the RHS runs over all permutations
in Sn and, therefore, has n! terms. A useful way to think about this sum is as follows. From each column of
the matrix A, choose one entry such that no two entries lie in the same row. A term in Eq. (5.11) consists
of the product of these n entries (times the sign of the permutation involved) and the sum amounts to all
possible ways of making this choice.

Another useful way to write the determinant which is often employed in physics involves the n-
dimensional generalization of the Levi-Civita tensor, defined by

�i1···in =

⇧
⌥

⌃

+1 if i1, . . . , in is an even permutation of 1, . . . , n
�1 if i1, . . . , in is an odd permutation of 1, . . . , n
0 otherwise

. (5.12)

Essentially, the Levi-Civita tensor plays the same role as the sign of the permutation (plus it vanishes if it
has an index appearing twice when i1, . . . , in is not actually a permutation of 1, . . . , n) so that Eq. (5.11)
can alternatively be written as

det(A) = �i1···inai11 · · · ainn , (5.13)

with a sum over the n indices i1, . . . , in implied.

Low dimensions and some special cases
To get a better feel for the determinant it is useful to look at low dimensions first. For n = 2 we have

det

�
a1 b1
a2 b2

⇥
= �ijaibj = �12a1b2 + �21a2b1 = a1b2 � a2b1 . (5.14)

In three dimensions we find

det

⇤

�
a1 b1 c1
a2 b2 c2
a3 b3 c3

⌅

 = �ijkaibjck = a1b2c3 + a2b3c1 + a3b1c2 � a2b1c3 � a3b2c1 � a1b3c2 (5.15)

= ⇤a,b, c⌅ = a · (b⇥ c) (5.16)
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n! terms, “pick one entry per column and row”

n=2:

By using the properties of the determinant from Def. (5.1) we can then attempt to work out the determi-
nant of A. We find

det(A) = det(A1, · · · ,An)
(5.10)
= det

⇤

�
n⌦

j1=1

aj11ej1 , · · · ,
n⌦

jn=1

ajnnejn

⌅

 (D1)
=

⌦

j1,··· ,jn

aj11 · · · ajnn det(ej1 , · · · , ejn)

(5.1),ja=�(a)
=

⌦

��Sn

a�(1)1 · · · a�(n)n det(e�(1), · · · , e�(n))
(D2)
=
⌦

��Sn

sgn(⇥)a�(1)1 · · · a�(n)n det(e1, · · · , en)

(D3)
=
⌦

��Sn

sgn(⇥)a�(1)1 · · · a�(n)n
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n=3:

By using the properties of the determinant from Def. (5.1) we can then attempt to work out the determi-
nant of A. We find

det(A) = det(A1, · · · ,An)
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= det
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�
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aj11ej1 , · · · ,
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ajnnejn
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⌦

j1,··· ,jn
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Hence, having just used the general properties of determinants and some facts about permutations, we
have arrived at a unique expression for the determinant. Conversely, it is straightforward to show that
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where aij are the entries of the n⇥n matrix A. Note that the sum on the RHS runs over all permutations
in Sn and, therefore, has n! terms. A useful way to think about this sum is as follows. From each column of
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⇧
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⌃

+1 if i1, . . . , in is an even permutation of 1, . . . , n
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0 otherwise

. (5.12)
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can alternatively be written as
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with a sum over the n indices i1, . . . , in implied.
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Properties of determinant:
• 

The last line follows by comparison with Eq. (2.33). Hence, the three-dimensional determinant as from our
general definition is indeed the triple product and coincides with our earlier definition of the determinant.

The determinant of a 4 � 4 matrix has 4! = 24 terms and it is n! terms for an n � n matrix, so this
becomes complicated quickly. An interesting class of matrices for which the determinant is simple consists
of upper triangular matrices, that is, matrices with all entries below the diagonal vanishing. In this case

det

�

⇧⇤
a1 ⇥

. . .

0 an

⇥

⌃⌅ = a1 · · · an , (5.17)

so the determinant is simply the product of the diagonal elements 3. This can be seen from Eq. (5.11). We
should consider all ways of choosing one entry per column such that no two entries appear in the same row.
For an upper triangular matrix, the only non-zero choice in the first column is the first entry, so that the
first row is “occupied”. In the second column the only available non-trivial choice is, therefore, the entry
in the second row etc. In conclusion, from the n! terms in Eq. (5.11) only the term which corresponds to
the product of the diagonal elements is non-zero. An easy conclusion from Eq. (5.17) is that

det( n) = 1 , (5.18)

as must be the case from property (D3) in Def. 5.1 of the determinant.

5.2 Properties of the determinant and calculation

As we have seen from the previous discussion, the explicit expression for the determinant becomes compli-
cated quickly as the dimension increases. To be able to work with determinants in general we, therefore,
need to explore some of their more sophisticated properties. We begin with the relation between the
determinant and the transposition of matrices.

Lemma 5.1. The determinant of a matrix and its transpose are the same, so det(A) = det(AT ).

Proof. By setting ja = ⇥(a), for a permutation ⇥ ⇤ Sn we can re-write a term in the sum (5.11) for the
determinant as A⇥(1)1 · · ·A⇥(n)n = Aj1⇥�1(j1) · · ·Ajn⇥�1(jn) = A1⇥�1(1) · · ·An⇥�1(n), where the last equality
follows simply be re-ordering the factors, given that j1, . . . , jn is a permutation of 1, . . . , n. From this
observation the determinant (5.11) can be written as

det(A) =
⌥

⇥⇥Sn

sgn(⇥)A1⇥�1(1) · · ·An⇥�1(n)
(5.9)
=

⌥

⇥�1⇥Sn

sgn(⇥�1)A1⇥�1(1) · · ·An⇥�1(n)

�=⇥�1

=
⌥

�⇥Sn

sgn(�)(AT )�(1)1 · · · (AT )�(n)n = det(AT ) .

Another obvious question is about the relation between the determinant and matrix multiplication. For-
tunately, there is a simply and beautiful answer.

Theorem 5.1. det(AB) = det(A) det(B), for any two n� n matrices A, B.

3Of course an analogous statement holds for lower triangular matrices.
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The last line follows by comparison with Eq. (2.33). Hence, the three-dimensional determinant as from our
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�
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0 an
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Proof. Recall from Eq. (3.36) the index form of matrix multiplication

(AB)ij =
⌥

k

AikBkj .

By focusing on a particular value of j in this expression we can write the jth column of AB as

(AB)j =
⌥

k

BkjA
k , (5.19)

where Ak are the columns of A. Hence,

det(AB) = det((AB)1, · · · , (AB)n)
(5.19)
= det

⇤

⇧
⌥

k1

BkjA
k1 , · · · ,

⌥

kn

BknjA
kn

⌅

⌃

(D1)
=

⌥

k1,··· ,kn

Bk11 · · ·Bknn det(A
k1 , · · · ,Akn)

ka=�(a)
=

⌥

�⇥Sn

B�(1)1 · · ·B�(n)n det(A
�(1), · · · ,A�(n))

(D2)
=

⌥

�⇥Sn

sgn(⇥)B�(1)1 · · ·B�(n)n

⌦  � ↵
det(B)

det(A1, · · · ,An)⌦  � ↵
det(A)

= det(A) det(B)

This simple multiplication rule for determinants of matrix products has a number of profound conse-
quences. First, we can prove a criterion for invertibility of a matrix, based on the determinant, essentially
a more complete version of Claim 2.1.

Corollary 5.1. For an n� n matrix A we have:

A is bijective (that is, A has an inverse) ⇥⇤ det(A) ⌅= 0 (5.20)

If A is invertible then det(A�1) = (det(A))�1.

Proof. “⇤”: If A is bijective it has an inverse A�1 and 1 = det( n) = det(AA�1) = det(A) det(A�1).
This implies that det(A) ⌅= 0 and that det(A�1) = (det(A))�1 which is the second part of our assertion.
“⇥”: We prove this indirectly, so we start by assuming that A is not bijective. From Lemma 3.4 this
means that rk(A) < n, so the rank of A is less than maximal. Hence, at least one of the column vectors
of A, say A1 for definiteness, can be expressed as a linear combination of the others, so that

A1 =
n⌥

i=2

�iA
i

for some coe�cients �i. For the determinant of A this means

det(A) = det(A1,A2, . . . ,An) = det

�
n⌥

i=2

�iA
i,A2, . . . ,An

⇥
(D1)
=

n⌥

i=2

�i det(A
i,A2, . . . ,An)

(5.1)
= 0
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Note that, for invertible matrices A, this provides us with a useful way to calculate the determinant of
the inverse matrix by

det(A�1) = (det(A))�1 . (5.21)

Combining this rule and Theorem 5.1 implies that det(PAP�1) = det(P ) det(A)(det(P ))�1 = det(A), so,
in short

det(PAP�1) = det(A) . (5.22)

This equation says that the determinant remains unchanged under basis transformations (3.73) and, as a
result, the determinant is the same for every matrix representing a given linear map. The determinant is,
therefore, a genuine property of the linear map and we can talk about the determinant of a linear map,
defined as the determinant of any of its representing matrices.

Our next goal is to find a recursive method to calculate the determinant, essentially by writing the
determinant of a matrix in terms of determinants of sub-matrices. To this end, for an n⇥n matrix A, we
define the associated n⇥ n matrices

Ã(i,j) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 � jth col

“A”
... “A”
0

0 · · · 0 1 0 · · · 0
0

“A”
... “A”
0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

⇤ ith row (5.23)

They are obtained from A by setting the (i, j) entry to 1, the other entries in row i and column j to zero
and keeping the rest of the matrix unchanged. Note that the subscripts (i, j) indicate the row and column
which have been changed rather than specific entries of the matrix (hence the bracket notation). With
the so-defined matrices we define the co-factor matrix, an n⇥ n matrix C with components

Cij := det(Ãi,j) . (5.24)

To find a more elegant expression for the co-factor matrix, we also introduce the (n�1)⇥ (n�1) matrices
A(i,j) which are obtained from A by simply removing the ith row and the jth column. It takes i� 1 swaps
of neighbouring rows in (5.23) to move row i to the first row (without changing the order of any other
rows) and a further j� 1 swaps to move column j to the first column. After these swaps the matrix Ã(i,j)

becomes

B(i,j) =

�

⇧⇧⇧⇤

1 0 · · · 0
0
... A(i,j)

0

⇥

⌃⌃⌃⌅
, (5.25)

From Def. (5.1) (D2) and Lemma 5.1 it is clear that det(Ãi,j) = (�1)i+j det(B(i,j)), since we need a total
of i + j � 2 swaps of rows and columns to convert one matrix into the other. Further, the explicit form
of the determinant (5.11) implies that det(Bi,j) = det(Ai,j) (as the only non-trivial choice of entry in the
first column of B(i,j) is the 1 in the first row). Combining these observations means the co-factor matrix
is given by

Cij = det(Ãi,j) = (�1)i+j det(A(i,j)) . (5.26)

Hence, the co-factor matrix contains, up to signs, the determinants of the (n� 1)⇥ (n� 1) sub-matrices
of A, obtained by deleting one row and one column from A. As we will see, for explicit calculations, it is
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Expansion by column:

useful to note that the signs in Eq. (5.26) follow a “chess board pattern”, that is, the matrix with entries
(�1)i+j has the form ⇤

⌥⌥⌥⇧

+ � + · · ·
� + � · · ·
+ � + · · ·
...

...

⌅

���⌃
(5.27)

Our goal is to relate the determinant of A to the determinants of sub-matrices, that is to the entries of
the co-factor matrix. This is accomplished by

Lemma 5.2. For an n⇥ n matrix A with associated co-factor matrix C, defined by Eq. (5.26), we have

CTA = det(A) n (5.28)

Proof. This follows from the definition of the co-factor matrix, more or less by direct calculation.

(CTA)ij
(3.36)
=
 

k

(CT )ikAkj =
 

k

AkjCki
(5.26)
=
 

k

Akj det(Ã(k,i))

(5.23)
=
 

k

Akj det(A
1, · · · ,Ai�1, ek,A

i+1, · · · ,An)

(D1)
= det

�
A1, · · · ,Ai�1,

 

k

Akjek,A
i+1, · · · ,An

⇥

= det(A1, · · · ,Ai�1,Aj ,Ai+1, · · · ,An)
(5.1)
= �ij det(A) = (det(A) n)ij

An immediate conclusion from Lemma 5.2 is

det(A) = (CTA)jj =
 

i

(CT )jiAij =
 

i

CijAij =
 

i

(�1)i+jAij det(A(i,j)).

so,

det(A) =
 

i

(�1)i+jAij det(A(i,j)) . (5.29)

This identity is referred to as Laplace expansion of the determinant. It realizes our goal of expressing the
determinant of A in terms of determinants of the sub-matrices A(i,j). More specifically, in Eq. (5.29) we
can choose any column j and compute the determinant of A by summing over the entries i in this column
times the determinants of the corresponding sub-matrices A(i,j) (taking into account the sign). This is

also referred to as expanding the determinant “along the jth column”. Since the determinant remains
unchanged under transposition it can also be computed in a similar way be expanding “along the ith row”.
To see how this works in practice we consider the following

Example 5.1: Laplace expansion of determinant

We would like to compute the determinant of the matrix

A =

⇤

⇧
2 �1 0
1 2 �2
0 3 4

⌅

⌃ (5.30)
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by expanding along its 1st column. From Eq. (5.29), taking into account the signs as indicated in (5.27),
we find

det(A) = A11 det(A(1,1))�A21 det(A(2,1)) +A31 det(A(3,1))

= 2 · det
�

2 �2
3 4

⇥
� 1 · det

�
�1 0
3 4

⇥
+ 0 · det

�
�1 0
2 �2

⇥
= 2 · 14� 1 · (�4) + 0 · 2 = 32

Note that the e�ciency of the calculation can be improved by choosing the row or column with the most
zeros.

