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As a practical matter, it is useful to structure the calculation of Fourier coe�cients in order to avoid
mistakes. Creating pages and pages of integration performed in small steps is neither e�cient nor likely
to lead to correct answers. Instead, separate the process of integration from the specific calculation of
Fourier coe�cients. A particular Fourier calculation often involves certain types of standard integrals. In
the above case, these are integrals of the form

R
dx x sin(↵x) for a constant ↵. Find these integrals first

(or simply look them up): Z
dx x sin(↵x) = �x cos(↵x)

↵
+

sin(↵x)

↵2
. (3.35)

Then apply this general result to the particular calculation at hand, that is, in the present case, set ↵ = k
and put in the integration limits.

Inserting the above Fourier coe�cients into Eq. (3.21), we get the Fourier series

f(x) = 2
1X

k=1

(�1)k+1

k
sin(kx) . (3.36)

Recall that the equality in Eq. (3.36) is not meant point-wise for every x but as an equality in L2
R([�⇡, ⇡]),
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Figure 4: Fourier coe�cients and Fourier series for the linear function f in Eq. (3.33). The left figure shows

the Fourier coe�cients ak from Eq. (3.34) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.36) is shown in the right figure.

that is, the di↵erence between f and its Fourier series has length zero with respect to the norm on
L2

R([�⇡, ⇡]). In fact, Eq. (3.36) shows (and Fig. 4 illustrates) that the Fourier series of f vanishes at ±⇡
(since every term in the series (3.36) vanishes at ±⇡) while f(±⇡) = ±⇡ is non-zero. So we have an example
where the Fourier series does not converge to the function at every point. In fact, the present function f
violates the conditions of Theorem 3.8 (since f(⇡) 6= f(�⇡)), so there is no reason to expect point-wise
convergence. It is clear from Fig. 4 that the Fourier series “struggles” to reproduce the function near ±⇡
and this can be seen as the intuitive reason for the slow drop-o↵ of the Fourier coe�cients, ak ⇠ 1/k, in
Eq. (3.34). In other words, a larger number of terms in the Fourier series contribute significantly so that
the function can be matched near the boundaries of the interval [�⇡, ⇡].

For this example, let us consider Parseval’s equation (3.23)

2⇡2

3
=

1

⇡

Z
⇡

�⇡

dx x2 =
1X

k=1

|bk|2 = 4
1X

k=1

1

k2
, (3.37)

where the left hand side follows from explicitly carrying out the normalisation integral and the right hand
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Overview

•  Inner product vector spaces, Hilbert spaces

•  Fourier analysis

•  Orthogonal polynomials

•  Ordinary linear differential equations

•  Partial linear differential equations



Inner product vector spaces, Hilbert spaces



What is an inner product vector space?

A:  A vector space with a scalar product.

It is not too di�cult to generalise this statement and to show that linear maps between any two finite-
dimensional vector spaces are bounded. For the infinite-dimensional case this is not necessarily true (see
Exercise 1.13 below).

Vector spaces, even finite-dimensional ones, usually allow for more than one way to introduce a norm.
For example, on Rn or Cn, with vectors v = (v1, . . . , vn)T we can define, for any real number p � 1, the
norm

k v k
p

:=

 
nX

i=1

|vi|p
!1/p

. (1.23)

Clearly, this is a generalisation of the standard norm (1.22) which corresponds to the special case p = 2.
As before, conditions (N1) and (N2) in Def. 1.6 are easily verified. For the triangle inequality (N3) consider
the following exercise.

Exercise 1.11. For two vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in Rn or Cn and two real
numbers p, q � 1 with 1/p + 1/q = 1 show that

(a)
P

n

i=1 |viwi|  (
P

n

i=1 |vi|p)1/p (
P

n

i=1 |wi|q)1/q (Hölder’s inequality)

(b) (
P

n

i=1 |vi + wi|p)1/p  (
P

n

i=1 |vi|p)1/p + (
P

n

i=1 |wi|p)1/p (Minkowski’s inequality)
(1.24)

Use Minkowski’s inequality to show that the prospective norm (1.23) satisfies the triangle inequality.

Norms can also be introduced on infinite-dimensional vector spaces. As an example, consider the space
C([a, b]) of continuous functions on the interval [a, b]. The analogue of the standard norm (1.22) and its
generalisation (1.23) (thinking, intuitively, about promoting the finite sum in Eq. (1.22) to an integral)
for f 2 C([a, b] can be defined as

k f k :=

✓Z
b

a

dx |f(x)|2
◆1/2

, k f k
p

:=

✓Z
b

a

dx |f(x)|p
◆1/p

, (1.25)

for any real p � 1.

Exercise 1.12. Show that Eq. (1.25) for any real p � 1 defines a norm on C([a, b]).

Exercise 1.13. Consider the space C1([0, 1]) with norm k · k2, the monomials pk(x) = xk and the di↵er-
ential operator T = d/dx. Compute k Tpk k2/k pk k2 and use the result to show that T is not bounded.

Scalar products
A normed vector space provides a basic notion of geometry in that it assigns a “length” to each vector.
Often it is desirable to have a more comprehensive framework for geometry which also allows measuring
angles between vectors and defining the concept of orthogonality. Such a framework is provided by a
scalar product or inner product on a vector space which is defined as follows.

Definition 1.9. A real scalar product on a vector space V over F = R and a hermitian scalar product on
a vector space V over the field F = C is a map h · , · i : V ⇥ V ! F which satisfies

(S1) hv,wi = hw,vi, for a real scalar product, F = R
hv,wi = hw,vi⇤, for a hermitian scalar product, F = C

(S2) hv, ↵u + �wi = ↵hv,ui + �hv,wi
(S3) hv,vi > 0 if v 6= 0

for all vectors v,u,w 2 V and all scalars ↵, � 2 F .

A real or hermitian scalar product is also referred to as an inner product on V and a vector space V with
such a scalar product is also called an inner product (vector) space.
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Definition of a scalar product:

The norm associated to a scalar product

Note that, from property (S2), the scalar product is linear in the second argument and combining this
with (S1) implies for the first argument that

h↵v + �u,wi = ↵hv,wi + �hu,wi F = R
h↵v + �u,wi = ↵⇤hv,wi + �⇤hu,wi F = C (1.26)

Evidently, in the real case the scalar product is also linear in the first argument (and, hence, it is bi-linear).
In the complex case, it is sesqui-linear which means that, in addition to linearity in the second argument,
it is half-linear in the first argument (vector sums can be pulled out of the first argument while scalars
pull out with a complex conjugate). In the following, we will frequently write equations for the hermitian
case, F = C, keeping in mind that the analogous equations for the real case can be obtained by simply
omitting the complex conjugate.

How are inner product vector spaces and normed vector spaces related? Properties (S1) and (S3)
imply that hv,vi is always real and positive so it makes sense to try to define a norm by

k v k :=
p

hv,vi . (1.27)

As usual, it is easy to show that this satisfies properties (N1) and (N2) in Def. 1.6. To verify the triangle
inequality (N3) we recall that every scalar product satisfies the Cauchy-Schwarz inequality

|hv,wi|  k v k k w k =) k v + w k  k v k + k w k , (1.28)

from which the triangle inequality follows immediately. In conclusion, Eq. (1.27) does indeed define a
norm in the sense of Def. 1.6 and it is called the norm associated to the scalar product. Hence, any inner
product vector space is also a normed vector space.

Exercise 1.14. Show that a (real or hermitian) scalar product with associated norm (1.27) satisfies the
Cauchy-Schwarz inequality and the triangle inequality in Eq. (1.28). Also show that the norm (1.27)
satisfies the parallelogram law

k v + w k2 + k v � w k2 = 2
⇣
k v k2 + k w k2

⌘
, (1.29)

for all v,w 2 V .

Recall that two vectors v,w 2 V are called orthogonal i↵ hv,wi = 0. Also, recall that any finite set
of mutually orthogonal non-zero vectors is linearly independent.

Exercise 1.15. For an inner product vector space, show that a finite number of orthogonal non-zero
vectors are linearly independent.

For a sub vector space W ⇢ V the orthogonal complement W? is defined as

W? := {v 2 V | hv,wi = 0 for all w 2 W} . (1.30)

In other words, the orthogonal complement W? consists of all vectors which are orthogonal to the entire
space W .

Exercise 1.16. Show, for a sub vector space W ⇢ V , that W \ W? = {0}. (This means that the sum of
W and W? is direct.) For a finite-dimensional V , show that W � W? = V .
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satisfies the Cauchy-Schwarz and triangle inequalities

Note that, from property (S2), the scalar product is linear in the second argument and combining this
with (S1) implies for the first argument that

h↵v + �u,wi = ↵hv,wi + �hu,wi F = R
h↵v + �u,wi = ↵⇤hv,wi + �⇤hu,wi F = C (1.26)

Evidently, in the real case the scalar product is also linear in the first argument (and, hence, it is bi-linear).
In the complex case, it is sesqui-linear which means that, in addition to linearity in the second argument,
it is half-linear in the first argument (vector sums can be pulled out of the first argument while scalars
pull out with a complex conjugate). In the following, we will frequently write equations for the hermitian
case, F = C, keeping in mind that the analogous equations for the real case can be obtained by simply
omitting the complex conjugate.

How are inner product vector spaces and normed vector spaces related? Properties (S1) and (S3)
imply that hv,vi is always real and positive so it makes sense to try to define a norm by

k v k :=
p

hv,vi . (1.27)

As usual, it is easy to show that this satisfies properties (N1) and (N2) in Def. 1.6. To verify the triangle
inequality (N3) we recall that every scalar product satisfies the Cauchy-Schwarz inequality

|hv,wi|  k v k k w k =) k v + w k  k v k + k w k , (1.28)

from which the triangle inequality follows immediately. In conclusion, Eq. (1.27) does indeed define a
norm in the sense of Def. 1.6 and it is called the norm associated to the scalar product. Hence, any inner
product vector space is also a normed vector space.

Exercise 1.14. Show that a (real or hermitian) scalar product with associated norm (1.27) satisfies the
Cauchy-Schwarz inequality and the triangle inequality in Eq. (1.28). Also show that the norm (1.27)
satisfies the parallelogram law

k v + w k2 + k v � w k2 = 2
⇣
k v k2 + k w k2

⌘
, (1.29)

for all v,w 2 V .

Recall that two vectors v,w 2 V are called orthogonal i↵ hv,wi = 0. Also, recall that any finite set
of mutually orthogonal non-zero vectors is linearly independent.

Exercise 1.15. For an inner product vector space, show that a finite number of orthogonal non-zero
vectors are linearly independent.

For a sub vector space W ⇢ V the orthogonal complement W? is defined as

W? := {v 2 V | hv,wi = 0 for all w 2 W} . (1.30)

In other words, the orthogonal complement W? consists of all vectors which are orthogonal to the entire
space W .

Exercise 1.16. Show, for a sub vector space W ⇢ V , that W \ W? = {0}. (This means that the sum of
W and W? is direct.) For a finite-dimensional V , show that W � W? = V .

12

Note that, from property (S2), the scalar product is linear in the second argument and combining this
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case, F = C, keeping in mind that the analogous equations for the real case can be obtained by simply
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hermiticity
linearity
positivity

symmetry



Features of inner product vector spaces
• ortho-normal basis: vectors       with  Further, a (finite or infinite) collection ✏i of vectors, where i = 1, 2, . . ., is called an ortho-normal system

i↵ h✏i, ✏ji = �ij . We know that finite-dimensional vector spaces have a basis and by applying to such a
basis the Gram-Schmidt procedure one obtains an ortho-normal basis. Hence, every finite-dimensional
inner product vector space has an ortho-normal basis. The scalar product makes it easier to work out the
coordinates of a vector v 2 V relative to an ortho-normal basis by using the formula

v =
nX

i=1

↵i ✏i () ↵i = h✏i,vi . (1.31)

Also, recall that, in terms of the coordinates relative to an ortho-normal basis, the scalar product and its
associated norm take a very simple form. For two vectors v =

P
i
↵i✏i and w =

P
j
�j✏j we have

hv,wi =
nX

i=1

↵⇤
i �i , k v k2 =

nX

i=1

|↵i|2 , (1.32)

as can be easily verified using the orthogonality relations h✏i, ✏ji = �ij . For infinite-dimensional inner
product spaces the story is more involved and will be tackled in Section 2.

It is useful to re-consider the relationship of a vector space V and its dual vector space V ⇤ in the
presence of an inner product on V . The main observation is that the inner product induces a map
ı : V ! V ⇤ defined by

ı(v)(w) := hv,wi . (1.33)

For a vector space over R this map is linear, for a vector space over C it is half-linear (meaning, as for
the first argument of hermitian scalar products, that vector sums pull through while scalars pull out with
a complex conjugation). In either case, this map is injective. For finite-dimensional V it is bijective and
provides an identification of the vector space with its dual.

Exercise 1.17. Show that the map ı : V ! V ⇤ defined in Eq. (1.33) is injective and that it is bijective
for finite-dimensional V .

The properties of the map ı in the infinite-dimensional case will be further explored later.
In physics, more specifically in the context of quantum mechanics, the existence of the map ı is

exploited for a convenient convention, referred to as Dirac notation. In Dirac notation, vectors w 2 V
and dual vectors ı(v) 2 V ⇤ are denoted as follows:

w ! |wi , ı(v) ! hv| . (1.34)

In other words, vectors in V are denoted by “ket”-vectors |wi, dual vectors in V ⇤, obtained via the map ı,
by “bra”-vectors hv| while the action of one on the other (which equals the scalar product in Eq. (1.33))
is simple obtained by combining the two to a “bra-(c)ket”, resulting in

ı(v)(w) = hv,wi = hv|wi . (1.35)

Note, there is nothing particularly profound about this notation - for the most part it simply amounts to
replacing the comma separating the two arguments of an inner product with a vertical bar.

