Vectors and Matrices, Problem Set 4

Eigenvectors, eigenvalues and diagonalization

Prof Andre Lukas, MT2013

Un-starred questions indicate standard problems students should be familiar with. Starred questions refer to more ambitious problems which require a deeper understanding of the material.

1. Find the eigenvalues and a set of normalized eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Verify that its eigenvectors are mutually orthogonal and construct an orthogonal matrix R such that R^TMR is diagonal.

2. Find the eigenvalues and normalized eigenvectors of the Hermitian matrix

$$H = \left(\begin{array}{cc} 10 & 3i \\ -3i & 2 \end{array}\right).$$

and construct a unitary matrix U such that $U^{\dagger}HU$ is diagonal. (Remember to use the standard hermitian scalar product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\dagger}\mathbf{w}$.)

3. A curve in two-dimensional space is defined by all $\mathbf{x} = (x, y)^T$ which solve the equation $x^2 + 3y^2 - 2xy = 1$.

- (a) Show that this equation can be written in the form $\mathbf{x}^T A \mathbf{x} = 1$ and determine the matrix A.
- (b) By diagonalizing the matrix A, show that this curve is an ellipse and determine the length of its two axis.
 - 4. (a) Diagonalize the two-dimensional rotation

$$R = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

over the complex numbers.

(b) Why can the matrix

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

1

not be diagonalized?

- **5.** A real, symmetric $n \times n$ matrix M is called positive definite if $\mathbf{v}^T M \mathbf{v} > 0$ for all vectors \mathbf{v} , negative definite if -M is positive definite and indefinite otherwise.
- (a) Show that M is positive definite iff all its eigenvalues are positive and that it is negative definite iff all its eigenvalues are negative.
- (b) Focus on the two-dimensional case, n=2, and denote the two eigenvalues of M by λ_1 and λ_2 . Why is $tr(M) = \lambda_1 + \lambda_2$ and $det(M) = \lambda_1 \lambda_2$?
- (c) For n = 2, formulate criteria for positive definiteness/negative definiteness/indefiniteness of M in terms of tr(M) and det(M).
 - (d) Are the following matrices positive definite, negative definite or indefinite?

$$M_1 = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 2 & 3 \\ 3 & -2 \end{pmatrix}$, $M_3 = \begin{pmatrix} -4 & 3 \\ 3 & -5 \end{pmatrix}$.

6. (a) Show that the characteristic polynomial of an arbitrary 2×2 matrix A can be written as

$$\chi_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$
.

(b) Do the same for an arbitrary 3×3 matrix A and show that

$$\chi_A(\lambda) = -\lambda^3 + \operatorname{tr}(A)\lambda^2 - \frac{1}{2}(\operatorname{tr}(A)^2 - \operatorname{tr}(A^2))\lambda + \det(A) .$$

(c)* For a general $n \times n$ matrix A, what are the coefficients of λ^n , λ^{n-1} and the constant term in the characteristic polynomial $\chi_A(\lambda)$.

- 7. Consider real, symmetric $n \times n$ matrices P which satisfy $P^2 = P$. (Such matrices are also referred to as projectors.)
- (a) Show that the possible eigenvalues of P are either 0 or 1. What does the diagonalized form of P look like?
- (b) Explain why such matrices are called projectors and why the dimension of the space projected onto is given by tr(P).
- (c) For an *n*-dimensional unit vector **n** with components n_i let Q be the matrix with components $Q_{ij} = n_i n_j$. Show that Q is a projector and that it projects to a one-dimensional space.
- (d) Show that the matrix $P = \mathbf{1} Q$ with Q defined as in part (c) is also a projector. What is the dimension of the space it projects onto?

- **8.*** (a) Unitary matrices U are characterized by $U^{\dagger}U = \mathbf{1}$. Show that eigenvalues λ of unitary matrices must be phases, that is, $|\lambda| = 1$.
- (b) Consider three-dimensional rotations R. Intuitively, it is clear that R has an eigenvector, \mathbf{n} , with eigenvalue 1, which corresponds to the axis of rotation. Construct an argument which proves this fact, that is, show that a three-dimensional real matrix R with $R^TR = \mathbf{1}$ and $\det(R) = 1$ always has an eigenvalue 1.
- (c) Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{n}\}$ be an ortho-normal basis of \mathbb{R}^3 , where \mathbf{n} is the eigenvector with eigenvalue 1 of a rotation R. Work out the matrix which represents the rotation in this basis.
- (d) Show that the angle of rotation, φ , of a three-dimensional rotation R satisfies $\cos \varphi = (\operatorname{tr}(R) 1)/2$.
 - (e) Show that the matrix

$$R = \frac{1}{3\sqrt{2}} \begin{pmatrix} 3 & 0 & 3\\ -1 & -4 & 1\\ 2\sqrt{2} & -\sqrt{2} & -2\sqrt{2} \end{pmatrix}$$

is a rotation. Compute the characteristic polynomial of R and verify that 1 is an eigenvalue. Compute the axis of rotation, \mathbf{n} , and $\cos \varphi$, where φ is the angle of rotation.

9.* Consider the system of second order differential equations

$$\frac{d^2\mathbf{x}}{dt^2} = -M\mathbf{x} \; ,$$

where

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} , \quad \frac{d^2 \mathbf{x}}{dt^2} = \begin{pmatrix} \frac{d^2 x_1}{dt^2} \\ \vdots \\ \frac{d^2 x_n}{dt^2} \end{pmatrix} ,$$

and M is a real, symmetric matrix.

- (a) Explain how this system of differential equations can be solved by diagonalizing M.
- (b) Discuss the relation between the eigenvalues of M and the qualitative behaviour of the solutions.
- (c) Focus on the two-dimensional system

$$\frac{d^2x_1}{dt^2} = -kx_1 - lx_2$$

$$\frac{d^2x_2}{dt^2} = -lx_1 - kx_2$$

where k and l are arbitrary real constants. Depending on the values of k and l, discuss the qualitative behaviour of the solutions of this system.