A by-product of Lemma 5.2 is a new method to compute the inverse of a matrix. If A is invertible
then, from Cor. 5.1, det(A) ⌅= 0 and we can divide by det(A) to get

1

det(A)
CTA = n .

Hence, the inverse of A is given by

A�1 =
1

det(A)
CT . (5.31)

Again, it is worth applying this to an example.

Example 5.2: Inverse of a matrix using the co-factor method

We consider the matrix A, Eq. (5.30), from the previous example. From Eq. (5.26) we find for the
associated co-factor matrix

C =

⇤

⇧
14 �4 3
4 8 �6
2 4 5

⌅

⌃ .

With det(A) = 32 the inverse is

A�1 =
1

det(A)
CT =

1

32

⇤

⇧
14 4 2
�4 8 4
3 �6 5

⌅

⌃ .

We note that, for larger matrices, the row reduction method discussed in Section 3.3 is a more e�cient
way of computing the inverse than the co-factor method. Indeed, for an n ⇥ n matrix the number of
operations required for a row reduction grows roughly as n3 while computing a determinant requires ⇤ n!
operations.

Despite our improved methods, the calculation of determinants of large matrices remains a problem,
essentially because the aforementioned n! growth of the number of terms in Eq. (5.11). Using a Laplace
expansion will improve matters only if the matrix in question has many zeros. However, by using elemen-
tary row operations, we can get to an e�cient way of computing large determinants. The key observation
is that, from the general properties of the determinant in Def. 5.1, row operations of type (R1) (see
Def. 3.7) only change the sign of the determinant and row operations of type (R2) leave the determinant
unchanged. A given matrix A can be brought into upper echelon form, A⇥, by a succession of these row
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Our next goal is to find a recursive method to calculate the determinant, essentially by writing the
determinant of a matrix in terms of determinants of sub-matrices. To this end, for an n⇥n matrix A, we
define the associated n⇥ n matrices

Ã(i,j) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 � jth col

“A”
... “A”
0

0 · · · 0 1 0 · · · 0
0

“A”
... “A”
0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

⇤ ith row (5.23)

They are obtained from A by setting the (i, j) entry to 1, the other entries in row i and column j to zero
and keeping the rest of the matrix unchanged. Note that the subscripts (i, j) indicate the row and column
which have been changed rather than specific entries of the matrix (hence the bracket notation). With
the so-defined matrices we define the co-factor matrix, an n⇥ n matrix C with components

Cij := det(Ãi,j) . (5.24)

To find a more elegant expression for the co-factor matrix, we also introduce the (n�1)⇥ (n�1) matrices
A(i,j) which are obtained from A by simply removing the ith row and the jth column. It takes i� 1 swaps
of neighbouring rows in (5.23) to move row i to the first row (without changing the order of any other
rows) and a further j� 1 swaps to move column j to the first column. After these swaps the matrix Ã(i,j)

becomes

B(i,j) =

�

⇧⇧⇧⇤

1 0 · · · 0
0
... A(i,j)

0

⇥

⌃⌃⌃⌅
, (5.25)

From Def. (5.1) (D2) and Lemma 5.1 it is clear that det(Ãi,j) = (�1)i+j det(B(i,j)), since we need a total
of i + j � 2 swaps of rows and columns to convert one matrix into the other. Further, the explicit form
of the determinant (5.11) implies that det(Bi,j) = det(Ai,j) (as the only non-trivial choice of entry in the
first column of B(i,j) is the 1 in the first row). Combining these observations means the co-factor matrix
is given by

Cij = det(Ãi,j) = (�1)i+j det(A(i,j)) . (5.26)

Hence, the co-factor matrix contains, up to signs, the determinants of the (n� 1)⇥ (n� 1) sub-matrices
of A, obtained by deleting one row and one column from A. As we will see, for explicit calculations, it is
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Matrix inverse with determinant: 

by expanding along its 1st column. From Eq. (5.29), taking into account the signs as indicated in (5.27),
we find

det(A) = A11 det(A(1,1))�A21 det(A(2,1)) +A31 det(A(3,1))

= 2 · det
�

2 �2
3 4

⇥
� 1 · det

�
�1 0
3 4

⇥
+ 0 · det

�
�1 0
2 �2

⇥
= 2 · 14� 1 · (�4) + 0 · 2 = 32

Note that the e�ciency of the calculation can be improved by choosing the row or column with the most
zeros.

A by-product of Lemma 5.2 is a new method to compute the inverse of a matrix. If A is invertible
then, from Cor. 5.1, det(A) ⌅= 0 and we can divide by det(A) to get

1

det(A)
CTA = n .

Hence, the inverse of A is given by

A�1 =
1

det(A)
CT . (5.31)

Again, it is worth applying this to an example.

Example 5.2: Inverse of a matrix using the co-factor method

We consider the matrix A, Eq. (5.30), from the previous example. From Eq. (5.26) we find for the
associated co-factor matrix

C =

⇤

⇧
14 �4 3
4 8 �6
2 4 5

⌅

⌃ .

With det(A) = 32 the inverse is

A�1 =
1

det(A)
CT =

1

32

⇤

⇧
14 4 2
�4 8 4
3 �6 5

⌅

⌃ .

We note that, for larger matrices, the row reduction method discussed in Section 3.3 is a more e�cient
way of computing the inverse than the co-factor method. Indeed, for an n ⇥ n matrix the number of
operations required for a row reduction grows roughly as n3 while computing a determinant requires ⇤ n!
operations.

Despite our improved methods, the calculation of determinants of large matrices remains a problem,
essentially because the aforementioned n! growth of the number of terms in Eq. (5.11). Using a Laplace
expansion will improve matters only if the matrix in question has many zeros. However, by using elemen-
tary row operations, we can get to an e�cient way of computing large determinants. The key observation
is that, from the general properties of the determinant in Def. 5.1, row operations of type (R1) (see
Def. 3.7) only change the sign of the determinant and row operations of type (R2) leave the determinant
unchanged. A given matrix A can be brought into upper echelon form, A⇥, by a succession of these row
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Inverse of a 2⇥ 2 matrix

A =

✓
a b
c d

◆
C =

✓
d �c
�b a

◆
det(A) = ad� bc

A�1 = 1
ad�bc

✓
d �b
�c a

◆

Co-factor method for matrix inverse

useful to note that the signs in Eq. (5.26) follow a “chess board pattern”, that is, the matrix with entries
(�1)i+j has the form ⇤

⌥⌥⌥⇧

+ � + · · ·
� + � · · ·
+ � + · · ·
...

...

⌅

���⌃
(5.27)

Our goal is to relate the determinant of A to the determinants of sub-matrices, that is to the entries of
the co-factor matrix. This is accomplished by

Lemma 5.2. For an n⇥ n matrix A with associated co-factor matrix C, defined by Eq. (5.26), we have

CTA = det(A) n (5.28)

Proof. This follows from the definition of the co-factor matrix, more or less by direct calculation.

(CTA)ij
(3.36)
=
 

k

(CT )ikAkj =
 

k

AkjCki
(5.26)
=
 

k

Akj det(Ã(k,i))

(5.23)
=
 

k

Akj det(A
1, · · · ,Ai�1, ek,A

i+1, · · · ,An)

(D1)
= det

�
A1, · · · ,Ai�1,

 

k

Akjek,A
i+1, · · · ,An

⇥

= det(A1, · · · ,Ai�1,Aj ,Ai+1, · · · ,An)
(5.1)
= �ij det(A) = (det(A) n)ij

An immediate conclusion from Lemma 5.2 is

det(A) = (CTA)jj =
 

i

(CT )jiAij =
 

i

CijAij =
 

i

(�1)i+jAij det(A(i,j)).

so,

det(A) =
 

i

(�1)i+jAij det(A(i,j)) . (5.29)

This identity is referred to as Laplace expansion of the determinant. It realizes our goal of expressing the
determinant of A in terms of determinants of the sub-matrices A(i,j). More specifically, in Eq. (5.29) we
can choose any column j and compute the determinant of A by summing over the entries i in this column
times the determinants of the corresponding sub-matrices A(i,j) (taking into account the sign). This is

also referred to as expanding the determinant “along the jth column”. Since the determinant remains
unchanged under transposition it can also be computed in a similar way be expanding “along the ith row”.
To see how this works in practice we consider the following

Example 5.1: Laplace expansion of determinant

We would like to compute the determinant of the matrix

A =

⇤

⇧
2 �1 0
1 2 �2
0 3 4

⌅

⌃ (5.30)
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by expanding along its 1st column. From Eq. (5.29), taking into account the signs as indicated in (5.27),
we find

det(A) = A11 det(A(1,1))�A21 det(A(2,1)) +A31 det(A(3,1))

= 2 · det
�

2 �2
3 4

⇥
� 1 · det

�
�1 0
3 4

⇥
+ 0 · det

�
�1 0
2 �2

⇥
= 2 · 14� 1 · (�4) + 0 · 2 = 32

Note that the e�ciency of the calculation can be improved by choosing the row or column with the most
zeros.

A by-product of Lemma 5.2 is a new method to compute the inverse of a matrix. If A is invertible
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⌃ .

We note that, for larger matrices, the row reduction method discussed in Section 3.3 is a more e�cient
way of computing the inverse than the co-factor method. Indeed, for an n ⇥ n matrix the number of
operations required for a row reduction grows roughly as n3 while computing a determinant requires ⇤ n!
operations.

Despite our improved methods, the calculation of determinants of large matrices remains a problem,
essentially because the aforementioned n! growth of the number of terms in Eq. (5.11). Using a Laplace
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tary row operations, we can get to an e�cient way of computing large determinants. The key observation
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Def. 3.7) only change the sign of the determinant and row operations of type (R2) leave the determinant
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Cramer’s rule: 
Solution for Ax = b where A is n⇥ n, invertible:

operations and, hence, det(A) = (�1)p det(A⇥), where p is the number of row swaps used in the process.
The matrix A⇥ is in fact in upper triangular form

A⇥ =

�

⇧⇤
a1 ⇤

. . .

0 an

⇥

⌃⌅ .

and, as discussed earlier, the determinant of such a matrix is simply the product of its diagonal entries.
It follows that det(A) = (�1)pa1 · · · an.

5.3 Applications

We have already seen how the determinant of a matrix can be used to decide if an n ⇥ n matrix A is
invertible, and how to compute the inverse of a matrix. Here we introduce Cramer’s Rule, which uses
determinants to solve systems of linear equations Ax = b for the case of quadratic and invertible n ⇥ n
matrices A. Recall from our general discussion in Section 4.1 that, in this case, the linear system has a
unique solution, x = A�1b, for any vector b.

To derive Cramer’s rule we first define the matrices

B(i) := (A1, · · · ,Ai�1,b,Ai+1, · · · ,An) , (5.32)

which are obtained from A by replacing the ith column with b and keeping all other columns unchanged.
We also note that, in terms of the column vectors Aj of A the linear system Ax = b can be written as
(see, for example, Eq. (3.28)) ⌥

j

xjA
j = b , (5.33)

where x = (x1, . . . , xn)T . Then we find

det(B(i)) = det(A1, · · · ,Ai�1,b,Ai+1, · · · ,An)
(5.33)
= det(A1, · · · ,Ai�1,

⌥

j

xjA
j ,Ai+1, · · · ,An)

(D1)
=

⌥

j

xj det(A
1, · · · ,Ai�1,Aj ,Ai+1, · · · ,An)

(D2)
= xi det(A

1, · · · ,Ai�1,Ai,Ai+1, · · · ,An)

= xi det(A) .

Solving for xi we find Cramer’s rule

xi =
det(B(i))

det(A)
=

det(A1, · · · ,Ai�1,b,Ai+1, · · · ,An)

det(A)
(5.34)

for the solution x = (x1, . . . , xn)T of the linear system Ax = b, where A is an invertible n ⇥ n matrix.
To solve linear systems explicitly, Cramer’s rule is only useful for relatively small systems, due to the n!
growth of the determinant. For larger linear systems the row reduction method introduced in Section (4.3)
should be used.

Example 5.3: Cramer’s rule

Let us apply Cramer’s rule to a linear system Ax = b with

A =

�

⇤
2 �1 0
1 2 �2
0 3 4

⇥

⌅ , b =

�

⇤
1
2
0

⇥

⌅ . (5.35)
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =

�

⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥

⌅ . (5.36)

By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥

⌅ .

6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =

�

⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥

⌅ . (5.36)

By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥

⌅ .

6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =
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⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥

⌅ . (5.36)

By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥
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6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =

�

⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥
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By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥
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6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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=)

operations and, hence, det(A) = (�1)p det(A⇥), where p is the number of row swaps used in the process.
The matrix A⇥ is in fact in upper triangular form

A⇥ =

�

⇧⇤
a1 ⇤

. . .

0 an

⇥

⌃⌅ .

and, as discussed earlier, the determinant of such a matrix is simply the product of its diagonal entries.
It follows that det(A) = (�1)pa1 · · · an.

5.3 Applications

We have already seen how the determinant of a matrix can be used to decide if an n ⇥ n matrix A is
invertible, and how to compute the inverse of a matrix. Here we introduce Cramer’s Rule, which uses
determinants to solve systems of linear equations Ax = b for the case of quadratic and invertible n ⇥ n
matrices A. Recall from our general discussion in Section 4.1 that, in this case, the linear system has a
unique solution, x = A�1b, for any vector b.