We can ask about interesting new properties of linear maps in the presence of an inner product. First,
recall that scalar products of the form

hv, T (w)i (1.36)

for a linear map T : V ! V are also called matrix elements of T . Two maps T : V ! V and S : V ! V
are equal i↵ all their matrix elements are equal, that is, i↵ hv, T (w)i = hv, S(w)i for all v,w 2 V .
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Evidently, in the real case the scalar product is also linear in the first argument (and, hence, it is bi-linear).
In the complex case, it is sesqui-linear which means that, in addition to linearity in the second argument,
it is half-linear in the first argument (vector sums can be pulled out of the first argument while scalars
pull out with a complex conjugate). In the following, we will frequently write equations for the hermitian
case, F = C, keeping in mind that the analogous equations for the real case can be obtained by simply
omitting the complex conjugate.

How are inner product vector spaces and normed vector spaces related? Properties (S1) and (S3)
imply that hv,vi is always real and positive so it makes sense to try to define a norm by

k v k :=
p

hv,vi . (1.27)
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|hv,wi|  k v k k w k =) k v + w k  k v k + k w k , (1.28)

from which the triangle inequality follows immediately. In conclusion, Eq. (1.27) does indeed define a
norm in the sense of Def. 1.6 and it is called the norm associated to the scalar product. Hence, any inner
product vector space is also a normed vector space.

Exercise 1.14. Show that a (real or hermitian) scalar product with associated norm (1.27) satisfies the
Cauchy-Schwarz inequality and the triangle inequality in Eq. (1.28). Also show that the norm (1.27)
satisfies the parallelogram law

k v + w k2 + k v � w k2 = 2
⇣
k v k2 + k w k2

⌘
, (1.29)

for all v,w 2 V .

Recall that two vectors v,w 2 V are called orthogonal i↵ hv,wi = 0. Also, recall that any finite set
of mutually orthogonal non-zero vectors is linearly independent.

Exercise 1.15. For an inner product vector space, show that a finite number of orthogonal non-zero
vectors are linearly independent.

For a sub vector space W ⇢ V the orthogonal complement W? is defined as

W? := {v 2 V | hv,wi = 0 for all w 2 W} . (1.30)

In other words, the orthogonal complement W? consists of all vectors which are orthogonal to the entire
space W .

Exercise 1.16. Show, for a sub vector space W ⇢ V , that W \ W? = {0}. (This means that the sum of
W and W? is direct.) For a finite-dimensional V , show that W � W? = V .
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P
j
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nX
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by “bra”-vectors hv| while the action of one on the other (which equals the scalar product in Eq. (1.33))
is simple obtained by combining the two to a “bra-(c)ket”, resulting in

ı(v)(w) = hv,wi = hv|wi . (1.35)

Note, there is nothing particularly profound about this notation - for the most part it simply amounts to
replacing the comma separating the two arguments of an inner product with a vertical bar.

We can ask about interesting new properties of linear maps in the presence of an inner product. First,
recall that scalar products of the form

hv, T (w)i (1.36)

for a linear map T : V ! V are also called matrix elements of T . Two maps T : V ! V and S : V ! V
are equal i↵ all their matrix elements are equal, that is, i↵ hv, T (w)i = hv, S(w)i for all v,w 2 V .
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P
i
↵i✏i and w =

P
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i �i , k v k2 =

nX

i=1
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scalar product in terms of coordinates:

matrix describing linear map                : 

Exercise 1.18. Show that two linear maps are equal i↵ all their matrix elements are equal.

In the finite-dimensional case, the matrix A which describes a linear map T : V ! V relative to an
ortho-normal basis ✏1, . . . , ✏n is simply obtained by the matrix elements

Aij = h✏i, T (✏j)i . (1.37)

Next, we recall the definition of the adjoint linear map.

Definition 1.10. For a linear map T : V ! V on a vector space V with scalar product, an adjoint linear
map, T † : V ! V is a map satisfying

hv, Twi = hT †v,wi (1.38)

for all v,w 2 V .

If the adjoint exists, it is unique and has the following properties

(T †)† = T , (↵T + �S)† = ↵⇤T † + �⇤S† , (S � T )† = T † � S† , T�1† = T †�1
, (1.39)

provided the maps in those equations exist.

Exercise 1.19. Show that the adjoint map is unique and that it has the properties in Eq. (1.39).

For finite-dimensional inner product vector spaces we can describe both T and its adjoint T † by
matrices relative to an ortho-normal basis ✏1, . . . , ✏n. They are given by the matrix elements

Aij = h✏i, T (✏j)i , (A†)ij = h✏i, T †(✏j)i . (1.40)

where A† := AT ⇤
is the hermitian conjugate of the matrix A. Hence, at the level of matrices, the adjoint

simply corresponds to the hermitian conjugate matrix (or the transpose matrix in the real case). This
observation can also be used to show the existence of the adjoint for finite-dimensional inner product
spaces. Existence of the adjoint in the infinite-dimensional case is not so straightforward and will be
considered later.

Exercise 1.20. Show that the matrix which consists of the matrix elements of T † in Eq. (1.40) is indeed
the hermitian conjugate of the matrix given by the matrix elements of T .

Particularly important linear operators are those which can be moved from one argument of a scalar
product into the other without changing the value of the scalar product and they are called hermitian or
self-adjoint operators.

Definition 1.11. A linear operator T : V ! V on a vector space V with scalar product is called self-
adjoint (or hermitian) i↵ hv, T (w)i = hT (v),wi for all v,w 2 V .

Hence, a self-adjoint operator T : V ! V is one for which the adjoint exists and satisfies T † = T .
Recall that the commutator of two linear operators S, T is defined as

[S, T ] := S � T � T � S , (1.41)

We also say that two operators S and T commute i↵ [S, T ] = 0.
We can ask under what condition the composition S �T of two hermitian operators is again hermitian.

Using the above commutator notation, we have

(S � T )† = S � T , T † � S† = S � T , T � S = S � T , [S, T ] = 0 (1.42)
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the product rule for di↵erentiation.) Since the above commutator is non-vanishing we conclude that
Mx � i d/dx is not hermitian.

So much for a few introductory examples of how to carry out calculations for infinite-dimensional
inner product spaces. We will now collect a few more mathematical tools required for a more systematic
approach.

Eigenvectors and eigenvalues
Recall the definition of eigenvalues and eigenvectors.

Definition 1.13. For a linear map T : V ! V on a vector space V over F the number � 2 F is called
an eigenvalue of f if there is a non-zero vector v such that

T (v) = �v . (1.72)

In this case, v is called an eigenvector of f with eigenvalue �.

The eigenspace for � 2 F is defined by

EigT (�) := Ker(T � � idV ) , (1.73)

so that � is an eigenvalue i↵ EigT (�) 6= {0}. If dim(EigT (�)) = 1 the eigenvalue is called non-degenerate
(there is only one eigenvector up to re-scaling) and degenerate otherwise (there are at least two linearly
independent eigenvectors).

Let us recall the basis facts in the finite-dimensional case. The eigenvalues can be obtained by finding
the zeros of the characteristic polynomial

�T (�) := det(T � �id) . (1.74)

For each eigenvalue � the associated eigenspace is obtained by finding all solutions v 2 V to the equation
(T ��id)v = 0. The most important applications of eigenvalues and eigenvectors in the finite-dimensional
case is to diagonalising linear maps, that is, finding a basis in which the matrix describing the linear map
is diagonal. Recall that diagonalising a linear map T is possible if and only if T has a basis v1, . . . ,vn

of eigenvectors. Indeed, in this case T (vi) = �ivi and the matrix describing T relative to this basis
is diag(�1, . . . , �n). There are certain classes of linear operators which are known to have a basis of
eigenvectors and can, hence, be diagonalised. These include self-adjoint linear operators and normal
operators, that is, operators satisfying [T, T †] = 0.

Some useful statements which are well-known in the finite-dimensional case continue to hold in infinite
dimensions, such as the following

Theorem 1.24. Let V be an inner product vector space. If T : V ! V is self-adjoint then

(i) All eigenvalues of T are real.
(ii) Eigenvectors for di↵erent eigenvalues are orthogonal.

Exercise 1.25. Proof Theorem 1.24.

As an illustration of this theorem in the infinite-dimensional case, consider the space C1
p ([�⇡, ⇡]) of

infinitely many times di↵erentiable and periodic (real) functions on the interval [�⇡, ⇡]. (By periodic
functions we mean functions f with f(⇡) = f(�⇡) and f 0(⇡) = f 0(�⇡).) On this vector space, we define
the usual inner product

hf, gi :=

Z
⇡

�⇡

dx f(x)g(x) . (1.75)

A calculation analogous to the one in Eq. (1.68) (where periodicity allows discarding the boundary term)
shows that the operator d/dx is anti-hermitian and d2/dx2 is hermitian relative to this inner product.
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Parseval’s equation

Exercise 1.18. Show that two linear maps are equal i↵ all their matrix elements are equal.

In the finite-dimensional case, the matrix A which describes a linear map T : V ! V relative to an
ortho-normal basis ✏1, . . . , ✏n is simply obtained by the matrix elements

Aij = h✏i, T (✏j)i . (1.37)

Next, we recall the definition of the adjoint linear map.

Definition 1.10. For a linear map T : V ! V on a vector space V with scalar product, an adjoint linear
map, T † : V ! V is a map satisfying

hv, Twi = hT †v,wi (1.38)

for all v,w 2 V .

If the adjoint exists, it is unique and has the following properties

(T †)† = T , (↵T + �S)† = ↵⇤T † + �⇤S† , (S � T )† = T † � S† , T�1† = T †�1
, (1.39)

provided the maps in those equations exist.

Exercise 1.19. Show that the adjoint map is unique and that it has the properties in Eq. (1.39).

For finite-dimensional inner product vector spaces we can describe both T and its adjoint T † by
matrices relative to an ortho-normal basis ✏1, . . . , ✏n. They are given by the matrix elements

Aij = h✏i, T (✏j)i , (A†)ij = h✏i, T †(✏j)i . (1.40)

where A† := AT ⇤
is the hermitian conjugate of the matrix A. Hence, at the level of matrices, the adjoint

simply corresponds to the hermitian conjugate matrix (or the transpose matrix in the real case). This
observation can also be used to show the existence of the adjoint for finite-dimensional inner product
spaces. Existence of the adjoint in the infinite-dimensional case is not so straightforward and will be
considered later.

Exercise 1.20. Show that the matrix which consists of the matrix elements of T † in Eq. (1.40) is indeed
the hermitian conjugate of the matrix given by the matrix elements of T .

Particularly important linear operators are those which can be moved from one argument of a scalar
product into the other without changing the value of the scalar product and they are called hermitian or
self-adjoint operators.

Definition 1.11. A linear operator T : V ! V on a vector space V with scalar product is called self-
adjoint (or hermitian) i↵ hv, T (w)i = hT (v),wi for all v,w 2 V .

Hence, a self-adjoint operator T : V ! V is one for which the adjoint exists and satisfies T † = T .
Recall that the commutator of two linear operators S, T is defined as

[S, T ] := S � T � T � S , (1.41)

We also say that two operators S and T commute i↵ [S, T ] = 0.
We can ask under what condition the composition S �T of two hermitian operators is again hermitian.

Using the above commutator notation, we have

(S � T )† = S � T , T † � S† = S � T , T � S = S � T , [S, T ] = 0 (1.42)

14

• hermitian maps:                                   or  

Exercise 1.18. Show that two linear maps are equal i↵ all their matrix elements are equal.

In the finite-dimensional case, the matrix A which describes a linear map T : V ! V relative to an
ortho-normal basis ✏1, . . . , ✏n is simply obtained by the matrix elements

Aij = h✏i, T (✏j)i . (1.37)

Next, we recall the definition of the adjoint linear map.

Definition 1.10. For a linear map T : V ! V on a vector space V with scalar product, an adjoint linear
map, T † : V ! V is a map satisfying

hv, Twi = hT †v,wi (1.38)

for all v,w 2 V .

If the adjoint exists, it is unique and has the following properties

(T †)† = T , (↵T + �S)† = ↵⇤T † + �⇤S† , (S � T )† = T † � S† , T�1† = T †�1
, (1.39)

provided the maps in those equations exist.

Exercise 1.19. Show that the adjoint map is unique and that it has the properties in Eq. (1.39).

For finite-dimensional inner product vector spaces we can describe both T and its adjoint T † by
matrices relative to an ortho-normal basis ✏1, . . . , ✏n. They are given by the matrix elements

Aij = h✏i, T (✏j)i , (A†)ij = h✏i, T †(✏j)i . (1.40)

where A† := AT ⇤
is the hermitian conjugate of the matrix A. Hence, at the level of matrices, the adjoint

simply corresponds to the hermitian conjugate matrix (or the transpose matrix in the real case). This
observation can also be used to show the existence of the adjoint for finite-dimensional inner product
spaces. Existence of the adjoint in the infinite-dimensional case is not so straightforward and will be
considered later.

Exercise 1.20. Show that the matrix which consists of the matrix elements of T † in Eq. (1.40) is indeed
the hermitian conjugate of the matrix given by the matrix elements of T .

Particularly important linear operators are those which can be moved from one argument of a scalar
product into the other without changing the value of the scalar product and they are called hermitian or
self-adjoint operators.

Definition 1.11. A linear operator T : V ! V on a vector space V with scalar product is called self-
adjoint (or hermitian) i↵ hv, T (w)i = hT (v),wi for all v,w 2 V .

Hence, a self-adjoint operator T : V ! V is one for which the adjoint exists and satisfies T † = T .
Recall that the commutator of two linear operators S, T is defined as

[S, T ] := S � T � T � S , (1.41)

We also say that two operators S and T commute i↵ [S, T ] = 0.
We can ask under what condition the composition S �T of two hermitian operators is again hermitian.

Using the above commutator notation, we have

(S � T )† = S � T , T † � S† = S � T , T � S = S � T , [S, T ] = 0 (1.42)

14

Exercise 1.18. Show that two linear maps are equal i↵ all their matrix elements are equal.

In the finite-dimensional case, the matrix A which describes a linear map T : V ! V relative to an
ortho-normal basis ✏1, . . . , ✏n is simply obtained by the matrix elements

Aij = h✏i, T (✏j)i . (1.37)

Next, we recall the definition of the adjoint linear map.

Definition 1.10. For a linear map T : V ! V on a vector space V with scalar product, an adjoint linear
map, T † : V ! V is a map satisfying

hv, Twi = hT †v,wi (1.38)

for all v,w 2 V .

If the adjoint exists, it is unique and has the following properties

(T †)† = T , (↵T + �S)† = ↵⇤T † + �⇤S† , (S � T )† = T † � S† , T�1† = T †�1
, (1.39)

provided the maps in those equations exist.

Exercise 1.19. Show that the adjoint map is unique and that it has the properties in Eq. (1.39).

For finite-dimensional inner product vector spaces we can describe both T and its adjoint T † by
matrices relative to an ortho-normal basis ✏1, . . . , ✏n. They are given by the matrix elements

Aij = h✏i, T (✏j)i , (A†)ij = h✏i, T †(✏j)i . (1.40)

where A† := AT ⇤
is the hermitian conjugate of the matrix A. Hence, at the level of matrices, the adjoint

simply corresponds to the hermitian conjugate matrix (or the transpose matrix in the real case). This
observation can also be used to show the existence of the adjoint for finite-dimensional inner product
spaces. Existence of the adjoint in the infinite-dimensional case is not so straightforward and will be
considered later.

Exercise 1.20. Show that the matrix which consists of the matrix elements of T † in Eq. (1.40) is indeed
the hermitian conjugate of the matrix given by the matrix elements of T .

Particularly important linear operators are those which can be moved from one argument of a scalar
product into the other without changing the value of the scalar product and they are called hermitian or
self-adjoint operators.

Definition 1.11. A linear operator T : V ! V on a vector space V with scalar product is called self-
adjoint (or hermitian) i↵ hv, T (w)i = hT (v),wi for all v,w 2 V .

Hence, a self-adjoint operator T : V ! V is one for which the adjoint exists and satisfies T † = T .
Recall that the commutator of two linear operators S, T is defined as

[S, T ] := S � T � T � S , (1.41)

We also say that two operators S and T commute i↵ [S, T ] = 0.
We can ask under what condition the composition S �T of two hermitian operators is again hermitian.

Using the above commutator notation, we have

(S � T )† = S � T , T † � S† = S � T , T � S = S � T , [S, T ] = 0 (1.42)

14

is a hermitian matrix

(observables in QM)

• unitary linear maps: linear map           withDefinition 1.12. Let V be an inner producr vector space. A linear map U : V ! V is called unitary i↵

hU(v), U(w)i = hv,wi (1.50)

for all v,w 2 V .

Unitary maps have the following important properties.

Lemma 1.1. (Properties of unitary maps) A unitary map U with adjoint U † has the following properties.

(i) Unitary maps U can also be characterized by U † � U = U � U † = idV .
(ii) Unitary maps U are invertible and U�1 = U †.
(iii) The composition of unitary maps is a unitary map.
(iv) The inverse, U †, of a unitary map U is unitary.

Exercise 1.22. Show the properties of unitary maps in Lemma 1.1.

For finite-dimensional vector spaces we know that, relative to an ortho-normal basis ✏1, . . . , ✏n, a unitary
map Û is described by a unitary matrix (orthogonal matrix in the real case). Indeed, introducing the
matrix U with matrix elements (in Dirac notation)

Uij = h✏i|Û |✏ji , (1.51)

this statement is verified by the following short calculation.
X

j

(U †)ijUjk =
X

j

h✏i|Û †| ✏jih✏j || {z }
=id

Û |✏ki = h✏i| Û †Û|{z}
=id

|✏ki = h✏i|✏ki = �ik . (1.52)

Still in the finite-dimensional case, consider two choices of ortho-normal basis (✏1, . . . , ✏n) and (✏01, . . . , ✏
0
n)

and the matrices Tij = h✏i|T̂ |✏ji and T 0
ij

= h✏0
i
|T̂ |✏0

j
i representing a linear operator T̂ with respect to either.

We have already written down the general relation between those two matrices in Eq. (1.15) but how does
this look for a change from one ortho-normal basis to another? Inserting identity operators (1.47) we find

T 0
ij = h✏0i|T̂ |✏0ji =

mX

k,l=1

h✏0i|✏kih✏k|T̂ |✏lih✏l|✏0ji = QikTklQ
⇤
jl

= (QTQ†)ij , Qij := h✏0i|✏ji (1.53)

so that T 0 = QTQ†. This result is, in fact, consistent with Eq. (1.15) since the matrix Q is unitary, so
Q† = Q�1. This can be verified immediately:

(Q†Q)ij =
nX

k=1

Q⇤
ki

Qkj =
nX

k=1

h✏0
k
|✏ii⇤h✏0k|✏ji =

nX

k=1

h✏i|✏0kih✏0k|✏ji = h✏i|✏ji = �ij . (1.54)

Using this formalism, we can also verify that Q relates coordinate vectors relative to the two choices of
basis, as stated in Eq. (1.16). From Eq. (1.48), the two coordinate vectors for a given vector |vi are given
by ↵i = h✏i|vi and ↵0

i
= h✏0

i
|vi. It follows

↵0
i = h✏0i|vi =

nX

j=1

h✏0i|✏jih✏j |vi =
nX

j=1

Qij↵j . (1.55)

Examples of inner product vector spaces
The standard finite-dimensional examples are of course Rn and Cn with scalar product defined by

hv,wi :=
nX

i=1

v⇤i wi , (1.56)
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Dirac notation
The map           defined by                is bijective, so vectors and dual

vectors can be identified. Dirac notation makes this manifest: 

Further, a (finite or infinite) collection ✏i of vectors, where i = 1, 2, . . ., is called an ortho-normal system
i↵ h✏i, ✏ji = �ij . We know that finite-dimensional vector spaces have a basis and by applying to such a
basis the Gram-Schmidt procedure one obtains an ortho-normal basis. Hence, every finite-dimensional
inner product vector space has an ortho-normal basis. The scalar product makes it easier to work out the
coordinates of a vector v 2 V relative to an ortho-normal basis by using the formula

v =
nX

i=1

↵i ✏i () ↵i = h✏i,vi . (1.31)

Also, recall that, in terms of the coordinates relative to an ortho-normal basis, the scalar product and its
associated norm take a very simple form. For two vectors v =

P
i
↵i✏i and w =

P
j
�j✏j we have

hv,wi =
nX

i=1

↵⇤
i �i , k v k2 =

nX

i=1

|↵i|2 , (1.32)

as can be easily verified using the orthogonality relations h✏i, ✏ji = �ij . For infinite-dimensional inner
product spaces the story is more involved and will be tackled in Section 2.

It is useful to re-consider the relationship of a vector space V and its dual vector space V ⇤ in the
presence of an inner product on V . The main observation is that the inner product induces a map
ı : V ! V ⇤ defined by

ı(v)(w) := hv,wi . (1.33)

For a vector space over R this map is linear, for a vector space over C it is half-linear (meaning, as for
the first argument of hermitian scalar products, that vector sums pull through while scalars pull out with
a complex conjugation). In either case, this map is injective. For finite-dimensional V it is bijective and
provides an identification of the vector space with its dual.

Exercise 1.17. Show that the map ı : V ! V ⇤ defined in Eq. (1.33) is injective and that it is bijective
for finite-dimensional V .

The properties of the map ı in the infinite-dimensional case will be further explored later.
In physics, more specifically in the context of quantum mechanics, the existence of the map ı is

exploited for a convenient convention, referred to as Dirac notation. In Dirac notation, vectors w 2 V
and dual vectors ı(v) 2 V ⇤ are denoted as follows:

w ! |wi , ı(v) ! hv| . (1.34)

In other words, vectors in V are denoted by “ket”-vectors |wi, dual vectors in V ⇤, obtained via the map ı,
by “bra”-vectors hv| while the action of one on the other (which equals the scalar product in Eq. (1.33))
is simple obtained by combining the two to a “bra-(c)ket”, resulting in

ı(v)(w) = hv,wi = hv|wi . (1.35)

Note, there is nothing particularly profound about this notation - for the most part it simply amounts to
replacing the comma separating the two arguments of an inner product with a vertical bar.

We can ask about interesting new properties of linear maps in the presence of an inner product. First,
recall that scalar products of the form

hv, T (w)i (1.36)

for a linear map T : V ! V are also called matrix elements of T . Two maps T : V ! V and S : V ! V
are equal i↵ all their matrix elements are equal, that is, i↵ hv, T (w)i = hv, S(w)i for all v,w 2 V .
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where S = S† and T = T † has been used for the second equivalence. In conclusion, the composition of
two hermitian operators is hermitian if and only if the operators commute. For a complex inner product
vector space, it is also worth noting that, from Eq. (1.39), an anti-hermitian operator, that is an operator
T satisfying T † = �T , can be turned into a hermitian one (and vice versa) by multiplying with ±i, so

T † = �T () (±iT )† = ±iT . (1.43)

Also note that every linear operator T : V ! V with an adjoint T † can be written as a (unique) sum of a
hermitian and an anti-hermitian operator. Indeed, defining T± = 1

2(T ± T †) we have T = T+ + T� while
T+ is hermitian and T� is anti-hermitian.

In the context of Dirac notation, the matrix elements of an operator T are denoted by

hv|T |wi := hv, T (w)i . (1.44)

In this way, the matrix element of the operator is obtained by including it between a bra and a ket vector.
This symmetric notation is particularly useful for hermitian operators since they can be thought of as
acting on either one of the scalar product’s arguments. For non-hermitian operators or for the purpose of
proving that an operator is hermitian the Dirac notation is less helpful and it is sometimes better to use
the mathematical notation, as on the RHS of Eq. (1.44). Relative to an ortho-normal basis ✏1, . . . , ✏n of
a finite-dimensional inner product space V a self-adjoint linear operator T : V ! V is described by the
matrix with entries (in Dirac notation)

Tij = h✏i|T |✏ji . (1.45)

In terms of these matrix elements, T can also be written as

T =
nX

k,l=1

Tkl|✏kih✏l| . (1.46)

This can be easily verified by taking the matrix elements with h✏i| and |✏ji of this equation and by using
h✏i|✏ki = �ik. (Formally, Eq. (1.46) exploits the identification Hom(V, V ) ⇠= V ⌦ V ⇤.) In particular the
identity operator id with matrix elements �ij can be written as

id =
nX

i=1

|✏iih✏i| . (1.47)

Exercise 1.21. By acting on an arbitrary vector, verify explicitly that the RHS of Eq. (1.47) is indeed
the identity operator.

Dirac notation can be quite intuitive as can be demonstrated by re-writing some of our earlier equations.
For example, writing the relation (1.31) for the coordinates relative to an orth-normal basis in Dirac
notation leads to

|vi =
nX

i=1

|✏iih✏i|vi . (1.48)

Evidently, this can now be derived by inserting the identity operator in the form (1.47). Similarly, the
expressions (1.32) for the scalar product and the norm in Dirac notation

hv|wi =
nX

i=1

hv|✏iih✏i|wi , k |vi k2 = hv|vi =
nX

i=1

hv|✏iih✏i|vi (1.49)

are easily seen to follow by inserting the identity operator (1.47).

Another important class of specific linear maps on an inner product vector space are unitary maps which
are precisely those maps which leave the value of the inner product unchanged in the sense of the following
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Exercise 1.18. Show that two linear maps are equal i↵ all their matrix elements are equal.

In the finite-dimensional case, the matrix A which describes a linear map T : V ! V relative to an
ortho-normal basis ✏1, . . . , ✏n is simply obtained by the matrix elements

Aij = h✏i, T (✏j)i . (1.37)

Next, we recall the definition of the adjoint linear map.

Definition 1.10. For a linear map T : V ! V on a vector space V with scalar product, an adjoint linear
map, T † : V ! V is a map satisfying

hv, Twi = hT †v,wi (1.38)

for all v,w 2 V .

If the adjoint exists, it is unique and has the following properties

(T †)† = T , (↵T + �S)† = ↵⇤T † + �⇤S† , (S � T )† = T † � S† , T�1† = T †�1
, (1.39)

provided the maps in those equations exist.

Exercise 1.19. Show that the adjoint map is unique and that it has the properties in Eq. (1.39).

For finite-dimensional inner product vector spaces we can describe both T and its adjoint T † by
matrices relative to an ortho-normal basis ✏1, . . . , ✏n. They are given by the matrix elements

Aij = h✏i, T (✏j)i , (A†)ij = h✏i, T †(✏j)i . (1.40)

where A† := AT ⇤
is the hermitian conjugate of the matrix A. Hence, at the level of matrices, the adjoint

simply corresponds to the hermitian conjugate matrix (or the transpose matrix in the real case). This
observation can also be used to show the existence of the adjoint for finite-dimensional inner product
spaces. Existence of the adjoint in the infinite-dimensional case is not so straightforward and will be
considered later.

Exercise 1.20. Show that the matrix which consists of the matrix elements of T † in Eq. (1.40) is indeed
the hermitian conjugate of the matrix given by the matrix elements of T .

Particularly important linear operators are those which can be moved from one argument of a scalar
product into the other without changing the value of the scalar product and they are called hermitian or
self-adjoint operators.

Definition 1.11. A linear operator T : V ! V on a vector space V with scalar product is called self-
adjoint (or hermitian) i↵ hv, T (w)i = hT (v),wi for all v,w 2 V .