To derive Cramer’s rule we first define the matrices

B(i) := (A1, · · · ,Ai�1,b,Ai+1, · · · ,An) , (5.32)

which are obtained from A by replacing the ith column with b and keeping all other columns unchanged.
We also note that, in terms of the column vectors Aj of A the linear system Ax = b can be written as
(see, for example, Eq. (3.28)) ⌥

j

xjA
j = b , (5.33)

where x = (x1, . . . , xn)T . Then we find

det(B(i)) = det(A1, · · · ,Ai�1,b,Ai+1, · · · ,An)
(5.33)
= det(A1, · · · ,Ai�1,

⌥

j

xjA
j ,Ai+1, · · · ,An)

(D1)
=

⌥

j

xj det(A
1, · · · ,Ai�1,Aj ,Ai+1, · · · ,An)

(D2)
= xi det(A

1, · · · ,Ai�1,Ai,Ai+1, · · · ,An)

= xi det(A) .

Solving for xi we find Cramer’s rule

xi =
det(B(i))

det(A)
=

det(A1, · · · ,Ai�1,b,Ai+1, · · · ,An)

det(A)
(5.34)

for the solution x = (x1, . . . , xn)T of the linear system Ax = b, where A is an invertible n ⇥ n matrix.
To solve linear systems explicitly, Cramer’s rule is only useful for relatively small systems, due to the n!
growth of the determinant. For larger linear systems the row reduction method introduced in Section (4.3)
should be used.

Example 5.3: Cramer’s rule

Let us apply Cramer’s rule to a linear system Ax = b with

A =

�

⇤
2 �1 0
1 2 �2
0 3 4

⇥

⌅ , b =

�

⇤
1
2
0

⇥

⌅ . (5.35)
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =

�

⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥

⌅ . (5.36)

By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥

⌅ .

6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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6) Scalar product

Norm (length):

The property (S3) ensures that we can sensible define the norm (or length) of a vector as

|v| :=
⇥
⇤v,v⌅ . (6.3)

Note that in the hermitian case, (S1) implies that ⇤v,v⌅ = ⇤v,v⌅� so that ⇤v,v⌅ is real. For this reason,
the condition (S3) actually makes sense in the hermitian case (if ⇤v,v⌅ was complex there would be no
well-defined sense in which we could demand it to be positive) and this explains the need for including
the complex conjugation in (S1).

The Cauchy-Schwarz inequality can be shown as in Lemma 2.1 (taking care to include complex con-
jugation in the hermitian case), so we have in general

|⇤v,w⌅| � |v||w| . (6.4)

The proof of the triangle inequality in Lemma 2.2 also goes through in general, so for the norm (6.3) of a
general scalar product we have

|v +w| � |v|+ |w| . (6.5)

In analogy with Eq. (2.6), the Cauchy-Schwarz inequality allows the definition of the angle �(v,w) ⇥ [0,�]
between two non-zero vectors v, w by

cos(�(v,w)) :=
⇤v,w⌅
|v||w| . (6.6)

Two non-zero vectors v and w are called orthogonal if they form an angle �(v,w) = �/2, or, equivalently,
if ⇤v,w⌅ = 0. We should now discuss some examples of scalar products.

Example 6.1: Examples of scalar products

(a) Standard scalar product in Rn

This is the dot product introduced earlier. For two vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in
Rn it is defined as

⇤v,w⌅ := v ·w = vTw =
n�

i=1

viwi . (6.7)

We already know from Eq. (2.3) that it satisfies all the requirements in Def. 6.1 for a real scalar product.

(b) Standard scalar product in Cn

For two vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in Cn the standard scalar product in Cn is
defined as

⇤v,w⌅ := v†w =
n�

i=1

v�iwi . (6.8)

It is easy to check that it satisfies the requirements in Def. 6.1 for a hermitian scalar product. In particular,
the associated norm is given by

|v|2 = ⇤v,v⌅ =
n�

i=1

|vi|2 , (6.9)

where |vi| denotes the modulus of the complex number vi. This is indeed real and positive, as it must,
but note that the inclusion of the complex conjugate in Eq. (6.8) is crucial.

(c) Minkowski product in R4

75

Definition: 

From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =

�

⇤
1 �1 0
2 2 �2
0 3 4

⇥

⌅ , B(2) =

�

⇤
2 1 0
1 2 �2
0 0 4

⇥

⌅ , B(3) =

�

⇤
2 �1 1
1 2 2
0 3 0

⇥

⌅ . (5.36)

By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
22
12
�9

⇥

⌅ .

6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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From Eq. (5.32), that is by replacing one column of A with the vector b, we find the three matrices

B(1) =
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⇤
1 �1 0
2 2 �2
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⇥

⌅ , B(2) =
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⇤
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By straightforward computation, for example using a Laplace expansion, it follows that det(A) = 32,
det(B(1)) = 22, det(B(2)) = 12 and det(B(3)) = �9. From Eq. (5.34) this leads to the solution

x =
1

32

�

⇤
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⇥
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6 Scalar products

In Section 2 we have introduced the standard scalar product on Rn (the dot product) and we have seen
its usefulness, particularly for geometrical applications. Here, we study its generalizations to arbitrary
vector spaces.

6.1 Real and hermitian scalar products

Definition 6.1. A real (hermitian) scalar product on a vector space V over F = R (F = C) is a map
⌃ · , · ⌥ : V ⇥ V ⇤ R(C) satisfying

(S1) ⌃v,w⌥ = ⌃w,v⌥, for a real scalar product, F = R
⌃v,w⌥ = ⌃w,v⌥�, for a hermitian scalar product, F = C

(S2) ⌃v,�u+ ⇥w⌥ = �⌃v,u⌥+ ⇥⌃v,w⌥
(S3) ⌃v,v⌥ > 0 if v ⇧= 0

for all vectors v,u,w ⌅ V and all scalars �,⇥ ⌅ F .

If (S1) and (S2), but not necessarily (S3) are satisfied, then ⌃ · , · ⌥ is called a bi-linear form (in the real
case F = R) or a sesqui-linear form (in the complex case F = C).

Let us discuss this definition, beginning with the case of a real scalar product. The condition (S2)
says that a scalar product is linear in the second argument, in precisely the same sense that a linear map
is linear (see Def. 3.5). For the real case, the scalar product is symmetric in the two arguments from
condition (S1) and, together with (S2), this implies linearity in the first argument, so

⌃�v + ⇥u,w⌥ = �⌃v,w⌥+ ⇥⌃u,w⌥ . (6.1)

So, in the real case, the scalar product is bi-linear. In this sense, we should think of the above definition
as natural, extending our notion of linearity to maps with two vectorial arguments.

The situation is somewhat more complicated in the hermitian case. Here, the complex conjugation in
(S1) together with (S2) leads to

⌃�v + ⇥u,w⌥ = ��⌃v,w⌥+ ⇥�⌃u,w⌥ . (6.2)

Hence, sums in the first argument of a hermitian scalar product can still be pulled apart, but scalars are
pulled out with a complex conjugation. This property, together with the linearity in the second argument 4

is also called sesqui-linearity.

4In some parts of the mathematics literature a hermitian scalar product is defined to be linear in the first argument. Our
definition based on linearity in the second argument is the usual convention in the physics literature.
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The property (S3) ensures that we can sensible define the norm (or length) of a vector as

|v| :=
⇥
⇤v,v⌅ . (6.3)

Note that in the hermitian case, (S1) implies that ⇤v,v⌅ = ⇤v,v⌅� so that ⇤v,v⌅ is real. For this reason,
the condition (S3) actually makes sense in the hermitian case (if ⇤v,v⌅ was complex there would be no
well-defined sense in which we could demand it to be positive) and this explains the need for including
the complex conjugation in (S1).

The Cauchy-Schwarz inequality can be shown as in Lemma 2.1 (taking care to include complex con-
jugation in the hermitian case), so we have in general

|⇤v,w⌅| � |v||w| . (6.4)

The proof of the triangle inequality in Lemma 2.2 also goes through in general, so for the norm (6.3) of a
general scalar product we have

|v +w| � |v|+ |w| . (6.5)

In analogy with Eq. (2.6), the Cauchy-Schwarz inequality allows the definition of the angle �(v,w) ⇥ [0,�]
between two non-zero vectors v, w by

cos(�(v,w)) :=
⇤v,w⌅
|v||w| . (6.6)

Two non-zero vectors v and w are called orthogonal if they form an angle �(v,w) = �/2, or, equivalently,
if ⇤v,w⌅ = 0. We should now discuss some examples of scalar products.

Example 6.1: Examples of scalar products

(a) Standard scalar product in Rn

This is the dot product introduced earlier. For two vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in
Rn it is defined as

⇤v,w⌅ := v ·w = vTw =
n�

i=1

viwi . (6.7)

We already know from Eq. (2.3) that it satisfies all the requirements in Def. 6.1 for a real scalar product.

(b) Standard scalar product in Cn

For two vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in Cn the standard scalar product in Cn is
defined as

⇤v,w⌅ := v†w =
n�

i=1

v�iwi . (6.8)

It is easy to check that it satisfies the requirements in Def. 6.1 for a hermitian scalar product. In particular,
the associated norm is given by

|v|2 = ⇤v,v⌅ =
n�

i=1

|vi|2 , (6.9)

where |vi| denotes the modulus of the complex number vi. This is indeed real and positive, as it must,
but note that the inclusion of the complex conjugate in Eq. (6.8) is crucial.

(c) Minkowski product in R4
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(c) real n⇥ n matrices hA,Bi := tr(ATB) =
X

ij

AijBij



Ortho-normal basis: 
basis ✏1, . . . , ✏n of V with

For two four-vectors v = (v0, v1, v2, v3)T and w = (w0, w1, w2, w3)T in R4, the Minkowski product is
defined as

⇧v,w⌃ := vT ⇤w = �v0w0 + v1w1 + v2w2 + v3w3 where ⇤ = diag(�1, 1, 1, 1) . (6.10)

It is easy to show that it satisfies conditions (S1) and (S2) but not condition (S3). For example, for
v = (1, 0, 0, 0)T we have

⇧v,v⌃ = �1 , (6.11)

which contradicts (S3). Therefore, the Minkowski product is not a scalar product but merely a bi-linear
form. Nevertheless, it plays an important role in physics, specifically in the context of special (and general)
relativity.

(d) Scalar product for function vector spaces
Def. 6.1 applies to arbitrary vector spaces so we should discuss at least one example of a more abstract
vector space. Consider the vector space of continuous (real- or complex-valued) functions f : [a, b] ⇤ R
or C on an interval [a, b] ⇥ R. A scalar product for such functions can be defined by the integral

⇧f, g⌃ :=
⇥ b

a
dxf(x)�g(x) . (6.12)

It is easily checked that the conditions (S1)–(S3) are satisfied. Scalar products of this kind are of great
importance in physics, particularly in quantum mechanics.

We conclude our introduction to scalar products with a simple but important observation about orthogonal
vectors.

Lemma 6.1. Pairwise orthogonal and non-zero vectors v1, . . . ,vk are linearly independent.

Proof. Start with
k�

i=1

�ivi = 0

and take the scalar product of this equation with one of the vectors, vj . Since ⇧vi,vj⌃ = 0 for i ⌅= j it
follows that �j |vj |2 = 0. Since vj ⌅= 0 its norm is positive, |vj | > 0, so �j = 0.

6.2 Orthonormal basis, Gram-Schmidt procedure

From the previous Lemma, n pairwise orthogonal, non-zero vectors in an n-dimensional vector space form
a basis. This motivates the following

Definition 6.2. A basis �1, . . . , �n of a vector space V with a scalar product is called ortho-normal i�

⇧�i, �j⌃ = ⇥ij , (6.13)

that is, if the basis vectors are pairwise orthogonal and have length one.

Example 6.2: Examples of ortho-normal basis

(a) The basis of standard unit vectors, e1, . . . , en of Rn (Cn) is an ortho-normal basis with respect to the
standard scalar product on Rn (Cn), as defined in Example 6.1.
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Examples of ON basis

(a) ei · ej = �ij =� e1, . . . , en ON basis of Rn,Cn

ON basis of R2 w.r.t. dot product

(b) The vectors

�1 =
1⌥
2

�
1
1

⇥
, �2 =

1⌥
2

�
1

�1

⇥
(6.14)

form an orthonormal basis on R2 and C2 with respect to the standard scalar product.

An ortho-normal basis has many advantages compared to an arbitrary basis of a vector space. For example,
consider the coordinates of a vector v ⌅ V relative to an ortho-normal basis {�1, . . . , �n}. Of course, we
can write v as a linear combination v =

⇤n
i=1 �i�i with some coordinates �i but, in the general case, these

coe�cients need to be determined by solving a system of linear equations. For an ortho-normal basis, we
can just take the scalar product of this equation with �j , leading to

⇧�j ,v⌃ = ⇧�j
n⌅

i=1

�i�i⌃ =
n⌅

i=1

�i ⇧�j , �i⌃⌥ ⌃⇧ �
=�ij

= �j

So in summary, the coordinates of a vector v relative to an ortho-normal basis {�1, . . . , �n} can be computed
as

v =
n⌅

i=1

�i�i ⇥⇤ �i = ⇧�i,v⌃ . (6.15)

Example 6.3: Coordinates relative to an ortho-normal basis

Consider the ortho-normal basis {�1, �2} from Eq. (6.14) and the vector v = (2,�3)T . We would like to
write this vector as a linear combination v = �1�1 + �2�2. Then, the coordinates �1, �2 are given by

�1 = �1 · v =
1⌥
2

�
1
1

⇥
·
�

2
�3

⇥
= � 1⌥

2
, �2 = �2 · v =

1⌥
2

�
1

�1

⇥
·
�

2
�3

⇥
=

5⌥
2
.