Hence, a self-adjoint operator T : V ! V is one for which the adjoint exists and satisfies T † = T .
Recall that the commutator of two linear operators S, T is defined as

[S, T ] := S � T � T � S , (1.41)

We also say that two operators S and T commute i↵ [S, T ] = 0.
We can ask under what condition the composition S �T of two hermitian operators is again hermitian.

Using the above commutator notation, we have

(S � T )† = S � T , T † � S† = S � T , T � S = S � T , [S, T ] = 0 (1.42)
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notation leads to
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In Hilbert space with ortho-normal basis finite-dimensional expressions

generalise to infinite dimensions.



Examples of inner product vector spaces

Definition 1.12. Let V be an inner producr vector space. A linear map U : V ! V is called unitary i↵

hU(v), U(w)i = hv,wi (1.50)

for all v,w 2 V .

Unitary maps have the following important properties.

Lemma 1.1. (Properties of unitary maps) A unitary map U with adjoint U † has the following properties.

(i) Unitary maps U can also be characterized by U † � U = U � U † = idV .
(ii) Unitary maps U are invertible and U�1 = U †.
(iii) The composition of unitary maps is a unitary map.
(iv) The inverse, U †, of a unitary map U is unitary.

Exercise 1.22. Show the properties of unitary maps in Lemma 1.1.

For finite-dimensional vector spaces we know that, relative to an ortho-normal basis ✏1, . . . , ✏n, a unitary
map Û is described by a unitary matrix (orthogonal matrix in the real case). Indeed, introducing the
matrix U with matrix elements (in Dirac notation)

Uij = h✏i|Û |✏ji , (1.51)

this statement is verified by the following short calculation.
X

j

(U †)ijUjk =
X

j

h✏i|Û †| ✏jih✏j || {z }
=id

Û |✏ki = h✏i| Û †Û|{z}
=id

|✏ki = h✏i|✏ki = �ik . (1.52)

Still in the finite-dimensional case, consider two choices of ortho-normal basis (✏1, . . . , ✏n) and (✏01, . . . , ✏
0
n)

and the matrices Tij = h✏i|T̂ |✏ji and T 0
ij

= h✏0
i
|T̂ |✏0

j
i representing a linear operator T̂ with respect to either.

We have already written down the general relation between those two matrices in Eq. (1.15) but how does
this look for a change from one ortho-normal basis to another? Inserting identity operators (1.47) we find

T 0
ij = h✏0i|T̂ |✏0ji =

mX

k,l=1

h✏0i|✏kih✏k|T̂ |✏lih✏l|✏0ji = QikTklQ
⇤
jl

= (QTQ†)ij , Qij := h✏0i|✏ji (1.53)

so that T 0 = QTQ†. This result is, in fact, consistent with Eq. (1.15) since the matrix Q is unitary, so
Q† = Q�1. This can be verified immediately:

(Q†Q)ij =
nX

k=1

Q⇤
ki

Qkj =
nX

k=1

h✏0
k
|✏ii⇤h✏0k|✏ji =

nX

k=1

h✏i|✏0kih✏0k|✏ji = h✏i|✏ji = �ij . (1.54)

Using this formalism, we can also verify that Q relates coordinate vectors relative to the two choices of
basis, as stated in Eq. (1.16). From Eq. (1.48), the two coordinate vectors for a given vector |vi are given
by ↵i = h✏i|vi and ↵0

i
= h✏0

i
|vi. It follows

↵0
i = h✏0i|vi =

nX

j=1

h✏0i|✏jih✏j |vi =
nX

j=1

Qij↵j . (1.55)

Examples of inner product vector spaces
The standard finite-dimensional examples are of course Rn and Cn with scalar product defined by

hv,wi :=
nX

i=1

v⇤i wi , (1.56)
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for vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T . (We have followed the convention, mentioned above,
of writing the equations for the complex case. For the real case, simply drop the complex conjugation.)
The norm associated to this scalar product is of course the one given in Eq. (1.22). Linear maps are
described by n ⇥ n matrices and the adjoint of a matrix A, relative to the inner product (1.56), is given
by the hermitian conjugate A†. For the complex case, unitary linear maps are given by unitary matrices,
that is matrices U satisfying

U †U = n . (1.57)

For the real case, unitary linear maps, relative to the inner product (1.56), are given by orthogonal
matrices, that is matrices A satisfying

ATA = n . (1.58)

Both are important classes of matrices which we will return to in our discussion of symmetries in Section 9.
For an infinite-dimensional example, we begin with the space C[a, b] of continuous (complex-valued)

functions on the interval [a, b], equipped with the scalar product

hf, gi :=

Z
b

a

dx f(x)⇤g(x) , (1.59)

for f, g 2 C[a, b].

Exercise 1.23. Verify that Eq. (1.59) defines a scalar product on C[a, b]. (Hint: Check the conditions in
Def. 1.9).

The norm associated to this scalar product is given by the first equation (1.25). Consider the linear
operator Mp, defined in Eq. (1.20), which acts by multiplication with the function p. What is the adjoint
of Mp? The short calculation

hf, Mp(g)i =

Z
b

a

dx f(x)⇤(p(x)g(x)) =

Z
b

a

(p(x)⇤f(x))⇤g(x) = hMp⇤(f), gi (1.60)

shows that
M †

p = Mp⇤ , (1.61)

so the adjoint operator corresponds to multiplication with the complex conjugate function p⇤. If p is
real-valued so that p = p⇤ then Mp is a hermitian operator. From the definition of the multiplication
operator it is clear that

Mp � Mq = Mpq , M1 = id (1.62)

for two functions p and q. Eqs. (1.61) and (1.62) can be used to construct unitary multiplication operators.
For a real-valued function u we have

M †
eiu

� Meiu = Me�iu � Meiu = M1 = id , (1.63)

so that multiplication with a complex phase eiu(x) (where u is a real-valued function) is a unitary operator.
This can also be verified directly from the scalar product:

hMeiu(f), Meiu(g)i =

Z
b

a

dx
⇣
eiu(x)f(x)

⌘⇤ ⇣
eiu(x)g(x)

⌘
=

Z
b

a

f(x)⇤g(x) = hf, gi . (1.64)

For another example of a unitary map, let us restrict to the space Cc(R) of complex-valued functions
on the real line with compact support, still with the scalar product (1.59), but setting a = �1 and b = 1.
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For the real case, unitary linear maps, relative to the inner product (1.56), are given by orthogonal
matrices, that is matrices A satisfying

ATA = n . (1.58)

Both are important classes of matrices which we will return to in our discussion of symmetries in Section 9.
For an infinite-dimensional example, we begin with the space C[a, b] of continuous (complex-valued)

functions on the interval [a, b], equipped with the scalar product
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Exercise 1.23. Verify that Eq. (1.59) defines a scalar product on C[a, b]. (Hint: Check the conditions in
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operator Mp, defined in Eq. (1.20), which acts by multiplication with the function p. What is the adjoint
of Mp? The short calculation

hf, Mp(g)i =

Z
b

a

dx f(x)⇤(p(x)g(x)) =

Z
b

a

(p(x)⇤f(x))⇤g(x) = hMp⇤(f), gi (1.60)

shows that
M †
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For a real-valued function u we have
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- translation operator                         . Its adjoint is             since 

(The compact support property is to avoid issues with the finiteness of the integral - we will deal with
this in more generality later.) On this space define the “translation operator” Ta : Cc(R) ! Cc(R) by

Ta(f)(x) := f(x � a) , (1.65)

for any fixed a 2 R. Evidently, this operator “shifts” the graph of the function by an amount of a along
the x-axis. Let us work out the e↵ect of this operator on the scalar product. To find the adjoint of Ta we
calculate

hf, Ta(g)i =

Z 1

�1
dx f(x)⇤g(x � a)

y=x�az}|{
=

Z 1

�1
dy f(y + a)⇤g(y) = hT�a(f), gi , (1.66)

so that T †
a = T�a, that is, the adjoint is given by the shift in the opposite direction. To check unitarity

we work out

hTa(f), Ta(g)i =

Z 1

�1
dx f(x � a)⇤g(x � a)

y=x�az}|{
=

Z 1

�1
dy f(y)⇤g(y) = hf, gi . (1.67)

and conclude that Ta is indeed unitary. Alternatively, we can check the unitarity condition T †
a � Ta =

T�a � Ta = id which works out as expected since combining shifts by a and �a amounts to the identity
operation.

To consider di↵erential operators we restrict further to the inner product space C1
c (R) of complex-

valued, infinitely times di↵erentiable functions with compact support, still with scalar product defined by
Eq. (1.59), setting a = �1 and b = 1. What is the adjoint of the di↵erential operator D = d/dx? The
short calculation

hf, D(g)i =

Z 1

�1
dx f(x)⇤g0(x) = [f(x)⇤g(x)]1�1| {z }

=0

�
Z 1

�1
dx f 0(x)⇤g(x) = h�D(f), gi (1.68)

(where the boundary term vanishes since the functions have compact support) shows that

✓
d

dx

◆†
= � d

dx
, (1.69)

so d/dx is anti-hermitian. As discussed earlier, for a complex inner product space, we can turn this into
a hermitian operator by multiplying with ±i, so that

✓
±i

d

dx

◆†
= ±i

d

dx
. (1.70)

Another lesson from the above computation is that, for scalar products defined by integrals, the property
of being hermitian can depend on boundary conditions satisfied by the functions in the relevant function
vector space. In the case of Eq. (1.68) we were able to reach a conclusion because the boundary term
could be discarded due to the compact support property of the functions.

What about the composite operator Mx � i d/dx? We know that the composition of two hermitian
operators is hermitian i↵ the two operators commute so let us work out the commutator (writing, for
simplicity, Mx as x) 

i
d

dx
, x

�
= i

d

dx
� x � x � i

d

dx
= i + ix

d

dx
� ix

d

dx
= i . (1.71)

(If the above computation looks confusing remember we are dealing with operators, so think of the entire
equation above as acting on a function f . The second step in the calculation then amounts to using
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the x-axis. Let us work out the e↵ect of this operator on the scalar product. To find the adjoint of Ta we
calculate

hf, Ta(g)i =

Z 1

�1
dx f(x)⇤g(x � a)

y=x�az}|{
=

Z 1

�1
dy f(y + a)⇤g(y) = hT�a(f), gi , (1.66)

so that T †
a = T�a, that is, the adjoint is given by the shift in the opposite direction. To check unitarity

we work out

hTa(f), Ta(g)i =

Z 1

�1
dx f(x � a)⇤g(x � a)

y=x�az}|{
=

Z 1

�1
dy f(y)⇤g(y) = hf, gi . (1.67)

and conclude that Ta is indeed unitary. Alternatively, we can check the unitarity condition T †
a � Ta =

T�a � Ta = id which works out as expected since combining shifts by a and �a amounts to the identity
operation.

To consider di↵erential operators we restrict further to the inner product space C1
c (R) of complex-

valued, infinitely times di↵erentiable functions with compact support, still with scalar product defined by
Eq. (1.59), setting a = �1 and b = 1. What is the adjoint of the di↵erential operator D = d/dx? The
short calculation

hf, D(g)i =

Z 1

�1
dx f(x)⇤g0(x) = [f(x)⇤g(x)]1�1| {z }

=0

�
Z 1

�1
dx f 0(x)⇤g(x) = h�D(f), gi (1.68)

(where the boundary term vanishes since the functions have compact support) shows that

✓
d

dx

◆†
= � d

dx
, (1.69)

so d/dx is anti-hermitian. As discussed earlier, for a complex inner product space, we can turn this into
a hermitian operator by multiplying with ±i, so that

✓
±i

d

dx

◆†
= ±i

d

dx
. (1.70)

Another lesson from the above computation is that, for scalar products defined by integrals, the property
of being hermitian can depend on boundary conditions satisfied by the functions in the relevant function
vector space. In the case of Eq. (1.68) we were able to reach a conclusion because the boundary term
could be discarded due to the compact support property of the functions.

What about the composite operator Mx � i d/dx? We know that the composition of two hermitian
operators is hermitian i↵ the two operators commute so let us work out the commutator (writing, for
simplicity, Mx as x) 

i
d

dx
, x

�
= i

d

dx
� x � x � i

d

dx
= i + ix

d

dx
� ix

d

dx
= i . (1.71)

(If the above computation looks confusing remember we are dealing with operators, so think of the entire
equation above as acting on a function f . The second step in the calculation then amounts to using
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- the differential operator             has adjoint                  ,                         since 

(assuming functions vanish at boundaries)



What is a Hilbert space?
  Maths answer: An inner product vector space which is complete.

Physics answer: The arena for quantum mechanics.

Complete means that every Cauchy sequence converges.
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converges to

Definition 1.14. (Convergence of a sequence) A sequence (vi)1i=1 in a normed vector space V converges
to a vector v 2 V if, for every ✏ > 0, there exists a positive integer k such that vi 2 B✏(v) for all i > k.
In this case, we write limi!1 vi = v.

Note that, while this definition might sound somewhat convoluted, it actually captures the intuitive idea
of convergence. It says that the sequence converges to v if, for every small deviation ✏ > 0, there is always
a “tail”, su�ciently far out, which is entirely contained within the ball of radius ✏ around v. (See Fig. 1.)

There is a related, but somewhat weaker notion of convergence which avoids talking about the vector
the sequence converges to. Sequences which converge in this weaker sense are called Cauchy sequences
and are defined as follows.

Definition 1.15. (Cauchy sequence) A sequence (vi)1i=1 in a normed vector space V is called a Cauchy
sequence if, for every ✏ > 0, there exist a positive integer k such that vi �vj 2 B✏(0) for all i, j > k. (See
Fig. 1.)

In other words, a sequence is a Cauchy sequence if for every small ✏ > 0 there is a “tail”, su�ciently far
out, such that the norm between each two vectors in the tail is less than ✏. The notions of convergentx
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Figure 1: Convergence of a sequence (vk) to a limit v (left) and Cauchy convergence (right).

sequence and Cauchy sequence lead to analogous notions for a series
P1

i=1 vi, which can be defined by
focusing on its partial sums.

Definition 1.16. A series
P1

i=1 vi is called convergent to a vector v (is called a Cauchy series) i↵ the

associated sequence of partial sums (sk)1k=1, where sk =
P

k

i=1 vi, converges to the vector v (is a Cauchy
sequence).

Exercise 1.30. Show that every convergent sequence in a normed vector space is also a Cauchy sequence.
(Hint: Use the triangle inequality.)

For a series there is also a stronger version of convergence, called absolute convergence.

Definition 1.17. A series
P1

i=1 vi is called absolutely convergent if
P1

i=1 k vi k converges (as a series
over the real numbers).

Exercise 1.31. Show that an absolutely convergent series is a Cauchy series.
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Figure 1: Convergence of a sequence (vk) to a limit v (left) and Cauchy convergence (right).

sequence and Cauchy sequence lead to analogous notions for a series
P1

i=1 vi, which can be defined by
focusing on its partial sums.

Definition 1.16. A series
P1

i=1 vi is called convergent to a vector v (is called a Cauchy series) i↵ the

associated sequence of partial sums (sk)1k=1, where sk =
P

k

i=1 vi, converges to the vector v (is a Cauchy
sequence).

Exercise 1.30. Show that every convergent sequence in a normed vector space is also a Cauchy sequence.
(Hint: Use the triangle inequality.)

For a series there is also a stronger version of convergence, called absolute convergence.

Definition 1.17. A series
P1

i=1 vi is called absolutely convergent if
P1

i=1 k vi k converges (as a series
over the real numbers).

Exercise 1.31. Show that an absolutely convergent series is a Cauchy series.
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Hilbert space has an ortho-normal basis iff it is separable 

-> previous formulae generalise . . .

Hilbert space which appear in practice are separable . . .



Examples of Hilbert spaces

Definition 2.2. An inner product vector space H is called a Hilbert space if it is complete (relative to the
norm associated to the scalar product).

We know that the Banach spaces given in the previous sub-section can be equipped with a scalar product
when p = 2 and this provides us with examples of Hilbert spaces.

Examples of Hilbert spaces

• The inner product vector spaces Rn and Cn with inner product (1.56) are complete (since they are
Banach spaces relative to the norm associated to this scalar product) and they are, hence, Hilbert
spaces. We know that any finite-dimensional inner product vector space over the field R (over the
field C) is isomorphic to Rn (or Cn) by mapping a vector to its coordinate vector relative to some
chosen basis. If we choose an ortho-normal basis we know from Eq. (1.32) that, in terms of the
coordinates, the scalar product can be expressed in terms of the standard scalar product on Rn or
Cn. Together, these facts imply that any finite-dimensional inner product vector space over R or C
is a Hilbert space.

• For the measure set (X, ⌃, µ), the space L2(X), defined in Eq. (1.90) is an inner product vector
space with inner product given by Eq.(1.92). We already know that this is a Banach space (relative
to the norm associated to the scalar product), so L2(X) is complete and, hence, a Hilbert space.

• Associated to the measure space (N, ⌃c, µc) with counting measure µc we have the space `2 of all

sequences (xi)1i=1 in R (or C) with
�P1

i=1 |xi|2
�1/2

finite. An inner product on this space is given by
Eq. (1.97). Since `2 is a Banach space it is complete and is, hence, also a Hilbert space.

• For a Lebesgue measure space (U, ⌃L(U), µL), where U ⇢ Rn is a Lebesgue measurable set, we
have defined the space L2(U) which consists of measurable functions f : U ! R (or f : U ! C)

with
�R

U
dx |f(x)|2

�1/2
finite. This is an inner product vector space with inner product given by

Eq. (1.101). Following the same logic as before, L2(U) is a Banach space and it is, hence, complete
and a Hilbert space. This space is also called the Hilbert space of square integrable functions on U .
We will sometimes write L2

R(U) or L2
C(U) to indicate whether we are talking about real or complex

valued functions.

• There is a useful generalisation of the previous example which we will need later. On an interval
[a, b] ⇢ R introduce an everywhere positive, integrable function w : [a, b] ! R>0, called the weight
function, and define the space L2

w([a, b]) as the space of measurable functions f : [a, b] ! R with⇣R
[a,b] dx w(x)|f(x)|2

⌘1/2
finite. We can introduce

hf, gi :=

Z

[a,b]
dx w(x)f(x)⇤g(x) . (2.1)

With the usual identification of functions, as in Eq. (1.88), this leads to a Hilbert space, called
L2
w([a, b]), with scalar product (2.1).

Orthogonal basis
We have seen that an ortho-normal basis for a finite-dimensional Hilbert space is really the most convenient
tool to carry out calculations. We should now discuss the concept of ortho-normal basis for infinite-
dimensional Hilbert spaces. One question we need to address first is what happens when we take a limit
inside one of the arguments of the scalar product.

Lemma 2.1. For a convergent sequence (vi)1i=1 in a Hilbert space H and any vector w 2 H we have
limi!1hw,vii = hw, limi!1 vii. A similar statement applies to the first argument of the scalar product.
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•    and    with standard scalar product  
(the latter for finite-dimensional quantum systems)

• general construction: measure set           ->  
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chosen basis. If we choose an ortho-normal basis we know from Eq. (1.32) that, in terms of the
coordinates, the scalar product can be expressed in terms of the standard scalar product on Rn or
Cn. Together, these facts imply that any finite-dimensional inner product vector space over R or C
is a Hilbert space.

• For the measure set (X, ⌃, µ), the space L2(X), defined in Eq. (1.90) is an inner product vector
space with inner product given by Eq.(1.92). We already know that this is a Banach space (relative
to the norm associated to the scalar product), so L2(X) is complete and, hence, a Hilbert space.

• Associated to the measure space (N, ⌃c, µc) with counting measure µc we have the space `2 of all

sequences (xi)1i=1 in R (or C) with
�P1

i=1 |xi|2
�1/2

finite. An inner product on this space is given by
Eq. (1.97). Since `2 is a Banach space it is complete and is, hence, also a Hilbert space.

• For a Lebesgue measure space (U, ⌃L(U), µL), where U ⇢ Rn is a Lebesgue measurable set, we
have defined the space L2(U) which consists of measurable functions f : U ! R (or f : U ! C)

with
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U
dx |f(x)|2
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finite. This is an inner product vector space with inner product given by

Eq. (1.101). Following the same logic as before, L2(U) is a Banach space and it is, hence, complete
and a Hilbert space. This space is also called the Hilbert space of square integrable functions on U .
We will sometimes write L2

R(U) or L2
C(U) to indicate whether we are talking about real or complex

valued functions.

• There is a useful generalisation of the previous example which we will need later. On an interval
[a, b] ⇢ R introduce an everywhere positive, integrable function w : [a, b] ! R>0, called the weight
function, and define the space L2

w([a, b]) as the space of measurable functions f : [a, b] ! R with⇣R
[a,b] dx w(x)|f(x)|2

⌘1/2
finite. We can introduce

hf, gi :=
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[a,b]
dx w(x)f(x)⇤g(x) . (2.1)

With the usual identification of functions, as in Eq. (1.88), this leads to a Hilbert space, called
L2
w([a, b]), with scalar product (2.1).

Orthogonal basis
We have seen that an ortho-normal basis for a finite-dimensional Hilbert space is really the most convenient
tool to carry out calculations. We should now discuss the concept of ortho-normal basis for infinite-
dimensional Hilbert spaces. One question we need to address first is what happens when we take a limit
inside one of the arguments of the scalar product.

Lemma 2.1. For a convergent sequence (vi)1i=1 in a Hilbert space H and any vector w 2 H we have
limi!1hw,vii = hw, limi!1 vii. A similar statement applies to the first argument of the scalar product.
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(quantum mechanics in ``matrix mechanics” formulation)

Recall that X is still an arbitrary set so the above construction of measure sets and integrals is very gen-
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(K1) p(E) � 0 for all E 2 ⌃
(K2) p(⌦) = 1
(K3) For Ei 2 ⌃, where i = 1, 2, · · · , and the Ei mutually disjoint we have

p

 1[
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Ei

!
=

1X

i=1

p(Ei) . (1.93)

In this case, ⌦ is called the sample space, ⌃ the event space and p the probability measure.

Comparing this definition with Def. 1.25 shows that a probability space (⌦, ⌃, p) is, in fact, a particular
measure space with a few additional properties for p, in order to make it a suitable measure for proba-
bility. (The condition (M1) in Def. 1.25, µ({}) = 0, can be deduced from the Kolmogorov axioms.) The
measurable functions f : ⌦ ! R on this space are also called random variables and the integral

E[f ] :=

Z

⌦
f dp (1.94)

is called the expectation value of the random variable f .

Counting measure: Choose X = N to be the natural numbers, ⌃c to be all subsets of N and for a set
S 2 ⌃c define the measure µc(S) as the number of elements of S (with 1 permitted). Then, (N, ⌃c, µc)
is a measure space and µc is called the counting measure on N. The functions f : N ! R on this space
can be identified with the sequences (xi)1i=1 (where xi = f(i � 1)) and the integrable “functions” are
those with

P1
i=1 |xi| < 1 while the integral is simply the series

P1
i=1 xi. Specialising from the general

construction (1.90), we can define the spaces `p := Lp(N) which are explicitly given by
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:(xi)
1
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|xi|p
!1/p

< 1

9
=

; , (1.95)

which are normed vector spaces with norm

k (xi) k
p

=

 1X

i=1

|xi|p
!1/p

. (1.96)

Recall that we know from Theorem 1.40 that the spaces `p are complete, relative to this norm. The space
`2 is an inner product space with scalar product

h(xi), (yi)i =
1X

i=1

x̄iyi . (1.97)
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With the usual identification of functions, as in Eq. (1.88), this leads to a Hilbert space, called
L2
w([a, b]), with scalar product (2.1).

Orthogonal basis
We have seen that an ortho-normal basis for a finite-dimensional Hilbert space is really the most convenient
tool to carry out calculations. We should now discuss the concept of ortho-normal basis for infinite-
dimensional Hilbert spaces. One question we need to address first is what happens when we take a limit
inside one of the arguments of the scalar product.
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coordinates, the scalar product can be expressed in terms of the standard scalar product on Rn or
Cn. Together, these facts imply that any finite-dimensional inner product vector space over R or C
is a Hilbert space.

• For the measure set (X, ⌃, µ), the space L2(X), defined in Eq. (1.90) is an inner product vector
space with inner product given by Eq.(1.92). We already know that this is a Banach space (relative
to the norm associated to the scalar product), so L2(X) is complete and, hence, a Hilbert space.

• Associated to the measure space (N, ⌃c, µc) with counting measure µc we have the space `2 of all

sequences (xi)1i=1 in R (or C) with
�P1

i=1 |xi|2
�1/2

finite. An inner product on this space is given by
Eq. (1.97). Since `2 is a Banach space it is complete and is, hence, also a Hilbert space.

• For a Lebesgue measure space (U, ⌃L(U), µL), where U ⇢ Rn is a Lebesgue measurable set, we
have defined the space L2(U) which consists of measurable functions f : U ! R (or f : U ! C)

with
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U
dx |f(x)|2

�1/2
finite. This is an inner product vector space with inner product given by

Eq. (1.101). Following the same logic as before, L2(U) is a Banach space and it is, hence, complete
and a Hilbert space. This space is also called the Hilbert space of square integrable functions on U .
We will sometimes write L2

R(U) or L2
C(U) to indicate whether we are talking about real or complex

valued functions.

• There is a useful generalisation of the previous example which we will need later. On an interval
[a, b] ⇢ R introduce an everywhere positive, integrable function w : [a, b] ! R>0, called the weight
function, and define the space L2

w([a, b]) as the space of measurable functions f : [a, b] ! R with⇣R
[a,b] dx w(x)|f(x)|2

⌘1/2
finite. We can introduce
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[a,b]
dx w(x)f(x)⇤g(x) . (2.1)

With the usual identification of functions, as in Eq. (1.88), this leads to a Hilbert space, called
L2
w([a, b]), with scalar product (2.1).

Orthogonal basis
We have seen that an ortho-normal basis for a finite-dimensional Hilbert space is really the most convenient
tool to carry out calculations. We should now discuss the concept of ortho-normal basis for infinite-
dimensional Hilbert spaces. One question we need to address first is what happens when we take a limit
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Lemma 2.1. For a convergent sequence (vi)1i=1 in a Hilbert space H and any vector w 2 H we have
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Lebesgue measure: The Lebesgue measure provides a measure on R (and, more generally, on Rn) but
constructing it takes some e↵ort and time. Instead we take a short-cut and simply state the following
theorem.

Definition 1.29. There is a �-algebra ⌃L on R and a measure µL on ⌃L, called the Lebesgue measure,
with the following properties.

(L1) All intervals [a, b] 2 ⌃L.
(L2) µL([a, b]) = b � a
(L3) The sets S of measure zero in ⌃L are characterised as follows. For any ✏ > 0 there are intervals
[ai, bi], where i = 1, 2, · · · , such that S ⇢

S1
i=1[ai, bi] and

P1
i=1(bi � ai) < ✏.

The measure space (R, ⌃L, µL) is uniquely characterised by these properties.

Note that the Lebesgue measure leads to non-trivial sets with measure zero. For example, any finite set
of points in R has measure zero.

Exercise 1.43. Show that any finite set of points and any sequence (xi)1i=1 in R have measure zero with
respect to the Lebesgue measure µL.

The above Lebesgue measure has been defined in R and, hence, measures length but it can be suitably
generalised to R2 to measure areas, to R3 to measure volumes and to Rn to measure generalised volumes in
n dimensions. This means we have measure spaces (Rn, ⌃L, µL). Of course, this induces measure spaces on
subsets U ⇢ Rn as long as U 2 ⌃L by simply defining the restricted �-algebra ⌃L(U) = {S 2 ⌃L |, S ⇢ U}
and in this way we have measure spaces (U, ⌃L(U), µL).