Does every (finite-dimensional) vector space have an ortho-normal basis and, if so, how can it be deter-
mined? The Gram-Schmidt procedure answers both of these questions.

Theorem 6.1. (Gram-Schmidt procedure) If {v1, . . . ,vn} is a basis of the vector space V , then there exists
an ortho-normal basis {�1, . . . , �n} of V such that Span(�1, . . . , �k) = Span(v1, . . . ,vk) for all k = 1, . . . , n.

Proof. The proof is constructive. The first vector of our prospective ortho-normal basis is obtained by
simply normalizing v1, that is,

�1 =
v1

|v1|
. (6.16)

Clearly, |�1| = 1 and Span(�1) = Span(v1). Suppose we have already constructed the first k � 1 vectors
�1, . . . , �k�1, mutually orthogonal, normalized and such that Span(�1, . . . , �j) = Span(v1, . . . ,vj) for all
j = 1, . . . , k� 1. The next vector, �k, is then constructed by first subtracting from vk its projections onto
�1, . . . , �k�1 and then normalizing, so

v⇥
k = vk �

k�1⌅

i=1

⇧�i,vk⌃�i , �k =
v⇥
k

|v⇥
k|

. (6.17)
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(b)

(c) ⌫1 =
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�2i

◆
ON basis of C2, ⌫†

i⌫j = �ij
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�1, . . . , �k�1, mutually orthogonal, normalized and such that Span(�1, . . . , �j) = Span(v1, . . . ,vj) for all
j = 1, . . . , k� 1. The next vector, �k, is then constructed by first subtracting from vk its projections onto
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v⇥
k = vk �

k�1⌅

i=1

⇧�i,vk⌃�i , �k =
v⇥
k

|v⇥
k|

. (6.17)
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form an orthonormal basis on R2 and C2 with respect to the standard scalar product.

An ortho-normal basis has many advantages compared to an arbitrary basis of a vector space. For example,
consider the coordinates of a vector v ⌅ V relative to an ortho-normal basis {�1, . . . , �n}. Of course, we
can write v as a linear combination v =

⇤n
i=1 �i�i with some coordinates �i but, in the general case, these

coe�cients need to be determined by solving a system of linear equations. For an ortho-normal basis, we
can just take the scalar product of this equation with �j , leading to
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�i�i⌃ =
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=�ij
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Real case:



• Scalar product: 

We would like to find the ortho-normal basis associated to the standard monomial basis v1 = 1, v2 = x,
v3 = x2 of this space.
1) To find �1:

⇥v1,v1⇤ =
⌅ 1

�1
dx = 2 , �1 =

v1

|v1|
=

1⌅
2
.

2) To find �2 first compute v⇤
2

⇥�1,v2⇤ =
⌅ 1

�1
dx

x⌅
2
= 0 , v⇤

2 = v2 � ⇥�1,v2⇤�1 = x ,

and then normalize

⇥v⇤
2,v

⇤
2⇤ =

⌅ 1

�1
dx x2 =

2

3
�2 =

v⇤
2

|v⇤
2|

=

⇧
3

2
x .

2) To find �3 first compute v⇤
3

⇥�1,v3⇤ =
1⌅
2

⌅ 1

�1
dx x2 =

⌅
2

3
, ⇥�2,v3⇤ =

⇧
3

2

⌅ 1

�1
dx x3 = 0 , v⇤

3 = v3�⇥�1,v3⇤�1�⇥�2,v3⇤�2 = x2�1

3
,

and normalize

⇥v⇤
3,v

⇤
3⇤ =

⌅ 1

�1
dx

�
x2 � 1

3

⇥2

=
8

45
, �3 =

v⇤
3

|v⇤
3|

=

⇧
5

8
(3x2 � 1) .

So, in summary, the ortho-normal polynomial basis is

�1 =
1⌅
2
, �2 =

⇧
3

2
x , �3 =

⇧
5

8
(3x2 � 1) .

These are the first three of an infinite family or ortho-normal polynomials, referred to as Legendre poly-
nomials, which play an important role in mathematical physics.

We have already seen in Eq. (6.15) that the coordinates of a vector relative to an ortho-normal basis are
easily computed from the scalar product. There are a few more helpful simplifications which arise for an
ortho-normal basis. For their derivation, we start with two vectors

v =
⇤

i

�i�i , �i = ⇥�i,v⇤ (6.18)

w =
⇤

i

⇥i�i , ⇥i = ⇥�i,w⇤ (6.19)

and compute their scalar product

⇥v,w⇤ =
⇤

i,j

�⇥
i ⇥j ⇥�i, �j⇤� ⌥⌃  

=�ij

=
⇤

i

�⇥
i ⇥i =

⇤

i

⇥v, �i⇤⇥�i,w⇤ . (6.20)

This shows that, relative to an ortho-normal basis, a scalar product can be expressed in terms of the
standard scalar product on Rn or Cn. Suppose we would like to compute the representing matrix A
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Complex case: v = (2,�3)T = �1⌫1 + �2⌫2

=) �1 = ⌫†
1v =

1p
5

✓
2
i

◆† ✓
2

�3

◆
=

4 + 3ip
5

, �2 = ⌫†
2v =

1p
5

✓
1

�2i

◆† ✓
2

�3

◆
=

2� 6ip
5

• Matrix elements: 

of a linear map f : V ⇤ V relative to an ortho-normal basis {�1, . . . , �n} of V . In general, following
Lemma 3.3, the entries Aij of the matrix A can be obtained from

f(�j) =
⇥

i

Aij�i . (6.21)

Taking the scalar product of this equation with �k results in the simple formula

Aij = ⌃�i, f(�j)⌥ . (6.22)

In physics, the RHS of this expression is often referred to as a matrix element of the map f . It is worth
noting that a linear map is uniquely determined by its matrix elements.

Lemma 6.2. If two linear maps f : V ⇤ V and g : V ⇤ V satisfy ⌃v, f(w)⌥ = ⌃v, g(w)⌥ (or ⌃f(v),w⌥ =
⌃g(v),w⌥) for all v,w ⌅ V then f = g.

Proof. By linearity of the scalar product in the second argument the assumption implies that ⌃v, f(w)�
g(w)⌥ = 0 for v,w ⌅ V . In particular, if we choose v = f(w) � g(w), it follows from Def. 6.1 (S3) that
f(w) � g(w) = 0. Since this holds for all w it follows that f = g. The alternative statement follows
simply by applying Def. 6.1 (S1).

We end this discussion of orthogonality with a result on perpendicular spaces. For a sub vector space
W ⇥ V the perpendicular space W� is defined as

W� = {v ⌅ V | ⌃w,v⌥ = 0 for all w ⌅ W} . (6.23)

In other words, W� consists of all vectors which are orthogonal to all vector in W . For example, if W ⇥ R3

is a plane through the origin then W� is the line through the origin perpendicular to this plane. The
following statements are intuitive and will be helpful for our treatment of eigenvectors and eigenvalues in
the next section.

Lemma 6.3. For a sub vector space W ⇥ V of a finite dimensional vector space V with a scalar product
the following holds:

(i) W� is a sub vector space of V .
(ii) W ⇧W� = {0}
(iii) dim(W ) + dim(W�) = dim(V )

Proof. (i) If v1,v2 ⌅ W� then clearly �v1 + ⇥v2 ⌅ W� so from Def. 1.2 W� is a sub vector space.

(ii) If v ⌅ W ⇧W� then ⌃v,v⌥ = 0, but from Def. 6.1 (S3) this implies that v = 0.

(iii) Choose an ortho-normal basis {�1, . . . , �k} of W and define the linear map f : V ⇤ V by f(v) =�k
i=1⌃�i,v⌥�i (a projection onto W ). Clearly Im(f) ⇥ W . For w ⌅ W it follows from Eq. (6.15) that

f(w) = w so that Im(f) = W . Moreover, Ker(f) = W� and the claim follows from the dimension
formula (3.4) applied to the map f .

6.3 Adjoint linear map

A common theme in mathematics is to explore the new structures which arise from consistency require-
ments when two mathematical ideas are combined. In the present case, we have combined vector spaces
and scalar products. Since vector spaces are equipped with linear maps it is, therefore, natural to ask
about the relation between linear maps and scalar product. Specifically, we would like to study, in this
sub-section and the next, specific classes of linear maps which relate to a given scalar product in an
interesting way. We begin by defining adjoint linear maps.
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Gram-Schmidt procedure: Start with basis v1, . . . ,vn :
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�
1
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form an orthonormal basis on R2 and C2 with respect to the standard scalar product.

An ortho-normal basis has many advantages compared to an arbitrary basis of a vector space. For example,
consider the coordinates of a vector v ⌅ V relative to an ortho-normal basis {�1, . . . , �n}. Of course, we
can write v as a linear combination v =

⇤n
i=1 �i�i with some coordinates �i but, in the general case, these

coe�cients need to be determined by solving a system of linear equations. For an ortho-normal basis, we
can just take the scalar product of this equation with �j , leading to
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So in summary, the coordinates of a vector v relative to an ortho-normal basis {�1, . . . , �n} can be computed
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write this vector as a linear combination v = �1�1 + �2�2. Then, the coordinates �1, �2 are given by
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Does every (finite-dimensional) vector space have an ortho-normal basis and, if so, how can it be deter-
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. (6.16)
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=) ✏1, . . . , ✏n is on ON basis

Obviously, |�k| = 1 and for any vector �j with j < k we have
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Hence, �k is orthogonal to all vectors �1, . . . , �k�1. Moreover, since Span(�1, . . . , �k�1) = Span(v1, . . . ,vk�1)
and vk and �k only di�er by a re-scaling and terms proportional to �1, . . . , �k�1 is follows that Span(�1, . . . , �k) =
Span(v1, . . . ,vk).

We have seen that every finitely spanned vector space has a basis. The above theorem, therefore, shows
that every finitely spanned vector space with a scalar product also has an ortho-normal basis. Note that
the proof provides a practical method, summarized by Eqs. (6.16), (6.17), to compute an ortho-normal
basis from a given basis. Let us apply this method to some explicit examples.
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So, in summary, the ortho-normal basis is
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It is easy (and always advisable) to check that indeed ⇤�i, �j⌅ = �ij .

(b) For a somewhat more adventurous application of the Gram-Schmidt procedure consider the vector
space of quadratic polynomials in one variable x ⇥ [1,�1] with real coe⇥cients and a scalar product
defined by

⇤f, g⌅ =
⌃ 1

�1
dxf(x)g(x) .
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Every (finite-dimensional) vector space with scalar product

has an ortho-normal basis.



Adjoint map:
For f : V ! V adjoint map f†

: V ! V is defined by

Definition 6.3. For a linear map f : V ⇥ V on a vector space V with scalar product, an adjoint linear
map, f † : V ⇥ V is a map satisfying

⇧v, fw⌃ = ⇧f †v,w⌃ (6.24)

for all v,w ⌅ V .

In other words, a linear map can be “moved” into the other argument of the scalar product by taking its
adjoint. The following properties of the adjoint map are relatively easy to show.

Lemma 6.4. (Properties of the adjoint)

(i) For a given linear map f the adjoint f † is uniquely determined.
(ii) (f †)† = f
(iii) (f + g)† = f † + g†

(iv)(�f)† = �⇥f †

(v) (f � g)† = g† � f †

(vi) (f�1)† = (f †)�1, if f is invertible.

Proof. (i) For two adjoints f1, f2 for f we have ⇧f1(v),w⌃ = ⇧v, f(w)⌃ = ⇧f2(v),w⌃ for all v,w ⌅ V .
Then Lemma 6.2 implies that f1 = f2.
(ii) ⇧(f †)†(v),w⌃ = ⇧v, f †(w)⌃ = ⇧f(v,w⌃. Comparing the LHS and RHS together with Lemma 6.2 shows
that (f †)† = f .
(iii) ⇧(f+g)†(v,w⌃ = ⇧v, (f+g)(w)⌃ = ⇧v, f(w)⌃+⇧v, g(w)⌃ = ⇧f †(v),w⌃+⇧g†(v),w⌃ = ⇧(f †+g†)(v),w⌃
and the claim follows from Lemma 6.2.
(iv) ⇧(�f)†(v),w⌃ = ⇧v, (�f)(w)⌃ = �⇧v, f(w)⌃ = �⇧f †(v),w⌃ = ⇧(�⇥f †)(v),w⌃ and Lemma 6.2 leads to
the stated result.
(v) ⇧(f � g)†(v),w⌃ = ⇧v, (f � g)(w)⌃ = ⇧f †(v), g(w)⌃ = ⇧g† � f †(v),w⌃.
(vi) idV = (f � f�1)† = f † � (f�1)†.

Let us now proceed in a more practical way and understand the adjoint map relative to an ortho-normal
basis �1, . . . , �n of V . From Eq. (6.22) the matrices A, B describing f and f † relative to this basis are
given by

Aij = ⇧�i, f(�j)⌃ , Bij = ⇧�i, f †(�j)⌃ . (6.25)

Using the scalar product property (S1) in Def. (6.1) these matrices are related by

Bij = ⇧�i, f †(�j)⌃ = ⇧f †(�i), �j⌃⇥ = ⇧�i, f(�j)⌃⇥ = A⇥
ij =⇤ B = A† , (6.26)

that is, if A represents f then the hermitian conjugate A† represents f †. This also shows that, by reversing
the above argument and defining f † as the linear map associated to A†, that the adjoint always exists -
this was not immediately clear from the definition.