The integral associated with the measure space (Rn, ⌃L, µL) (or, more generally, with the measure
space (U, ⌃L(U), µL)) is called the Lebesgue integral and it is written as

Z

U

dx f(x) . (1.98)

The Lebesgue-integrable functions are those for which
R
U

dx |f(x)| is finite and following the general
construction, we can define the spaces

Lp(U) =

(
f |

✓Z

U

dx |f(x)|p
◆1/p

< 1
)

. (1.99)

The associated spaces Lp(U), obtained after the identification (1.88) of functions which only di↵er on sets
of measure zero, are complete normed vector spaces with norm

k f k
p

=

✓Z

U

dx |f(x)|p
◆1/p

. (1.100)

The space L2(U) is an inner product vector space with inner product

hf, gi =

Z

U

dx f(x)⇤g(x) . (1.101)

As for the relation between the Riemann and the Lebesgue integrals we have

Theorem 1.44. Every Riemann-integrable function is Lebesgue integrable and for such functions the two
integrals are equal.

Proof. For the proof see, for example, Ref. [10].
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scalar product:

(quantum mechanics in ``wave function” formulation)



Fourier analysis



(a) Fourier series

The Fourier series comes in four flavours:

Maths idea: find an ortho-normal basis for            based on sine and cosine L2([a, b])
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Physics idea: discrete frequency decomposition: coordinates=frequency strength

•  Cosine Fourier series on           : 

has an ortho-normal basis

c̃0 =
1p
a

, c̃k :=

r
2

a
cos

✓
k⇡x

a

◆
, k = 1, 2, . . . . (3.4)

Let us be more explicit about what this actually means. From part (i) of Theorem 2.3 we conclude that
every (real-valued) square integrable function f 2 L2

R([0, a]) can be written as

f(x) =
1X

k=0

↵k c̃k(x) =
↵0p

a
+

r
2

a

1X

k=1

↵k cos

✓
k⇡x

a

◆
(3.5)

where

↵0 = hc̃0, fi =
1p
a

Z
a

0
dx f(x) , ↵k = hc̃k, fi =

r
2

a

Z
a

0
dx cos

✓
k⇡x

a

◆
f(x) , k = 1, 2, . . . . (3.6)

It is customary to introduce the coe�cients a0 = 2 ↵0p
a

and ak =
q

2
a
↵k, for k = 1, 2, . . . in order to

re-distribute factors:

f(x) =
a0
2

+
1X

k=1

ak cos

✓
k⇡x

a

◆
where ak =

2

a

Z
a

0
dx cos

✓
k⇡x

a

◆
f(x) . (3.7)

This series is called the cosine Fourier series and the ak are called the (cosine) Fourier coe�cients. It is
important to remember that the equality in the first Eq. (3.7) holds in L2

R([0, a]), a space which consists of
classes of functions which have been identified if they di↵er only on sets of Lebesgue-measure zero. This
means that the function f and its Fourier series do not actually have to coincide at every point x 2 [0, a]
- they can di↵er on a space of measure zero. However, we know that the (cosine) Fourier series always
converges to the function f in the norm on L2

R([0, a]).
We know from part (ii) of Theorem 2.3 that the norm of f can be calculated in terms of its Fourier

coe�cients as
2

a

Z
a

0
dx |f(x)|2 =

2

a
k f k2 =

2

a

1X

k=0

|hc̃k, fi|2 =
|a0|2

2
+

1X

k=1

|ak|2 . (3.8)

This result is also known as Parseval equation.

Sine Fourier series
Unsurprisingly, the above discussion can be repeated for sine functions. As before, we consider the Hilbert
space L2

R([0, ⇡]) with scalar product (3.1). On this space the functions

s̃k :=

r
2

⇡
sin(kx) , k = 1, 2, . . . (3.9)

form an ortho-normal system and indeed an ortho-normal basis as stated in the following

Theorem 3.3. The functions (s̃k)1k=1 in Eq. (3.11) form an ortho-normal basis of L2
R([0, ⇡]).

Proof. This proof is very similar to the one for Theorem 3.2 and can, for example, be found in Ref. [5].

As in the cosine case, we can re-scale by x ! ⇡x/a to the interval [0, a] and obtain an ortho-normal basis

s̃k =

r
2

a
sin

✓
k⇡x

a

◆
, k = 1, 2, . . . (3.10)
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basis:

•  Sine Fourier series on          : for L2
R([0, a]) with scalar product (3.3). Hence, every function f 2 L2
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Introducing to the coe�cients bk = �k/
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This series is called the sine Fourier series and the bk are called the (sine) Fourier coe�cients. Of course
there is also a version of Parseval’s equation which reads
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2

a
k f k2 =

2

a

1X

k=1

|hs̃k, fi|2 =
1X

k=1

|bk|2 . (3.12)

Real standard Fourier series
The most commonly used form of the Fourier series uses sine and cosine functions and can be thought of
as a combination of the above two cases. The Hilbert space considered in this case is L2

R([�⇡, ⇡]) with
scalar product

hf, gi =

Z
⇡

�⇡

dx f(x)g(x) . (3.13)

We can also think of the functions in this Hilbert space as the periodic functions with period 2⇡, so
f(x) = f(x + 2⇡) (which are square-integrable over one period). The functions

c0 :=
1p
2⇡

, ck :=
1p
⇡

cos(kx) , sk :=
1p
⇡

sin(kx) , k = 1, 2, . . . , (3.14)

form an ortho-normal system on L2
R([�⇡, ⇡]).

Exercise 3.4. Check that the functions (3.14) form an ortho-normal system on L2
R([�⇡, ⇡]).

They also form an ortho-normal basis as the following theorem asserts.

Theorem 3.5. The functions (ck)1k=0 and (sk)1k=1 together form an ortho-normal basis on L2
R([�⇡, ⇡]).

Proof. Every function f 2 L2
R([�⇡, ⇡]) can be written as f = f++f�, where f±(x) = 1

2(f(x)±f(�x)) are
the symmetric and anti-symmetric parts of f . The functions f± can be restricted to the interval [0, ⇡] so
that they can be viewed as elements of L2

R([0, ⇡]). From Theorem 3.2 we can write down a cosine Fourier
series for f+ and from Theorem 3.3 f� has a sine Fourier series, so

f+ =
1X

k=0

↵k c̃k , f� =
1X

k=1

�k s̃k . (3.15)

Since both sides of the first equation are symmetric and both sides of the second equation anti-symmetric
they can both be trivially extended back to the interval [�⇡, ⇡]. Then, summing up

f = f+ + f� =
1X

k=0

↵k c̃k +
1X

k=1

�k s̃k (3.16)

proves the statement.
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This series is called the cosine Fourier series and the ak are called the (cosine) Fourier coe�cients. It is
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This result is also known as Parseval equation.
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This proof also points to an interpretation of the relation between the sine and cosine Fourier series on
the one hand and the standard Fourier series on the other hand. Starting with a function f 2 L2

R([0, ⇡])
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Fourier series but is valid on the larger interval [�⇡, ⇡]. Similarly, for f 2 L2
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Fourier series for this anti-symmetric function then only contains sine terms and formally coincides with
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R([�⇡, ⇡]) then the
Fourier series only contains cosine (sine) terms and we can restrict the expansion to the interval [0, ⇡] so
it becomes a cosine (sine) Fourier series.
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f(x) , bk =

1

a

Z
a

�a

dx sin

✓
k⇡x

a

◆
f(x) (3.22)

for k = 1, 2, . . .. Parseval’s equation now takes the form

1

a

Z
a

�a

dx |f(x)|2 =
1

a
k f k2 =

1

a

 1X

k=0

|hck, fi|2 +
1X

k=1

|hsk, fi|2
!

=
|a0|2

2
+

1X

k=1

(|ak|2 + |bk|2) . (3.23)
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•  Complex standard Fourier series on             : 

Complex standard Fourier series
By far the most elegant form of the Fourier series arises in the complex case, where we consider the Hilbert
space L2

C([�⇡, ⇡]) with scalar product

hf, gi =

Z
⇡

�⇡

dx f(x)⇤g(x) . (3.24)

The functions

ek :=
1p
2⇡

exp(ikx) , k 2 Z (3.25)

form an ortho-normal system as verified in the following exercise.

Exercise 3.6. Show that the functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal system on L2
C([�⇡, ⇡])

with scalar product (3.24).

The above functions form, in fact, an ortho-normal basis as stated in

Theorem 3.7. The functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal basis of L2
C([�⇡, ⇡]).

Proof. Start with a function f 2 L2
C([�⇡, ⇡]) and decompose this function into real and imaginary parts,

so write f = fR + ifI . Since

1 > k f k2 =

Z
⇡

�⇡

dx|f(x)|2 =

Z
⇡

�⇡

dx f2
R +

Z
⇡

�⇡

dx f2
I (3.26)

both fR and fI are real-valued square integrable functions and are, hence, elements of L2
R([�⇡, ⇡]). This

means, from Theorem 3.5 that we can write down a standard real Fourier series for fR and fI . Inserting
these two real Fourier series into f = fR + ifI and replacing cos(kx) = (exp(ikx) + exp(�ikx))/2,
sin(kx) = (exp(ikx) � exp(�ikx))/(2i) proves the theorem.

The usual re-scaling x ! ⇡x/a leads to the Hilbert space L2
C([�a, a]) with scalar product

hf, gi =

Z
a

�a

dx f(x)⇤g(x) . (3.27)

and ortho-normal basis

ek :=
1p
2a

exp

✓
ik⇡x

a

◆
, k 2 Z . (3.28)

Every function f 2 L2
C([�a, a]) then has an expansion

f(x) =
X

k2Z
↵k ek(x) =

1p
2a

X

k2Z
↵k exp

✓
ik⇡x

a

◆
, (3.29)

where

↵k = hek, fi =
1p
2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.30)

With the re-scaled Fourier coe�cients ak = ↵k/
p

2a this turns into the standard form

f(x) =
X

k2Z
ak exp

✓
ik⇡x

a

◆
where ak =

1

2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.31)
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series:

Complex standard Fourier series
By far the most elegant form of the Fourier series arises in the complex case, where we consider the Hilbert
space L2

C([�⇡, ⇡]) with scalar product

hf, gi =

Z
⇡

�⇡

dx f(x)⇤g(x) . (3.24)

The functions

ek :=
1p
2⇡

exp(ikx) , k 2 Z (3.25)

form an ortho-normal system as verified in the following exercise.

Exercise 3.6. Show that the functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal system on L2
C([�⇡, ⇡])

with scalar product (3.24).

The above functions form, in fact, an ortho-normal basis as stated in

Theorem 3.7. The functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal basis of L2
C([�⇡, ⇡]).

Proof. Start with a function f 2 L2
C([�⇡, ⇡]) and decompose this function into real and imaginary parts,

so write f = fR + ifI . Since

1 > k f k2 =

Z
⇡

�⇡

dx|f(x)|2 =

Z
⇡

�⇡

dx f2
R +

Z
⇡

�⇡

dx f2
I (3.26)

both fR and fI are real-valued square integrable functions and are, hence, elements of L2
R([�⇡, ⇡]). This

means, from Theorem 3.5 that we can write down a standard real Fourier series for fR and fI . Inserting
these two real Fourier series into f = fR + ifI and replacing cos(kx) = (exp(ikx) + exp(�ikx))/2,
sin(kx) = (exp(ikx) � exp(�ikx))/(2i) proves the theorem.

The usual re-scaling x ! ⇡x/a leads to the Hilbert space L2
C([�a, a]) with scalar product

hf, gi =

Z
a

�a

dx f(x)⇤g(x) . (3.27)

and ortho-normal basis

ek :=
1p
2a

exp

✓
ik⇡x

a

◆
, k 2 Z . (3.28)

Every function f 2 L2
C([�a, a]) then has an expansion

f(x) =
X

k2Z
↵k ek(x) =

1p
2a

X

k2Z
↵k exp

✓
ik⇡x

a

◆
, (3.29)

where

↵k = hek, fi =
1p
2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.30)

With the re-scaled Fourier coe�cients ak = ↵k/
p

2a this turns into the standard form

f(x) =
X

k2Z
ak exp

✓
ik⇡x

a

◆
where ak =

1

2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.31)
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Parseval’s eqn.:

Parseval’s equation now reads

1

2a

Z
a

�a

dx |f(x)|2 =
1

2a
k f k2 =

1

2a

X

k2Z
|hek, fi|2 =

X

k2Z
|ak|2 . (3.32)

Pointwise convergence
So far, our discussion of convergence for the Fourier series has been carried out with respect to the L2

norm (3.18). As emphasised, this type of convergence ensures that the di↵erence of a function and its
Fourier series has a vanishing L2 norm but it does not necessarily imply that the Fourier series converges
to the function at every point x. The following theorem provides a statement about uniform convergence
of a Fourier series.

Theorem 3.8. Let f 2 C([�a, a]) be a (real or complex valued) function which is piecewise continuously
di↵erentiable and which satisfies f(�a) = f(a). Then the (real or complex) Fourier series of f converges
to f uniformly.

Proof. For the proof see, for example, Ref. [10].

Recall from Def. 1.22 that uniform convergence implies point-wise convergence so under the conditions of
Theorem 3.8 the Fourier series of f converges to f at every point x 2 [�a, a].