Previously, we have introduced hermitian conjugation merely as a “mechanical” operation to be carried
out for matrices. Now we understand its proper mathematical context - it leads to the matrix which
describes the adjoint linear map. In the case of a real scalar product we can of course drop the complex
conjugation in Eq. (6.26) and the matrix describing the adjoint becomes AT , the transpose of A. Hence,
we have also found a mathematical interpretation for the transposition of matrices.

We have seen in Eq. (6.20) that, with respect to on ortho-normal basis, a scalar product is described
by the standard (real or complex) scalar product on Rn or Cn. It is, therefore, clear that the adjoint of
a matrix A with respect to the standard scalar product is given by its hermitian conjugate, A† (or AT

in the real case). This is easy to verify explicitly from the definition of the standard scalar product in
Example 6.1.

⇧v, Aw⌃ = v†Aw = (A†v)†w = ⇧A†v,w⌃ . (6.27)

A particularly important class of linear maps are those which coincide with their adjoint.
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for all v,w 2 V

to set of equations in 9 variables and is much more complicated. However, it is easy to obtain special
three-dimensional rotations from two-dimensional ones. For example, the matrices

R1(⇤1) =

�

⇤
1 0 0
0 cos ⇤1 � sin ⇤1
0 sin ⇤1 cos ⇤1

⇥

⌅ (6.39)

clearly satisfy R1(⇤1)TR1(⇤1) = 3 and det(R1(⇤1)) = 1 and are, hence, rotation matrices. They describe
a rotation by an angle ⇤1 around the first coordinate axis. Analogously, rotation matrices around the
other two coordinate axis can be written as

R2(⇤2) =

�

⇤
cos ⇤2 0 � sin ⇤2
0 1 0

sin ⇤2 0 cos ⇤2

⇥

⌅ , R3(⇤3) =

�

⇤
cos ⇤3 � sin ⇤3 0
sin ⇤3 cos ⇤3 0
0 0 1

⇥

⌅ . (6.40)

It turns out that general three-dimensional rotation matrices can be obtained as products of the above
three special types. For example, we can write a three-dimensional rotation matrix as R(⇤1, ⇤2, ⇤3) =
R1(⇤1)R2(⇤2)R3(⇤3), that is, as subsequent rotations around the three coordinate axis. Of course, there are
di�erent ways of doing this, another choice frequently used in physics being R(⇧, ⇤,⌅) = R3(⇧)R1(⇤)R3(⌅).
The angles ⇧, ⇤,⌅ in this parametrization are also called the Euler angles and in this case, the rotation
is combined from a rotation by ⌅ around the z-axis, then a rotation by ⇤ around the x-axis and finally
another rotation by ⇧ around the (new) z-axis. The Euler angles are particularly useful to describe to
motion of tops in classical mechanics.

Finally, we note that, unlike their two-dimensional counterparts, three-dimensional rotations do not,
in general, commute. For example, apart from special choices for the angles R1(⇤1)R2(⇤2) ⌃= R2(⇤2)R1(⇤1).

We now turn to the complex case. In this case, from Eq. (6.30), (complex) matrices A describing
unitary maps relative to an ortho-normal basis are characterized by the three equivalent conditions

A†A = ⌅⇧ A�1 = A† ⌅⇧ (Ai)†Aj = �ij . (6.41)

Matrices satisfying these conditions are called unitary. As for orthogonal matrices, checking whether a
given matrix is unitary is usually easiest accomplished with the condition on the LHS. The condition in the
middle states that the inverse of a unitary matrix is simply its hermitian conjugate and the condition an
the RHS says that the column vectors of a unitary matrix form an ortho-normal basis under the standard
hermitian scalar product on Cn. Unitary matrices are precisely those matrices which leave the standard
hermitian scalar product invariant, explicitly

(Av)†(Aw) = v†A†Aw = v† w . (6.42)

The set of all n ⇥ n unitary matrices is denoted by U(n). Orthogonal matrices (being real) also satisfy
the condition for unitary matrices so O(n) ⇤ U(n). For the determinant of unitary matrices we conclude
that 1 = det( ) = det(A†A) = det(A)⇥ det(A) = | det(A)|2. Hence, the determinant of unitary matrices
has complex modulus 1, so

| det(A)| = 1 . (6.43)

The unitary matrices U with det(U) = 1 are called special unitary matrices, and the set of these matrices
is denoted by SU(n). Clearly, rotations are also special unitary so SO(n) ⇤ SU(n). For an arbitrary
unitary n ⇥ n matrix A we can always find a complex phase ⇥ such that ⇥n = det(A). Then, the matrix
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For ortho-normal basis ✏1, . . . , ✏n, Aij = h✏i, f(✏j)i =)

(Real case: † � T )

Orthogonal and unitary maps: f : V ! V satisfying

Definition 6.4. A linear map f : V ⇥ V on a vector space V with scalar product is called self-adjoint
(or hermitian) i� f = f †.

In other words, self-adjoint maps can be moved from one argument of the scalar product into another, so

⌃v, f(w)⌥ = ⌃f(v),w⌥ ⇤⌅ ⌃v, f(w)⌥ = ⌃w, f(v)⌥� . (6.28)

Clearly, relative to an ortho-normal basis, a selft-adjoint linear map is described by a hermitian matrix
(or symmetric matrix in the real case). Further, the self-adjoint linear maps on Rn (Cn) with respect to
the standard scalar product are the symmetric (hermitian) matrices.

Example 6.5: A self-adjoint derivative map

For a more abstract example of a self-adjoint linear map, consider the vector space of (infinitely many
times) di�erentiable functions ⇥ : [a, b] ⇥ C, satisfying ⇥(a) = ⇥(b), with scalar product

⌃⇥,�⌥ =
� b

a
dx⇥(x)��(x) .

The derivative operator

D = �i
d

dx

defines a linear map on this space and we would like to check that it is self-adjoint. Performing an
integration by parts we find

⌃⇥, D�⌥ = �i

� b

a
dx⇥(x)�

d�

dx
(x) = �i [⇥(x)��(x)]ba + i

� b

a
dx

d⇥

dx
(x)��(x) =

� b

a
dx (D⇥)(x)��(x)

= ⌃D⇥,�⌥ .

Hence, D is indeed hermitian. Note that the boundary term vanishes due to the boundary condition
on our functions and that including the factor of i in the definition of D is crucial for the sign to work
out correctly. In quantum mechanics physical quantities are represented by hermitian operators. In this
context, the present operator D plays an important role as it corresponds to linear momentum.

6.4 Orthogonal and unitary maps

Another important class of linear maps which relate to scalar product in a particular way are orthogonal
and unitary maps. They are the linear maps which leave a scalar product unchanged in the sense of

Definition 6.5. Let V be a vector space with a real (hermitian) scalar product. A linear map f : V ⇥ V
is called orthogonal (unitary) i�

⌃f(v), f(w)⌥ = ⌃v,w⌥ (6.29)

for all v,w ⇧ V .

Since scalar products measure lengths of vectors as well as angles between vectors, orthogonal or uni-
tary maps leave these geometrical quantities unchanged. In other words, |f(v)| = |v| and �(v, w) =
�(f(v), f(w)) for an orthogonal or unitary linear map f .
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for all v,w 2 V () f†f = id () f�1
= f†

is called orthogonal (real scalar product) or unitary (complex scalar product)

f self-adjoint: f = f†

For ortho-normal basis ✏1, . . . , ✏n, Aij = h✏i, f(✏j)i =) h✏i, f†(✏j)i = (A†)ij

f = f† () A = A†



Real case: orthogonal matrices

Lemma 6.5. (Properties of unitary maps)

(i) Unitary maps f can also be characterized by f † ⇤ f = idV .
(ii) Unitary maps f are invertible and f�1 = f †.
(iii) The composition of unitary maps is a unitary map.
(iv) The inverse, f †, of a unitary map f is unitary.

Proof. (i) Using the adjoint map, the condition (6.41) can be re-written as ⌃v, f † ⇤ f(w)⌥ = ⌃v, idV (w)⌥.
From Lemma 6.2 a function is uniquely determined by its matrix elements so that orthogonal and unitary
operators can also be defined by the condition

f † ⇤ f = idV . (6.30)

(ii) A direct consequence of (i).
(iii) For two unitary maps f , g, satisfying ⌃f(v), f(w)⌥ = ⌃v,w⌥ and ⌃g(v), g(w)⌥ = ⌃v,w⌥, it follows that
⌃f ⇤ g(v), f ⇤ g(w)⌥ = ⌃f(v), f(w)⌥ = ⌃v,w⌥ and hence, that f ⇤ g is unitary.
(iv) From ⌃f(v), f(w)⌥ = ⌃v,w⌥, writing v⇥ = f(v),w⇥ = f(w) it follows that ⌃v⇥,w⇥⌥ = ⌃f�1(v⇥), f�1(w⇥)⌥
so that f�1 = f † is unitary.

As before, it is useful to work out what this means relative to an ortho-normal basis. If f is described by
a matrix A relative to this basis then we already know that f † is described by the hermitian conjugate
A† in the complex case or by the transpose AT in the real case.

We begin with the real case where the condition (6.30) turns into

ATA = ⌅⇧ A�1 = AT ⌅⇧ Ai ·Aj = �ij . (6.31)

Matrices A satisfying this condition are called orthogonal matrices and they can be characterized, equiv-
alently, by either one of the three conditions above. The simplest way to check if a given matrix is
orthogonal is usually to verify the condition on the LHS. The condition in the middle tells us it is easy to
compute the inverse of an orthogonal matrix - it is simply the transpose. And, finally, the condition on
the RHS says that the column vectors of an orthogonal matrix form an ortho-normal basis with respect
to the standard scalar product (the dot product). In fact, since a real scalar product, written in terms of
an ortho-normal basis, corresponds to the dot product, see Eq. (6.20), we expect that orthogonal matrices
are precisely those matrices which leave the dot product invariant. Indeed, we have

(Av)T (Aw) = vTATAw = vT w . (6.32)

The set of all n⇥n orthogonal matrices is also denoted by O(n). Taking the determinant of the LHS con-
dition in (6.31) and using Lemma 5.1 and Theorem 5.1 gives 1 = det( ) = det(AAT ) = det(A) det(AT ) =
det(A)2 so that

det(A) = ±1 (6.33)

for any orthogonal matrix. The subset of n ⇥ n orthogonal matrices A with determinant det(A) = +1
is called special orthogonal matrices or rotations and denoted by SO(n). Note that the term “rotation”
is indeed appropriate for those matrices. Since they leave the dot product invariant they do not change
lengths of vectors and angles between vectors and the det(A) = +1 conditions excludes orthogonal ma-
trices which contain reflections. The relation between orthogonal matrices with positive and negative
determinants is easy to understand. Consider an orthogonal matrix A with det(A) = �1 and the special
orthogonal matrix F = diag(�1, 1, . . . , 1) with det(F ) = �1 which corresponds to a reflection in the first
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=� det(A) = ±1
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for any orthogonal matrix. The subset of n ⇥ n orthogonal matrices A with determinant det(A) = +1
is called special orthogonal matrices or rotations and denoted by SO(n). Note that the term “rotation”
is indeed appropriate for those matrices. Since they leave the dot product invariant they do not change
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: rotations combined with reflections

2d rotations

coordinate direction. Then the matrix R = FA is a rotation since det(R) = det(F ) det(A) = (�1)2 = 1.
This means every orthogonal matrix A can be written as product

A = FR (6.34)

of a rotation R and a reflection F . To get a better feeling for rotations we should look at some low-
dimensional examples.

Example 6.6: Rotations in two and three dimensions

(a) Two dimensions
To find the explicit form of two-dimensional rotation matrices we start with a general 2⇥ 2 matrix

R =

�
a b
c d

⇥
,

where a, b, c, d are real numbers and impose the conditions RTR = 2 and det(R) = 1. This gives

RTR =

�
a2 + c2 ab+ cd
ab+ cd b2 + d2

⇥
!
=

�
1 0
0 1

⇥
, det(R) = ad� bc

!
= 1 ,

and, hence, the equations a2 + c2 = b2 + d2 = 1, ab + cd = 0 and ad � bc = 1. It is easy to show that a
solution to these equations can always be written as a = d = cos(�), c = �b = sin(�), for some angle � so
that two-dimensional rotation matrices can be written in the form

R(�) =

�
cos � � sin �
sin � cos �

⇥
. (6.35)

Conversely, it is easy to verify that indeed R(�)TR(�) = 2 and det(R(�)) = 1. For the rotation of an
arbitrary vector vector x = (x, y)T we get

x� = Rx =

�
x cos � � y sin �
x sin � + y cos �

⇥
(6.36)

It is easy to verify explicitly that |x�| = |x|, as must be the case, and that the cosine of the angle between
x and x� is given by

cos(�(x�,x)) =
x� · x
|x�||x| =

(x cos � � y sin �)x+ (x sin � + y cos �)y

|x|2 = cos � . (6.37)

This means �(x�,x) equals � and we should, therefore, interpret R(�) as rotation by an angle �. From the
addition theorems of sin and cos it also follows easily that

R(�1)R(�2) = R(�1 + �2) , (6.38)

that is, the rotation angle adds up for subsequent rotations, as one would expect. Note, Eq. (6.6) also im-
plies that two-dimensional rotations commute, since R(�1)R(�2) = R(�1+ �2) = R(�2+ �1) = R(�2)R(�1),
again a property intuitively expected.

(b) Three dimensions
To find the explicit form for three-dimensional rotations we could, in principle, use the same approach as
in two dimensions and impose all relevant constraints on an arbitrary 3 ⇥ 3 matrix. However, this leads
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3d rotations

to set of equations in 9 variables and is much more complicated. However, it is easy to obtain special
three-dimensional rotations from two-dimensional ones. For example, the matrices

R1(⇤1) =

�

⇤
1 0 0
0 cos ⇤1 � sin ⇤1
0 sin ⇤1 cos ⇤1

⇥

⌅ (6.39)

clearly satisfy R1(⇤1)TR1(⇤1) = 3 and det(R1(⇤1)) = 1 and are, hence, rotation matrices. They describe
a rotation by an angle ⇤1 around the first coordinate axis. Analogously, rotation matrices around the
other two coordinate axis can be written as

R2(⇤2) =

�

⇤
cos ⇤2 0 � sin ⇤2
0 1 0

sin ⇤2 0 cos ⇤2

⇥

⌅ , R3(⇤3) =

�

⇤
cos ⇤3 � sin ⇤3 0
sin ⇤3 cos ⇤3 0
0 0 1

⇥

⌅ . (6.40)

It turns out that general three-dimensional rotation matrices can be obtained as products of the above
three special types. For example, we can write a three-dimensional rotation matrix as R(⇤1, ⇤2, ⇤3) =
R1(⇤1)R2(⇤2)R3(⇤3), that is, as subsequent rotations around the three coordinate axis. Of course, there are
di�erent ways of doing this, another choice frequently used in physics being R(⇧, ⇤,⌅) = R3(⇧)R1(⇤)R3(⌅).
The angles ⇧, ⇤,⌅ in this parametrization are also called the Euler angles and in this case, the rotation
is combined from a rotation by ⌅ around the z-axis, then a rotation by ⇤ around the x-axis and finally
another rotation by ⇧ around the (new) z-axis. The Euler angles are particularly useful to describe to
motion of tops in classical mechanics.

Finally, we note that, unlike their two-dimensional counterparts, three-dimensional rotations do not,
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three special types. For example, we can write a three-dimensional rotation matrix as R(⇤1, ⇤2, ⇤3) =
R1(⇤1)R2(⇤2)R3(⇤3), that is, as subsequent rotations around the three coordinate axis. Of course, there are
di�erent ways of doing this, another choice frequently used in physics being R(⇧, ⇤,⌅) = R3(⇧)R1(⇤)R3(⌅).
The angles ⇧, ⇤,⌅ in this parametrization are also called the Euler angles and in this case, the rotation
is combined from a rotation by ⌅ around the z-axis, then a rotation by ⇤ around the x-axis and finally
another rotation by ⇧ around the (new) z-axis. The Euler angles are particularly useful to describe to
motion of tops in classical mechanics.

Finally, we note that, unlike their two-dimensional counterparts, three-dimensional rotations do not,
in general, commute. For example, apart from special choices for the angles R1(⇤1)R2(⇤2) ⌃= R2(⇤2)R1(⇤1).

We now turn to the complex case. In this case, from Eq. (6.30), (complex) matrices A describing
unitary maps relative to an ortho-normal basis are characterized by the three equivalent conditions

A†A = ⌅⇧ A�1 = A† ⌅⇧ (Ai)†Aj = �ij . (6.41)

Matrices satisfying these conditions are called unitary. As for orthogonal matrices, checking whether a
given matrix is unitary is usually easiest accomplished with the condition on the LHS. The condition in the
middle states that the inverse of a unitary matrix is simply its hermitian conjugate and the condition an
the RHS says that the column vectors of a unitary matrix form an ortho-normal basis under the standard
hermitian scalar product on Cn. Unitary matrices are precisely those matrices which leave the standard
hermitian scalar product invariant, explicitly

(Av)†(Aw) = v†A†Aw = v† w . (6.42)

The set of all n ⇥ n unitary matrices is denoted by U(n). Orthogonal matrices (being real) also satisfy
the condition for unitary matrices so O(n) ⇤ U(n). For the determinant of unitary matrices we conclude
that 1 = det( ) = det(A†A) = det(A)⇥ det(A) = | det(A)|2. Hence, the determinant of unitary matrices
has complex modulus 1, so

| det(A)| = 1 . (6.43)

The unitary matrices U with det(U) = 1 are called special unitary matrices, and the set of these matrices
is denoted by SU(n). Clearly, rotations are also special unitary so SO(n) ⇤ SU(n). For an arbitrary
unitary n ⇥ n matrix A we can always find a complex phase ⇥ such that ⇥n = det(A). Then, the matrix
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Complex case: unitary matrices
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2d special unitary matrices

U = ⇧�1A is special unitary since det(U) = det(⇧�1A) = ⇧�n det(A) = 1. This means every unitary
matrix A can be written as a product

A = ⇧U (6.44)

of a special unitary matrix U and a complex phase ⇧.

Example 6.7: Special unitary matrices in two dimensions

We can find all two-dimensional special unitary matrices by using the same method as for two-dimensional
rotations. We start with an arbitrary complex 2⇥ 2 matrix

U =

�
� ⇥
⇤ ⌅

⇥
,

where �, ⇥, ⇤, ⌅ are complex numbers and impose the conditions U †U = 2 and det(U) = 1. After a short
calculation this shows that every two-dimensional special unitary matrix can be written in terms of two
complex numbers �, ⇥ as

U =

�
� ⇥

�⇥⇥ �⇥

⇥
where |�|2 + |⇥|2 = 1 . (6.45)

This shows that two-dimensional special unitary matrices depend on two complex parameters �, ⇥ subject
to the (real) constraint |�|2 + |⇥|2 = 1 and, hence, on three real parameters. Inserting the special
choice � = cos ⌃, ⇥ = � sin ⌃ into (6.45) we recover the two-dimensional rotation matrices (6.6), so that
SO(2) ⇤ SU(2), as expected from our general discussion.

The general study of orthogonal and unitary matrices is part of the theory of Lie groups, a more advanced
mathematical discipline which is beyond the scope of this introductory text.

Orthogonal and unitary matrices have numerous applications in physics which we would like to illus-
trate with an example from classical mechanics.

Applications: Newton’s law in a rotating system

Newton’s law for the motion x = x(t) of a mass point with mass m under the influence of a force F reads

mẍ = F . (6.46)

We would like to work out the form this law takes if we transform it to rotating coordinates y, related to
the original, non-rotating coordinates x by

x = R(t)y . (6.47)

Here R(t) is a (generally time-dependent) rotation, that is, a 3⇥ 3 matrix satisfying

R(t)TR(t) = 3 (6.48)

for all times t. For example, such a version of Newton’s law is relevant to describing mechanics on earth.
To re-write Eq. (6.46) in terms of y we first multiply both sides with RT = R�1 so that

mRT ẍ = FR , (6.49)
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6) Eigenvectors and eigenvalues
Def. of eigenvalues and eigenvectors:

Then v is called eigenvector.

Characteristic polynomial: 

dimEigA(�) > 0. If dimEigA(�) = 1 the eigenvalue � is called non-degenerate (up to re-scaling there is
only one eigenvector for �) and if dimEigA(�) > 1 the eigenvalue � is called degenerate (there are at least
two linearly independent eigenvectors for �).

We see that � is an eigenvalue of A precisely when Ker(A�� ) is non-trivial. From Lemma 3.1 this is
the same as saying that A��id is not invertible which is equivalent to det(A�� ) = 0, using Lemma 5.1.
So in summary

� eigenvalue of A ⇤⌅ Ker(A� � ) ⇧= {0} ⇤⌅ det(A� � ) = 0 . (7.3)

This leads to an explicit method to calculate eigenvalues and eigenvectors which we develop in the next
sub-section.

7.2 Characteristic polynomial

Definition 7.2. The characteristic polynomial of a linear map A : V ⇥ V is defined by

⇥A(�) := det(A� � ) . (7.4)

For an n-dimensional vector space V the characteristic polynomials ⇥A(�) is a polynomial of order n in
� whose coe�cients depend on A. Clearly, from Eq. (7.3), the eigenvalues of A are precisely the zeros
of its characteristic polynomial. So schematically, eigenvalues and eigenvectors of A can be computed as
follows.

1. Compute the characteristic polynomials ⇥A(�) = det(A� � ) of A.

2. Find the zeros, �, of the characteristic polynomial. They are the eigenvalues of A.

3. For each eigenvalue � compute the eigenspace EigA(�) = Ker(A�� ) by finding all vectors v which
solve the equation

(A� � )v = 0 . (7.5)

Example 7.1: Computing eigenvalues and eigenvector

We would like to compute the eigenvalues and eigenvectors of the matrix

A =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅ . (7.6)

The characteristic polynomial is

⇥A(�) = det

�

⇤
1� � �1 0
�1 2� � �1
0 �1 1� �

⇥

⌅ = �(�� 1)(�� 3) , (7.7)

so we have three eigenvalues �1 = 0, �2 = 1 and �3 = 3. Writing v = (x, y, z)T , we compute the
eigenvectors for each of these eigenvalues in turn.
�1 = 0:

(A� 0 )v =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅

�

⇤
x
y
z

⇥

⌅ =

�

⇤
x� y

�x+ 2y � z
�y + z

⇥

⌅ !
= 0 ⇤⌅ x = y = z
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= (�1)n�n + (�1)n�1tr(A)�n�1 + · · ·+ det(A)

To find eigenvalues: solve �A(�) = 0

To find eigenvectors:
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solve

for each �

Key statement: 
A can be diagonalized () A has a basis v1, . . . ,vn of eigenvectors

The above Lemma shows that the constant term in the characteristic polynomial equals det(A) and that
this is basis-independent. Of course, we have already shown the basis-independence of the determinant in
Section (5.2). However, we do gain some new insight from the basis-independence of the coe�cient cn�1

in the characteristic polynomial. We define the trace of a matrix A by

tr(A) :=
n�

i=1

Aii , (7.8)

that is, by the sum of its diagonal entries. Since cn�1 = (�1)n�1tr(A) it follows that the trace is basis-
independent. This can also be seen more directly. First, note that

tr(AB) =
�

i,j

AijBji =
�

i,j

BjiAij = tr(BA) , (7.9)

so matrices inside a trace can be commuted without changing the value of the trace. Hence,

tr(PAP�1) = tr((PA)P�1) = tr(P�1(PA)) = tr(A) , (7.10)

and we have another proof for the basis-independence of the trace.

7.3 Diagonalization of matrices

We now come back to our original question. How can we find a basis in which a matrix has a particularly
simply form, preferably diagonal? To be precise we start with

Definition 7.3. We say an n ⇥ n matrix A can be diagonalized if there is an invertible n ⇥ n matrix P
such that Â := P�1AP is diagonal.

In other words, a matrix can be diagonalized if we can find a basis transformation so that it becomes
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=P
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diagonalization: 
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� eigenvalue of A : V ! V () There is a v 6= 0 with Av = �v



Useful statements for hermitian matrices:
• All eigenvalues are real.

• Eigenvectors for different eigenvalues are orthogonal.
• There exists an ortho-normal basis of eigenvectors.

Eigenvectors and eigenvalues for hermitian matrices

Recall: hv, Awi = hAv,wi for A hermitian

Av = �v =)
�hv,vi = hv,�vi = hv, Avi = hAv,vi = h�v,vi = �⇤hv,vi =) � = �⇤

Av1 = �1v1, Av2 = �2v2, �1 6= �2 =)

�1hv1,v2i = h�1v1,v2i = hAv1,v2i = hv1, Av2i = hv1,�2v2i = �2hv1,v2i

=) hv1,v2i = 0



Diagonalization of symmetric matrices

dimEigA(�) > 0. If dimEigA(�) = 1 the eigenvalue � is called non-degenerate (up to re-scaling there is
only one eigenvector for �) and if dimEigA(�) > 1 the eigenvalue � is called degenerate (there are at least
two linearly independent eigenvectors for �).

We see that � is an eigenvalue of A precisely when Ker(A�� ) is non-trivial. From Lemma 3.1 this is
the same as saying that A��id is not invertible which is equivalent to det(A�� ) = 0, using Lemma 5.1.
So in summary

� eigenvalue of A ⇤⌅ Ker(A� � ) ⇧= {0} ⇤⌅ det(A� � ) = 0 . (7.3)

This leads to an explicit method to calculate eigenvalues and eigenvectors which we develop in the next
sub-section.

7.2 Characteristic polynomial

Definition 7.2. The characteristic polynomial of a linear map A : V ⇥ V is defined by

⇥A(�) := det(A� � ) . (7.4)

For an n-dimensional vector space V the characteristic polynomials ⇥A(�) is a polynomial of order n in
� whose coe�cients depend on A. Clearly, from Eq. (7.3), the eigenvalues of A are precisely the zeros
of its characteristic polynomial. So schematically, eigenvalues and eigenvectors of A can be computed as
follows.

1. Compute the characteristic polynomials ⇥A(�) = det(A� � ) of A.

2. Find the zeros, �, of the characteristic polynomial. They are the eigenvalues of A.

3. For each eigenvalue � compute the eigenspace EigA(�) = Ker(A�� ) by finding all vectors v which
solve the equation

(A� � )v = 0 . (7.5)

Example 7.1: Computing eigenvalues and eigenvector

We would like to compute the eigenvalues and eigenvectors of the matrix

A =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅ . (7.6)

The characteristic polynomial is

⇥A(�) = det

�

⇤
1� � �1 0
�1 2� � �1
0 �1 1� �

⇥

⌅ = �(�� 1)(�� 3) , (7.7)

so we have three eigenvalues �1 = 0, �2 = 1 and �3 = 3. Writing v = (x, y, z)T , we compute the
eigenvectors for each of these eigenvalues in turn.
�1 = 0:

(A� 0 )v =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅

�

⇤
x
y
z

⇥

⌅ =

�

⇤
x� y

�x+ 2y � z
�y + z

⇥

⌅ !
= 0 ⇤⌅ x = y = z
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⇥

⌅ = �(�� 1)(�� 3) , (7.7)

so we have three eigenvalues �1 = 0, �2 = 1 and �3 = 3. Writing v = (x, y, z)T , we compute the
eigenvectors for each of these eigenvalues in turn.
�1 = 0:

(A� 0 )v =

�

⇤
1 �1 0

�1 2 �1
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⌅

�

⇤
x
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�

⇤
x� y
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⌅ !
= 0 ⇤⌅ x = y = z

92

=) �1 = 0, �2 = 1, �3 = 3

dimEigA(�) > 0. If dimEigA(�) = 1 the eigenvalue � is called non-degenerate (up to re-scaling there is
only one eigenvector for �) and if dimEigA(�) > 1 the eigenvalue � is called degenerate (there are at least
two linearly independent eigenvectors for �).