Example 1 - linear function
Let us start with the function f : [�⇡, ⇡] ! R defined by

f(x) = x , (3.33)

so a simple linear function on the interval [�⇡, ⇡]. Of course, we can extend this to a periodic function with
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Figure 3: Graph of the periodic functions f defined by f(x) = f(x + 2⇡) and f(x) = x for �⇡ < x  ⇡.

period 2⇡ whose graph is shown in Fig. 3. Since this function is anti-symmetric the Fourier series of course
only contains sine terms. (Alternatively, and equivalently, we can consider this function restricted to the
interval [0, ⇡] and compute its sine Fourier series.) Using Eqs. (3.22) we find for the Fourier coe�cients

ak = 0 , k = 0, 1, 2, . . . , bk =
1

⇡

Z
⇡

�⇡

dx x sin(kx) =
2(�1)k+1

k
, k = 1, 2, . . . . (3.34)
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Parseval’s equation now reads

1

2a

Z
a

�a

dx |f(x)|2 =
1

2a
k f k2 =

1

2a

X

k2Z
|hek, fi|2 =

X

k2Z
|ak|2 . (3.32)

Pointwise convergence
So far, our discussion of convergence for the Fourier series has been carried out with respect to the L2

norm (3.18). As emphasised, this type of convergence ensures that the di↵erence of a function and its
Fourier series has a vanishing L2 norm but it does not necessarily imply that the Fourier series converges
to the function at every point x. The following theorem provides a statement about uniform convergence
of a Fourier series.

Theorem 3.8. Let f 2 C([�a, a]) be a (real or complex valued) function which is piecewise continuously
di↵erentiable and which satisfies f(�a) = f(a). Then the (real or complex) Fourier series of f converges
to f uniformly.

Proof. For the proof see, for example, Ref. [10].

Recall from Def. 1.22 that uniform convergence implies point-wise convergence so under the conditions of
Theorem 3.8 the Fourier series of f converges to f at every point x 2 [�a, a].

Example 1 - linear function
Let us start with the function f : [�⇡, ⇡] ! R defined by

f(x) = x , (3.33)

so a simple linear function on the interval [�⇡, ⇡]. Of course, we can extend this to a periodic function with
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Figure 3: Graph of the periodic functions f defined by f(x) = f(x + 2⇡) and f(x) = x for �⇡ < x  ⇡.

period 2⇡ whose graph is shown in Fig. 3. Since this function is anti-symmetric the Fourier series of course
only contains sine terms. (Alternatively, and equivalently, we can consider this function restricted to the
interval [0, ⇡] and compute its sine Fourier series.) Using Eqs. (3.22) we find for the Fourier coe�cients

ak = 0 , k = 0, 1, 2, . . . , bk =
1

⇡

Z
⇡

�⇡

dx x sin(kx) =
2(�1)k+1

k
, k = 1, 2, . . . . (3.34)
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basis:

Complex standard Fourier series
By far the most elegant form of the Fourier series arises in the complex case, where we consider the Hilbert
space L2

C([�⇡, ⇡]) with scalar product

hf, gi =

Z
⇡

�⇡

dx f(x)⇤g(x) . (3.24)

The functions

ek :=
1p
2⇡

exp(ikx) , k 2 Z (3.25)

form an ortho-normal system as verified in the following exercise.

Exercise 3.6. Show that the functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal system on L2
C([�⇡, ⇡])

with scalar product (3.24).

The above functions form, in fact, an ortho-normal basis as stated in

Theorem 3.7. The functions (ek)1k=�1 in Eq. (3.25) form an ortho-normal basis of L2
C([�⇡, ⇡]).

Proof. Start with a function f 2 L2
C([�⇡, ⇡]) and decompose this function into real and imaginary parts,

so write f = fR + ifI . Since

1 > k f k2 =

Z
⇡

�⇡

dx|f(x)|2 =

Z
⇡

�⇡

dx f2
R +

Z
⇡

�⇡

dx f2
I (3.26)

both fR and fI are real-valued square integrable functions and are, hence, elements of L2
R([�⇡, ⇡]). This

means, from Theorem 3.5 that we can write down a standard real Fourier series for fR and fI . Inserting
these two real Fourier series into f = fR + ifI and replacing cos(kx) = (exp(ikx) + exp(�ikx))/2,
sin(kx) = (exp(ikx) � exp(�ikx))/(2i) proves the theorem.

The usual re-scaling x ! ⇡x/a leads to the Hilbert space L2
C([�a, a]) with scalar product

hf, gi =

Z
a

�a

dx f(x)⇤g(x) . (3.27)

and ortho-normal basis

ek :=
1p
2a

exp

✓
ik⇡x

a

◆
, k 2 Z . (3.28)

Every function f 2 L2
C([�a, a]) then has an expansion

f(x) =
X

k2Z
↵k ek(x) =

1p
2a

X

k2Z
↵k exp

✓
ik⇡x

a

◆
, (3.29)

where

↵k = hek, fi =
1p
2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.30)

With the re-scaled Fourier coe�cients ak = ↵k/
p

2a this turns into the standard form

f(x) =
X

k2Z
ak exp

✓
ik⇡x

a

◆
where ak =

1

2a

Z
a

�a

dx exp

✓
�ik⇡x

a

◆
f(x) . (3.31)
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Fourier series example

•  Cosine series: f(x) = x , x 2 [0,⇡]
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The Fourier series from the above coe�cients is given by

f(x) =
⇡

2
� 4

⇡

X

k=1,3,5,...

cos(kx)

k2
. (3.42)

The Fourier coe�cients ak and the first few partial sums of the above Fourier series are shown in Fig. 6.
The Fourier coe�cients drop o↵ as ak ⇠ 1/k2, so more quickly as in the previous example, and convergence
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Figure 6: Fourier coe�cients and Fourier series for the modulus function f in Eq. (3.39). The left figure shows
the Fourier coe�cients ak from Eq. (3.40) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.42) is shown in the right figure.

of the Fourier series is more e�cient. A related observation is that the function (3.39) satisfies all the
conditions of Theorem 3.8 and, hence, its Fourier series converges uniformly (and point-wise) to f . Fig. (6)
illustrates this convincingly.

Example 3 - sign function
Another interesting example is the sign function f : [�⇡, ⇡] ! R defined by

f(x) := sign(x) =

8
<

:

1 for x > 0
0 for x = 0

�1 for x < 0
. (3.43)

The periodically continued version of this function is shown in Fig. 7. Since f is an anti-symmetric
function, the Fourier series only contains sine terms. (Alternatively and equivalently, we can think of f
as a function on the [0, ⇡] and work out the sine Fourier series.) For the Fourier coe�cients we have

ak = 0 , bk =
1

⇡

Z
⇡

�⇡

dx sign(x) sin(kx) = �
2
�
(�1)k � 1

�

⇡k
, (3.44)

for k = 1, 2, . . . which leads to the Fourier series

f(x) = � 4

⇡

X

k=1,3,5,...

sin(kx)

k
. (3.45)

The Fourier coe�cients bk and the first few partial sums of the Fourier series are shown in Fig. 8. As for
example 1, the function f does not satisfy the conditions of Theorem 3.8 and the Fourier series does not
converge everywhere point-wise to the function f . Specifically, while the Fourier series always vanishes at
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•  Sine series: f(x) = x , x 2 [0,⇡]
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As a practical matter, it is useful to structure the calculation of Fourier coe�cients in order to avoid
mistakes. Creating pages and pages of integration performed in small steps is neither e�cient nor likely
to lead to correct answers. Instead, separate the process of integration from the specific calculation of
Fourier coe�cients. A particular Fourier calculation often involves certain types of standard integrals. In
the above case, these are integrals of the form

R
dx x sin(↵x) for a constant ↵. Find these integrals first

(or simply look them up): Z
dx x sin(↵x) = �x cos(↵x)

↵
+

sin(↵x)

↵2
. (3.35)

Then apply this general result to the particular calculation at hand, that is, in the present case, set ↵ = k
and put in the integration limits.

Inserting the above Fourier coe�cients into Eq. (3.21), we get the Fourier series

f(x) = 2
1X

k=1

(�1)k+1

k
sin(kx) . (3.36)

Recall that the equality in Eq. (3.36) is not meant point-wise for every x but as an equality in L2
R([�⇡, ⇡]),
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Figure 4: Fourier coe�cients and Fourier series for the linear function f in Eq. (3.33). The left figure shows

the Fourier coe�cients ak from Eq. (3.34) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.36) is shown in the right figure.

that is, the di↵erence between f and its Fourier series has length zero with respect to the norm on
L2

R([�⇡, ⇡]). In fact, Eq. (3.36) shows (and Fig. 4 illustrates) that the Fourier series of f vanishes at ±⇡
(since every term in the series (3.36) vanishes at ±⇡) while f(±⇡) = ±⇡ is non-zero. So we have an example
where the Fourier series does not converge to the function at every point. In fact, the present function f
violates the conditions of Theorem 3.8 (since f(⇡) 6= f(�⇡)), so there is no reason to expect point-wise
convergence. It is clear from Fig. 4 that the Fourier series “struggles” to reproduce the function near ±⇡
and this can be seen as the intuitive reason for the slow drop-o↵ of the Fourier coe�cients, ak ⇠ 1/k, in
Eq. (3.34). In other words, a larger number of terms in the Fourier series contribute significantly so that
the function can be matched near the boundaries of the interval [�⇡, ⇡].

For this example, let us consider Parseval’s equation (3.23)

2⇡2

3
=

1

⇡

Z
⇡

�⇡

dx x2 =
1X

k=1

|bk|2 = 4
1X

k=1

1

k2
, (3.37)

where the left hand side follows from explicitly carrying out the normalisation integral and the right hand
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• Real standard Fourier series: 

The Fourier series from the above coe�cients is given by

f(x) =
⇡

2
� 4

⇡

X

k=1,3,5,...

cos(kx)

k2
. (3.42)

The Fourier coe�cients ak and the first few partial sums of the above Fourier series are shown in Fig. 6.
The Fourier coe�cients drop o↵ as ak ⇠ 1/k2, so more quickly as in the previous example, and convergence
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Figure 6: Fourier coe�cients and Fourier series for the modulus function f in Eq. (3.39). The left figure shows
the Fourier coe�cients ak from Eq. (3.40) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.42) is shown in the right figure.

of the Fourier series is more e�cient. A related observation is that the function (3.39) satisfies all the
conditions of Theorem 3.8 and, hence, its Fourier series converges uniformly (and point-wise) to f . Fig. (6)
illustrates this convincingly.

Example 3 - sign function
Another interesting example is the sign function f : [�⇡, ⇡] ! R defined by

f(x) := sign(x) =

8
<

:

1 for x > 0
0 for x = 0

�1 for x < 0
. (3.43)

The periodically continued version of this function is shown in Fig. 7. Since f is an anti-symmetric
function, the Fourier series only contains sine terms. (Alternatively and equivalently, we can think of f
as a function on the [0, ⇡] and work out the sine Fourier series.) For the Fourier coe�cients we have

ak = 0 , bk =
1

⇡

Z
⇡

�⇡

dx sign(x) sin(kx) = �
2
�
(�1)k � 1

�

⇡k
, (3.44)

for k = 1, 2, . . . which leads to the Fourier series

f(x) = � 4

⇡

X

k=1,3,5,...

sin(kx)

k
. (3.45)

The Fourier coe�cients bk and the first few partial sums of the Fourier series are shown in Fig. 8. As for
example 1, the function f does not satisfy the conditions of Theorem 3.8 and the Fourier series does not
converge everywhere point-wise to the function f . Specifically, while the Fourier series always vanishes at
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3As a practical matter, it is useful to structure the calculation of Fourier coe�cients in order to avoid
mistakes. Creating pages and pages of integration performed in small steps is neither e�cient nor likely
to lead to correct answers. Instead, separate the process of integration from the specific calculation of
Fourier coe�cients. A particular Fourier calculation often involves certain types of standard integrals. In
the above case, these are integrals of the form

R
dx x sin(↵x) for a constant ↵. Find these integrals first

(or simply look them up): Z
dx x sin(↵x) = �x cos(↵x)

↵
+

sin(↵x)

↵2
. (3.35)

Then apply this general result to the particular calculation at hand, that is, in the present case, set ↵ = k
and put in the integration limits.

Inserting the above Fourier coe�cients into Eq. (3.21), we get the Fourier series

f(x) = 2
1X

k=1

(�1)k+1

k
sin(kx) . (3.36)

Recall that the equality in Eq. (3.36) is not meant point-wise for every x but as an equality in L2
R([�⇡, ⇡]),
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Figure 4: Fourier coe�cients and Fourier series for the linear function f in Eq. (3.33). The left figure shows

the Fourier coe�cients ak from Eq. (3.34) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.36) is shown in the right figure.

that is, the di↵erence between f and its Fourier series has length zero with respect to the norm on
L2

R([�⇡, ⇡]). In fact, Eq. (3.36) shows (and Fig. 4 illustrates) that the Fourier series of f vanishes at ±⇡
(since every term in the series (3.36) vanishes at ±⇡) while f(±⇡) = ±⇡ is non-zero. So we have an example
where the Fourier series does not converge to the function at every point. In fact, the present function f
violates the conditions of Theorem 3.8 (since f(⇡) 6= f(�⇡)), so there is no reason to expect point-wise
convergence. It is clear from Fig. 4 that the Fourier series “struggles” to reproduce the function near ±⇡
and this can be seen as the intuitive reason for the slow drop-o↵ of the Fourier coe�cients, ak ⇠ 1/k, in
Eq. (3.34). In other words, a larger number of terms in the Fourier series contribute significantly so that
the function can be matched near the boundaries of the interval [�⇡, ⇡].

For this example, let us consider Parseval’s equation (3.23)

2⇡2

3
=

1

⇡

Z
⇡

�⇡

dx x2 =
1X

k=1

|bk|2 = 4
1X

k=1

1

k2
, (3.37)

where the left hand side follows from explicitly carrying out the normalisation integral and the right hand
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to lead to correct answers. Instead, separate the process of integration from the specific calculation of
Fourier coe�cients. A particular Fourier calculation often involves certain types of standard integrals. In
the above case, these are integrals of the form

R
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dx x sin(↵x) = �x cos(↵x)

↵
+
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↵2
. (3.35)

Then apply this general result to the particular calculation at hand, that is, in the present case, set ↵ = k
and put in the integration limits.