We see that � is an eigenvalue of A precisely when Ker(A�� ) is non-trivial. From Lemma 3.1 this is
the same as saying that A��id is not invertible which is equivalent to det(A�� ) = 0, using Lemma 5.1.
So in summary
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This leads to an explicit method to calculate eigenvalues and eigenvectors which we develop in the next
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⇥A(�) := det(A� � ) . (7.4)

For an n-dimensional vector space V the characteristic polynomials ⇥A(�) is a polynomial of order n in
� whose coe�cients depend on A. Clearly, from Eq. (7.3), the eigenvalues of A are precisely the zeros
of its characteristic polynomial. So schematically, eigenvalues and eigenvectors of A can be computed as
follows.

1. Compute the characteristic polynomials ⇥A(�) = det(A� � ) of A.

2. Find the zeros, �, of the characteristic polynomial. They are the eigenvalues of A.

3. For each eigenvalue � compute the eigenspace EigA(�) = Ker(A�� ) by finding all vectors v which
solve the equation

(A� � )v = 0 . (7.5)
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A =
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⇥

⌅ = �(�� 1)(�� 3) , (7.7)

so we have three eigenvalues �1 = 0, �2 = 1 and �3 = 3. Writing v = (x, y, z)T , we compute the
eigenvectors for each of these eigenvalues in turn.
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(A� 0 )v =
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only one eigenvector for �) and if dimEigA(�) > 1 the eigenvalue � is called degenerate (there are at least
two linearly independent eigenvectors for �).

We see that � is an eigenvalue of A precisely when Ker(A�� ) is non-trivial. From Lemma 3.1 this is
the same as saying that A��id is not invertible which is equivalent to det(A�� ) = 0, using Lemma 5.1.
So in summary

� eigenvalue of A ⇤⌅ Ker(A� � ) ⇧= {0} ⇤⌅ det(A� � ) = 0 . (7.3)

This leads to an explicit method to calculate eigenvalues and eigenvectors which we develop in the next
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7.2 Characteristic polynomial
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⇥A(�) := det(A� � ) . (7.4)

For an n-dimensional vector space V the characteristic polynomials ⇥A(�) is a polynomial of order n in
� whose coe�cients depend on A. Clearly, from Eq. (7.3), the eigenvalues of A are precisely the zeros
of its characteristic polynomial. So schematically, eigenvalues and eigenvectors of A can be computed as
follows.

1. Compute the characteristic polynomials ⇥A(�) = det(A� � ) of A.

2. Find the zeros, �, of the characteristic polynomial. They are the eigenvalues of A.

3. For each eigenvalue � compute the eigenspace EigA(�) = Ker(A�� ) by finding all vectors v which
solve the equation

(A� � )v = 0 . (7.5)
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We would like to compute the eigenvalues and eigenvectors of the matrix

A =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅ . (7.6)

The characteristic polynomial is

⇥A(�) = det

�
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⇥

⌅ = �(�� 1)(�� 3) , (7.7)

so we have three eigenvalues �1 = 0, �2 = 1 and �3 = 3. Writing v = (x, y, z)T , we compute the
eigenvectors for each of these eigenvalues in turn.
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(A� 0 )v =

�

⇤
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�1 2 �1
0 �1 1

⇥
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�
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⇥

⌅ =

�
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⇥
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92v1 =

1p
3

(1, 1, 1)T so that vT
1 v1 = 1

Hence, up to scaling, there is only one eigenvector so the eigenvalue is non-degenerate. Normalizing the
eigenvector with respect to the dot product gives

v1 =
1⇧
3

⇤

⇧
1
1
1

⌅

⌃ .

�2 = 1:

(A� 1 )v =

⇤

⇧
0 �1 0

�1 1 �1
0 �1 0

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�y

�x+ y � z
�y

⌅

⌃ !
= 0 ⇤⌅ y = 0 , x = �z

Again, the eigenvalue is non-degenerate and the normalized eigenvector is

v2 =
1⇧
2

⇤

⇧
�1
0
1

⌅

⌃ .

�3 = 3:

(A� 3 )v =

⇤

⇧
�2 �1 0
�1 �1 �1
0 �1 �2

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�2x� y

�x� y � z
�y � 2z

⌅

⌃ !
= 0 ⇤⌅ y = �2x , z = x

The eigenvalue is non-degenerate and the normalized eigenvector is

v3 =
1⇧
6

⇤

⇧
1

�2
1

⌅

⌃ .

Some general properties of the characteristic polynomial are given in the following

Lemma 7.1. (Properties of characteristic polynomial) The characteristic polynomial ⇥A(�) = cn�n +
cn�1�n�1 + · · ·+ c1�+ c0 of an n⇥ n matrix A has the following properties:

(i) ⇥PAP�1 = ⇥A, so the characteristic polynomial is basis-independent.
(ii) The coe�cients ci of the characteristic polynomial are basis-independent.
(iii) cn = (�1)n, cn�1 = (�1)n�1⌥n

i=1Aii, c0 = det(A).

Proof. (i) ⇥PAP�1(�) = det(PAP�1 � � ) = det(P (A� � )P�1) = det(A� � ) = ⇥A(�).
(ii) This is a direct consequence of (i).
(iii) First, it is clear that c0 = ⇥A(0) = det(A). The expressions for the other two coe�cients follow by
carefully thinking about the order in � of the terms in det(A�� ), by using the general expression (5.11)
for the determinant. To the terms of order �n and �n�1 only the product of the diagonal elements
contributes, so that

⇥A(�) =
n 

i=1

(Aii � �) +O(�n�2) = (�1)n�n + (�1)n�1

�
n�

i=1

Aii

⇥
�n�1 +O(�n�2) .
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Hence, up to scaling, there is only one eigenvector so the eigenvalue is non-degenerate. Normalizing the
eigenvector with respect to the dot product gives

v1 =
1⇧
3

⇤

⇧
1
1
1

⌅

⌃ .

�2 = 1:

(A� 1 )v =

⇤

⇧
0 �1 0

�1 1 �1
0 �1 0

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�y

�x+ y � z
�y

⌅

⌃ !
= 0 ⇤⌅ y = 0 , x = �z

Again, the eigenvalue is non-degenerate and the normalized eigenvector is

v2 =
1⇧
2

⇤

⇧
�1
0
1

⌅

⌃ .

�3 = 3:

(A� 3 )v =

⇤

⇧
�2 �1 0
�1 �1 �1
0 �1 �2

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�2x� y

�x� y � z
�y � 2z

⌅

⌃ !
= 0 ⇤⌅ y = �2x , z = x

The eigenvalue is non-degenerate and the normalized eigenvector is

v3 =
1⇧
6

⇤

⇧
1

�2
1

⌅

⌃ .

Some general properties of the characteristic polynomial are given in the following

Lemma 7.1. (Properties of characteristic polynomial) The characteristic polynomial ⇥A(�) = cn�n +
cn�1�n�1 + · · ·+ c1�+ c0 of an n⇥ n matrix A has the following properties:

(i) ⇥PAP�1 = ⇥A, so the characteristic polynomial is basis-independent.
(ii) The coe�cients ci of the characteristic polynomial are basis-independent.
(iii) cn = (�1)n, cn�1 = (�1)n�1⌥n

i=1Aii, c0 = det(A).

Proof. (i) ⇥PAP�1(�) = det(PAP�1 � � ) = det(P (A� � )P�1) = det(A� � ) = ⇥A(�).
(ii) This is a direct consequence of (i).
(iii) First, it is clear that c0 = ⇥A(0) = det(A). The expressions for the other two coe�cients follow by
carefully thinking about the order in � of the terms in det(A�� ), by using the general expression (5.11)
for the determinant. To the terms of order �n and �n�1 only the product of the diagonal elements
contributes, so that

⇥A(�) =
n 

i=1

(Aii � �) +O(�n�2) = (�1)n�n + (�1)n�1

�
n�

i=1

Aii

⇥
�n�1 +O(�n�2) .
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v2 =

1p
2

(�1, 0, 1)T so that vT
2 v2 = 1

Hence, up to scaling, there is only one eigenvector so the eigenvalue is non-degenerate. Normalizing the
eigenvector with respect to the dot product gives

v1 =
1⇧
3

⇤

⇧
1
1
1

⌅

⌃ .

�2 = 1:

(A� 1 )v =

⇤

⇧
0 �1 0

�1 1 �1
0 �1 0

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�y

�x+ y � z
�y

⌅

⌃ !
= 0 ⇤⌅ y = 0 , x = �z

Again, the eigenvalue is non-degenerate and the normalized eigenvector is

v2 =
1⇧
2

⇤

⇧
�1
0
1

⌅

⌃ .

�3 = 3:

(A� 3 )v =

⇤

⇧
�2 �1 0
�1 �1 �1
0 �1 �2

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�2x� y

�x� y � z
�y � 2z

⌅

⌃ !
= 0 ⇤⌅ y = �2x , z = x

The eigenvalue is non-degenerate and the normalized eigenvector is

v3 =
1⇧
6

⇤

⇧
1

�2
1

⌅

⌃ .

Some general properties of the characteristic polynomial are given in the following

Lemma 7.1. (Properties of characteristic polynomial) The characteristic polynomial ⇥A(�) = cn�n +
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Proof. (i) ⇥PAP�1(�) = det(PAP�1 � � ) = det(P (A� � )P�1) = det(A� � ) = ⇥A(�).
(ii) This is a direct consequence of (i).
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i=1

(Aii � �) +O(�n�2) = (�1)n�n + (�1)n�1

�
n�

i=1

Aii

⇥
�n�1 +O(�n�2) .
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Hence, up to scaling, there is only one eigenvector so the eigenvalue is non-degenerate. Normalizing the
eigenvector with respect to the dot product gives

v1 =
1⇧
3

⇤

⇧
1
1
1

⌅

⌃ .

�2 = 1:

(A� 1 )v =

⇤

⇧
0 �1 0

�1 1 �1
0 �1 0

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�y

�x+ y � z
�y

⌅

⌃ !
= 0 ⇤⌅ y = 0 , x = �z

Again, the eigenvalue is non-degenerate and the normalized eigenvector is

v2 =
1⇧
2

⇤

⇧
�1
0
1

⌅

⌃ .

�3 = 3:

(A� 3 )v =

⇤

⇧
�2 �1 0
�1 �1 �1
0 �1 �2

⌅

⌃

⇤

⇧
x
y
z

⌅

⌃ =

⇤

⇧
�2x� y

�x� y � z
�y � 2z

⌅

⌃ !
= 0 ⇤⌅ y = �2x , z = x

The eigenvalue is non-degenerate and the normalized eigenvector is

v3 =
1⇧
6

⇤

⇧
1

�2
1

⌅

⌃ .

Some general properties of the characteristic polynomial are given in the following

Lemma 7.1. (Properties of characteristic polynomial) The characteristic polynomial ⇥A(�) = cn�n +
cn�1�n�1 + · · ·+ c1�+ c0 of an n⇥ n matrix A has the following properties:

(i) ⇥PAP�1 = ⇥A, so the characteristic polynomial is basis-independent.
(ii) The coe�cients ci of the characteristic polynomial are basis-independent.
(iii) cn = (�1)n, cn�1 = (�1)n�1⌥n

i=1Aii, c0 = det(A).

Proof. (i) ⇥PAP�1(�) = det(PAP�1 � � ) = det(P (A� � )P�1) = det(A� � ) = ⇥A(�).
(ii) This is a direct consequence of (i).
(iii) First, it is clear that c0 = ⇥A(0) = det(A). The expressions for the other two coe�cients follow by
carefully thinking about the order in � of the terms in det(A�� ), by using the general expression (5.11)
for the determinant. To the terms of order �n and �n�1 only the product of the diagonal elements
contributes, so that

⇥A(�) =
n 

i=1

(Aii � �) +O(�n�2) = (�1)n�n + (�1)n�1

�
n�

i=1

Aii

⇥
�n�1 +O(�n�2) .
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P = (v1,v2,v3) =

The requirement which is easily overlooked in the previous theorem is that we are asking for a basis of
eigenvectors. Once we have found all the eigenvectors of a matrix they might or might not form a basis
of the underlying vector space. Only when they do can the matrix be diagonalized.

If a matrix A can be diagonalized, with eigenvalues �1, . . . ,�n, so that P�1AP = diag(�1, . . . ,�n),
then the basis-independence of the determinant and the trace implies that

det(A) =
n⌦

i=1

�i , tr(A) =
n 

i=1

�i , (7.13)

so, in this case, the determinant is the product of the eigenvalues and the trace is their sum.

Example 7.2: Diagonalizing matrices

(a) We begin with the matrix (7.6) from our previous Example 7.1. We have already determined its eigen-
values and eigenvectors and the latter clearly form a basis of R3. Hence, this matrix can be diagonalized
and the matrix

P =

⇤

⌥⇧

1⇥
3

� 1⇥
2

1⇥
6

1⇥
3

0 � 2⇥
6

1⇥
3

1⇥
2

1⇥
6

⌅

�⌃ ,

contains the three eigenvectors v1, v2, v3 from Example 7.1 as its columns. Note that these three columns
form an ortho-normal system with respect to the dot product so the above matrix P is orthogonal. This
means that its inverse is easily computed from P�1 = P T . With the matrix A from Eq. (7.6) it can then
be checked explicitly that

P TAP = diag(0, 1, 3) ,

so, P diagonalized A with the eigenvalues of A appearing on the diagonal. It is not an accident that the
eigenvectors of A are pairwise orthogonal and, as we will see shortly, this is related to A being a symmetric
matrix.

(b) Consider the 2⇥ 2 matrix

A =

�
0 1
0 0

⇥

whose characteristic polynomial is

⇥A(�) = det

�
�� 1
0 ��

⇥
= �2 .

Hence, there is only one eigenvalue, � = 0. The associated eigenvectors are found by solving

�
0 1
0 0

⇥�
x
y

⇥
=

�
y
0

⇥
!
= 0 =⇤ y = 0

so the eigenvalue is non-degenerate with eigenvectors proportional to (1, 0)T . This amounts to only one
eigenvector (up to re-scaling) so this matrix does not have a basis of eigenvectors (which requires two
linearly independent vectors in R2) and cannot be diagonalized.

(c) Our final example is for the matrix

A =

�
0 1

�1 0

⇥
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Diagonalization of hermitian matrices
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Functions of matrices:

Example 7.5: As an explicit example, consider the di�erential equations

d2q1
dt2

= �q1 + q2

d2q2
dt2

= q1 � q2 + q3

d2q3
dt2

= q2 � q3 .

This is indeed of the general form (7.16) with

M =

�

⇤
1 �1 0

�1 2 �1
0 �1 1

⇥

⌅ .

This is the same matrix we have studied in Example 7.1 and it has eigenvalues m1 = 3, m2 = 1 and
m3 = 0. Due to the zero eigenvalue this system has a linear instability in one direction. Inserting into
Eq. (7.18), the explicit solution reads

Q(t) =

�

⇤
a1ei

⇤
3t+ b1e�i

⇤
3t

a2eit + b2e�it

a3t+ b3

⇥

⌅ (7.19)

In terms of the original coordinates q, the solution is obtained by inserting (7.19) into q = PQ using the
diagonalizing matrix P given in Eq. (7.2).

7.5.2 Functions of matrices

Start with a real or complex function g(x). We would like to “insert” an n⇥n matrix A into this function,
that is, we would like to make sense of the expression g(A). This can be done whenever the function has
a (suitably convergent) power series expansion

g(x) = a0 + a1x+ a2x
2 + · · · . (7.20)

In this case, we can define g(A) as

g(A) = a0 n + a1A+ a2A
2 + · · · , (7.21)

that is, by simply “replacing” x with A in the power series expansion. Note that, convergence assumed,
the RHS of Eq. (7.21) is well-defined via addition and multiplication of matrices and the function “value”
g(A) is a matrix of the same size as A.

Example 7.6: The matrix exponential is defined as

eA = +A+
1

2
A2 +

1

6
A3 + · · · =

⇥⇧

k=0

1

k!
Ak . (7.22)

Since the exponential series converges for all real (and complex) x it can be shown that the matrix
exponential converges for all matrices.
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• Evaluation by diagonalizing:

Computing the function of a non-diagonal matrix can be complicated as it involves computing higher
and higher powers of the matrix A. However, it is easily accomplished for a diagonal matrix Â =
diag(a1, . . . , an) since Âk = diag(ak1, . . . , a

k
n) so that

g(diag(a1, . . . , an)) = diag(g(a1), . . . , g(an)) . (7.23)

This suggest that we might be able to compute the function of a more general matrix by diagonalizing and
then applying Eq. (7.23). To do this, we first observe that computing the function of a matrix “commutes”
with a change of basis. Indeed from

(P�1AP )k = P�1APP�1
⇧ ⌅⇤ ⌃

=

AP · · ·P�1AP = P�1AkP

it follows that
g(P�1AP ) = P�1g(A)P . (7.24)

Now suppose that A can be diagonalized and P�1AP = Â = diag(⇥1, . . . ,⇥n). Then

g(A) = g(PÂP�1) = P g(Â)P�1 = P diag(g(⇥1), . . . , g(⇥n))P
�1 . (7.25)

That is, we can compute the function of the matrix A by first forming the diagonal matrix which contains
the function values of the eigenvalues and then transforming this matrix back to the original basis. Let
us see how this works explicitly.

Example 7.7: The task is to compute the matrix exponential of the matrix

A = �

�
0 1

�1 0

⇥

where � is an arbitrary real number. Apart from the overall � factor (which does not a�ect the eigenvectors
and multiplies the eigenvalues) this is the matrix we have studied in Example 7.2 (c). Hence, we know
that the eigenvalues are ±i� and the diagonalizing basis transformation is

P =
1⇥
2

�
1 1
i �i

⇥
,

so that P †AP = diag(i�,�i�). From Eq. (7.25) we, therefore, find for the matrix exponential of A

eA = P diag(ei�, e�i�)P † =
1

2

�
1 1
i �i

⇥�
ei� 0
0 e�i�

⇥�
1 �i
1 i

⇥
=

�
cos � sin �

� sin � cos �

⇥
.

It is not an accident that this comes out as a two-dimensional rotation. The theory of Lie groups states
that rotations (and special unitary matrices) in all dimensions can be obtained as matrix exponentials
of certain, relative simple matrices, such as A in the present example. This fact is particularly useful in
higher dimensions when the rotation matrices are not so easy to write down explicitly. To explain this in
detail is well beyond the scope of this lecture.

Example 7.8: We can take the previous example somewhat further and consider the three Pauli matrices
⇤i, defined by

⇤1 =

�
0 1
1 0

⇥
, ⇤2 =

�
0 �i
i 0

⇥
, ⇤3 =

�
1 0
0 �1

⇥
. (7.26)
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1

2

✓
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◆
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◆
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Function of a matrix by diagonalization



Function of a matrix by explicit evaluation: Pauli matrices

Pauli matrices:

Computing the function of a non-diagonal matrix can be complicated as it involves computing higher
and higher powers of the matrix A. However, it is easily accomplished for a diagonal matrix Â =
diag(a1, . . . , an) since Âk = diag(ak1, . . . , a

k
n) so that
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The three-dimensional vector space L := Span(⌃1,⌃2,⌃3) spanned by the Pauli matrices consists of all
2⇥ 2 hermitian, traceless matrices. The Pauli matrices have a number of nice algebraic properties which
can be summarized by the relation

⌃i⌃j = 2⇤ij + i⌅ijk⌃k , (7.27)

which is easily verified by using the explicit matrices above. For example, this relation implies immediately
that their commutator (defined by [A,B] := AB � BA) and anti-commutator (defined by {A,B} :=
AB +BA) are given by

[⌃i,⌃j ] = 2i⌅ijk⌃k , {⌃i,⌃j} = 2 2⇤ij . (7.28)

We would like to work out the matrix exponential of an arbitrary linear combination of the Pauli matrices.
Introducing the formal vector � = (⌃1,⌃2,⌃3)T we can write such a linear combination for a vector a with
components ai as a · � = ai⌃i. Multiplying Eq. (7.27) with aiaj shows that (a · �)2 = a2 2 and, hence,
for an arbitrary positive integer n,

(a · �)2n = |a|2n 2 , (a · �)2n+1 = |a|2na · � . (7.29)

Thanks to these relations it is now easy to work out the matrix exponent, even without prior diagonal-
ization. Writing a = i⇧n with a unit vector n we have

U := exp(i⇧ n · �) =
�⇤
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This shows that det(U) = |n|2 = 1 so that U is, in fact, special unitary. It turns out that all 2⇥ 2 special
unitary matrices can be obtained as matrix exponentials of Pauli matrices in this way, another example of
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q(x) :=
n⇤

i,j=1

Qijxixj = xTQx . (7.33)

where Q is a real symmetric n⇥n matrix with entries Qij . We have already encountered examples of such
quadratic forms in Eq. (6.75) and the comparison shows that they can be viewed as symmetric bi-linear
forms on Rn. Our present task it to simplify the quadratic form by diagonalizing the matrix Q. With the
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a = i � n with |n| = 1 :
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diagonalizing basis transformation P and PQP T = Q̂ = diag(�1, . . . ,�n) and new coordinates defined by
y = Px we have

q(x) = xTP T Q̂Px = yT Q̂y =
n⇤

i=1

�iy
2
i . (7.34)

Hence, in the new y coordinates the cross terms in the quadratic form have been removed and only the
pure square terms, y2i , are present. Note that they are multiplied by the eigenvalues of the matrix Q.

Application: Kinetic energy of a rotating rigid body

In Section (2), we have shown that the kinetic energy of a rotating rigid body is given by

Ekin =
1

2

⇤

i,j

Iij⇥i⇥j =
1

2
�T I� . (7.35)

where � = (⇥1,⇥2,⇥3)T is the angular velocity and I is the moment of inertia tensor of the rigid body.
Clearly, this is a quadratic form and by diagonalizing the moment of inertia tensor, PIP T = diag(I1, I2, I3)
and introducing � = P� we can write

Ekin =
1

2

3⇤

i=1

Ii�
2
i . (7.36)

This simplification of the kinetic energy is an important step in understanding the dynamics of rigid
bodies.

Quadratic forms can be used to define quadratic curves (in two dimensions) or quadratic surfaces (in three
dimensions) by the set of all points x satisfying

xTQx = c , (7.37)

with a real constant c. By diagonalizing the quadratic form, as in Eq. (7.34), the nature of the quadratic
curve or surface can be immediately read o⇥ from the eigenvalues �i of Q as indicated below.

condition on eigenvalues �i two dimensions three dimensions

all �i equal, same sign as c circle sphere
all �i have same sign as c ellipse ellipsoid

�i with both signs hyperbola hyperboloid

Example 7.9: Quadratic curve in R2

A quadratic curve in R2 with coordinates x = (x1, x2)T is defined by

q(x) = 3x21 + 2x1x2 + 2x22 = 1

The quadratic form can also be written as q(x) = xTAx where

A =

�
3 1
1 2

⇥
.

104

• quadratic curves and surfaces: 
All points x satisfying q(x) = c , c > 0 constant

all �i equal: circle/sphere
all �i > 0: ellipse/ellipsoid

otherwise: hyperbola/hyperboloid

• for ellipse/ellipsoid:  direction of semi-axes: vi

length of semi-axes:

r
c

�i
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q(x) = x

2
1 � 2x2x1 + 2x2

2 + x

2
3 � 2x2x3 = x

T

0

@
1 �1 0
�1 2 �1
0 �1 1

1

A

| {z }
=A

x

!
= 1

=) q = y22 + 3y23
!
= 1

cylindric in direction v1 with ellipse cross section in direction v2,v3

length of v2 half-axis: 1

length of v3 half-axis: 1/
p
3

The requirement which is easily overlooked in the previous theorem is that we are asking for a basis of
eigenvectors. Once we have found all the eigenvectors of a matrix they might or might not form a basis
of the underlying vector space. Only when they do can the matrix be diagonalized.

If a matrix A can be diagonalized, with eigenvalues �1, . . . ,�n, so that P�1AP = diag(�1, . . . ,�n),
then the basis-independence of the determinant and the trace implies that

det(A) =
n⌦

i=1

�i , tr(A) =
n 

i=1

�i , (7.13)

so, in this case, the determinant is the product of the eigenvalues and the trace is their sum.

Example 7.2: Diagonalizing matrices

(a) We begin with the matrix (7.6) from our previous Example 7.1. We have already determined its eigen-
values and eigenvectors and the latter clearly form a basis of R3. Hence, this matrix can be diagonalized
and the matrix

P =

⇤

⌥⇧

1⇥
3

� 1⇥
2

1⇥
6

1⇥
3

0 � 2⇥
6

1⇥
3

1⇥
2

1⇥
6

⌅

�⌃ ,

contains the three eigenvectors v1, v2, v3 from Example 7.1 as its columns. Note that these three columns
form an ortho-normal system with respect to the dot product so the above matrix P is orthogonal. This
means that its inverse is easily computed from P�1 = P T . With the matrix A from Eq. (7.6) it can then
be checked explicitly that

P TAP = diag(0, 1, 3) ,

so, P diagonalized A with the eigenvalues of A appearing on the diagonal. It is not an accident that the
eigenvectors of A are pairwise orthogonal and, as we will see shortly, this is related to A being a symmetric
matrix.

(b) Consider the 2⇥ 2 matrix

A =

�
0 1
0 0

⇥

whose characteristic polynomial is

⇥A(�) = det

�
�� 1
0 ��

⇥
= �2 .

Hence, there is only one eigenvalue, � = 0. The associated eigenvectors are found by solving

�
0 1
0 0

⇥�
x
y

⇥
=

�
y
0

⇥
!
= 0 =⇤ y = 0

so the eigenvalue is non-degenerate with eigenvectors proportional to (1, 0)T . This amounts to only one
eigenvector (up to re-scaling) so this matrix does not have a basis of eigenvectors (which requires two
linearly independent vectors in R2) and cannot be diagonalized.

(c) Our final example is for the matrix

A =

�
0 1

�1 0

⇥
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P = (v1,v2,v3) = PTAP = diag(0, 1, 3)
y = PT

x



Good luck!