Inserting the above Fourier coe�cients into Eq. (3.21), we get the Fourier series

f(x) = 2
1X

k=1

(�1)k+1

k
sin(kx) . (3.36)

Recall that the equality in Eq. (3.36) is not meant point-wise for every x but as an equality in L2
R([�⇡, ⇡]),
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Figure 4: Fourier coe�cients and Fourier series for the linear function f in Eq. (3.33). The left figure shows

the Fourier coe�cients ak from Eq. (3.34) for k = 1, . . . , 50. The function f together with the first six partial

sums of its Fourier series (3.36) is shown in the right figure.

that is, the di↵erence between f and its Fourier series has length zero with respect to the norm on
L2

R([�⇡, ⇡]). In fact, Eq. (3.36) shows (and Fig. 4 illustrates) that the Fourier series of f vanishes at ±⇡
(since every term in the series (3.36) vanishes at ±⇡) while f(±⇡) = ±⇡ is non-zero. So we have an example
where the Fourier series does not converge to the function at every point. In fact, the present function f
violates the conditions of Theorem 3.8 (since f(⇡) 6= f(�⇡)), so there is no reason to expect point-wise
convergence. It is clear from Fig. 4 that the Fourier series “struggles” to reproduce the function near ±⇡
and this can be seen as the intuitive reason for the slow drop-o↵ of the Fourier coe�cients, ak ⇠ 1/k, in
Eq. (3.34). In other words, a larger number of terms in the Fourier series contribute significantly so that
the function can be matched near the boundaries of the interval [�⇡, ⇡].

For this example, let us consider Parseval’s equation (3.23)

2⇡2

3
=

1

⇡

Z
⇡

�⇡

dx x2 =
1X

k=1

|bk|2 = 4
1X

k=1

1

k2
, (3.37)

where the left hand side follows from explicitly carrying out the normalisation integral and the right hand

48

Parseval:

1

2i
(eikx � e�ikx)

<latexit sha1_base64="hqejlracjg62usHkAad8rz+x4LQ="></latexit>

complex

Fourier

series



(b) Fourier transform
Maths idea: Fourier transform is a unitary map 

Lemma 3.3. If f 2 Cn+1
c (Rn) then the Fourier transform f̂ is integrable, that is, f̂ 2 L1(Rn).

Proof. Property (F4) in Lemma 3.1 states that [Dxjf(k) = ikj f̂(k) which implies that

|kif̂(k)|  k Dif k1/(2⇡)n/2 . (3.82)

Di↵erentiating and applying this rule repeatedly, we conclude that there is a constant K such that

 
1 +

nX

i=1

|ki|
!

n+1

|f̂(k)|  K (3.83)

and this means that f̂ is integrable.

The next Lemma explores the relationship between the Fourier transform and the standard scalar product
on L2(Rn).

Lemma 3.4. (a) Let f, g 2 L1(Rn) with Fourier transforms f̂ and ĝ. Then f̂ g and fĝ are integrable and
we have Z

Rn
dxn f̂(x)g(x) =

Z

Rn
dxn f(x)ĝ(x) (3.84)

(b) For f, g 2 L1(Rn) \ L2(Rn) we have f̂ , ĝ 2 L2(Rn) and

hf, gi = hf̂ , ĝi , (3.85)

where h·, ·i denotes the standard scalar product on L2(Rn) .

Proof. (a) Since f̂ , ĝ are bounded and continuous, f̂ g and fĝ are indeed integrable. It follows

Z
dxn f(x)ĝ(x) =

1

(2⇡)n/2

Z
dxn dyn f(x)g(y)e�ix·y =

Z
dyn f̂(y)g(y) . (3.86)

(b) For h, g 2 C1
c (Rn) we have, from Lemma 3.3, that ĥ, ĝ 2 L1(Rn). Then, we can apply part (a) to get

hĥ, ĝi =

Z
dxn F̃(h̄)(x)ĝ(x) =

Z
dxn F � F̃(h̄)(x)g(x) =

Z
dxn h̄(x)g(x) = hh, gi . (3.87)

To extend this statement to L1(Rn) \ L2(Rn) we recall from Theorem 2.1 that C1
c (Rn) is dense in this

space. We can, therefore, approximate functions f, g 2 L1(Rn)\L2(Rn) by sequences (fk), (gk) in C1
c (Rn).

We have already shown that the property (3.85) holds for all fk, gk and, by taking the limit k ! 1 through
the scalar product it follows for f, g. In particular, taking f = g, it follows that k f k2 = k f̂ k2 which

shows that f̂ 2 L2(Rn).

Clearly, Eq. (3.85) is a unitarity property of the Fourier transform, relative to the standard scalar product
on L2(Rn). However, to make this consistent, we have to extend the Fourier transform to all of L2(Rn)
and this is the content of the following theorem.

Theorem 3.16. (Plancherel) There exist a vector space isomorphism T : L2(Rn) ! L2(Rn) with the
following properties:

(a) hT (f), T (g)i = hf, gi for all f, g 2 L2(Rn). This implies k T (f) k = k f k for all f 2 L2(Rn)
(b) T (f) = F(f) for all f 2 L1(Rn) \ L2(Rn)
(c) T �1(f) = F̃(f) for all f 2 L1(Rn) \ L2(Rn)
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Figure 12: The graph of the Fourier transform �̂ of the characteristic function � (left) and the graph for the

Fourier transform of the convolution [� ? � =
p

2⇡ �̂2
. (right).

Fig. 12 shows the graphs for the Fourier transforms �̂ and f̂ .

Inverse of Fourier transform
We should now come back to general properties of the Fourier transform. An obvious question is how to
obtain a function f from its Fourier transform f̂ and this is answered by the following theorem.

Theorem 3.14. (Inversion formula for the Fourier transform)
Consider a function f 2 L1(Rn) such that f̂ 2 L1(Rn). Then we have

f(x) =
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x , (3.79)

almost everywhere, that is for all x 2 Rn except possibly on a set of Lebesgue measure zero.

Proof. The proof is somewhat technical (suggested by the fact that equality can fail on a set of measure
zero) and can, for example, be found in Ref. [10].

Note that the inversion formula (3.79) is very similar to the original definition (3.51) of the Fourier
transform, except for the change of sign in the exponent. It is, therefore, useful to introduce the linear
operator

F̃(f̂)(x) :=
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x (3.80)

for the inverse Fourier transform. With this terminology, the statement of Theorem 3.14 can be expressed
as

F̃ � F(f) = f ) F � F̃(f) = f . (3.81)

Exercise 3.15. Show that the equation on the RHS of (3.81) does indeed follow from the equation on the
LHS. (Hint: Think about complex conjugation.)

Theorem 3.14 also means that a function f is uniquely (up to values on a measure zero set) determined
by its Fourier transform f̂ .

Fourier transform in L2

In Exercise 3.13 we have seen that the Fourier transform of a function in L1(Rn) may not be an element
of L1(Rn). This is somewhat unsatisfactory and we will now see that the Fourier transform has nicer
properties when defined on the space L2(Rn). We begin with the following technical Lemma.
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Inverse of Fourier transform
We should now come back to general properties of the Fourier transform. An obvious question is how to
obtain a function f from its Fourier transform f̂ and this is answered by the following theorem.

Theorem 3.14. (Inversion formula for the Fourier transform)
Consider a function f 2 L1(Rn) such that f̂ 2 L1(Rn). Then we have

f(x) =
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x , (3.79)

almost everywhere, that is for all x 2 Rn except possibly on a set of Lebesgue measure zero.

Proof. The proof is somewhat technical (suggested by the fact that equality can fail on a set of measure
zero) and can, for example, be found in Ref. [10].

Note that the inversion formula (3.79) is very similar to the original definition (3.51) of the Fourier
transform, except for the change of sign in the exponent. It is, therefore, useful to introduce the linear
operator

F̃(f̂)(x) :=
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x (3.80)

for the inverse Fourier transform. With this terminology, the statement of Theorem 3.14 can be expressed
as

F̃ � F(f) = f ) F � F̃(f) = f . (3.81)

Exercise 3.15. Show that the equation on the RHS of (3.81) does indeed follow from the equation on the
LHS. (Hint: Think about complex conjugation.)

Theorem 3.14 also means that a function f is uniquely (up to values on a measure zero set) determined
by its Fourier transform f̂ .

Fourier transform in L2

In Exercise 3.13 we have seen that the Fourier transform of a function in L1(Rn) may not be an element
of L1(Rn). This is somewhat unsatisfactory and we will now see that the Fourier transform has nicer
properties when defined on the space L2(Rn). We begin with the following technical Lemma.
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Inverse of Fourier transform
We should now come back to general properties of the Fourier transform. An obvious question is how to
obtain a function f from its Fourier transform f̂ and this is answered by the following theorem.

Theorem 3.14. (Inversion formula for the Fourier transform)
Consider a function f 2 L1(Rn) such that f̂ 2 L1(Rn). Then we have

f(x) =
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x , (3.79)

almost everywhere, that is for all x 2 Rn except possibly on a set of Lebesgue measure zero.

Proof. The proof is somewhat technical (suggested by the fact that equality can fail on a set of measure
zero) and can, for example, be found in Ref. [10].

Note that the inversion formula (3.79) is very similar to the original definition (3.51) of the Fourier
transform, except for the change of sign in the exponent. It is, therefore, useful to introduce the linear
operator

F̃(f̂)(x) :=
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x (3.80)

for the inverse Fourier transform. With this terminology, the statement of Theorem 3.14 can be expressed
as

F̃ � F(f) = f ) F � F̃(f) = f . (3.81)

Exercise 3.15. Show that the equation on the RHS of (3.81) does indeed follow from the equation on the
LHS. (Hint: Think about complex conjugation.)

Theorem 3.14 also means that a function f is uniquely (up to values on a measure zero set) determined
by its Fourier transform f̂ .

Fourier transform in L2

In Exercise 3.13 we have seen that the Fourier transform of a function in L1(Rn) may not be an element
of L1(Rn). This is somewhat unsatisfactory and we will now see that the Fourier transform has nicer
properties when defined on the space L2(Rn). We begin with the following technical Lemma.
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the coe�cients for the complex Fourier series are, from Eq. (3.31), given by

ak =
1

2⇡

Z
⇡

�⇡

dx |x| exp(�ikx) =

(
(�1)k�1

⇡k2
for k = 1, 2, . . .

⇡

2 for k = 0
. (3.49)

Hence the complex Fourier series is

f(x) =
⇡

2
� 2

⇡

X

k2Zodd

exp(ikx)

k2
. (3.50)

which we could have also inferred from the real Fourier series (3.42) by simply replacing cos(kx) =
(exp(ikx) + exp(�ikx))/2.

3.2 Fourier transform

As we have seen, the Fourier series provides a frequency analysis for functions on a finite interval, in
terms of a discrete spectrum of frequencies labeled by an integer k. The Fourier transform serves a similar
purpose but for functions on all of R (or Rn), leading to a frequency analysis in terms of a continuous
spectrum of frequencies.

Basic definition and properties
The natural arena to start the discussion is the Banach space L1

C(Rn), defined in Eq. (1.90), with norm
k · k1, defined in Eq. (1.91). As usual, we denote vectors in Rn by bold-face letter, so x = (x1, . . . , xn)T .
A simple observation is that for a function f 2 L1

C(Rn) we have exp(�ix · k)f 2 L1
C(Rn) for any vector

k 2 Rn. Hence, it makes sense to define 5

Definition 3.1. For functions f 2 L1
C(Rn) we define the Fourier transform Ff = f̂ : Rn ! C by

f̂(k) = F(f)(k) :=
1

(2⇡)n/2

Z

Rn
dnx exp(�ix · k)f(x) . (3.51)

Clearly, F is a linear operator, that is F(↵f + �g) = ↵F(f) + �F(g). Also note that |f̂(k)|  kfk1
(2⇡)n/2 ,

so the modulus of the Fourier transform is bounded. With some more e↵ort it can be shown that f̂ is
continuous. However, it is not clear that the Fourier transform f̂ is an element of L1

C(Rn) as well and,
it turns out, this is not always the case. (See Example 3 below.) We will rectify this later by defining a
version of the Fourier transform which provides a map L2

C(Rn) ! L2
C(Rn).

Before we compute examples of Fourier transforms it is useful to look at some of its general properties.
Recall from Section 2.3 the translation operator Ta, the modulation operator Eb and the dilation operator
D�, for a,b 2 Rn and � 2 R, defined by

Ta(f)(x) := f(x � a) , Eb(f)(x) := exp(ib · x)f(x) , D�(f)(x) := f(�x) , (3.52)

which we can also think of as maps L1
C(Rn) ! L1

C(Rn). For any function g : Rn ! C, we also have the
multiplication operator

Mg(f)(x) := g(x)f(x) . (3.53)

It is useful to work out how these operators as well as derivative operators Dxj := @

@xj
relate to the Fourier

transform.
5
There are di↵erent conventions for how to insert factors of 2⇡ into the definition of the Fourier transform. The convention

adopted below is the most symmetric choice, as we will see later.
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Fig. 12 shows the graphs for the Fourier transforms �̂ and f̂ .

Inverse of Fourier transform
We should now come back to general properties of the Fourier transform. An obvious question is how to
obtain a function f from its Fourier transform f̂ and this is answered by the following theorem.

Theorem 3.14. (Inversion formula for the Fourier transform)
Consider a function f 2 L1(Rn) such that f̂ 2 L1(Rn). Then we have

f(x) =
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x , (3.79)

almost everywhere, that is for all x 2 Rn except possibly on a set of Lebesgue measure zero.

Proof. The proof is somewhat technical (suggested by the fact that equality can fail on a set of measure
zero) and can, for example, be found in Ref. [10].

Note that the inversion formula (3.79) is very similar to the original definition (3.51) of the Fourier
transform, except for the change of sign in the exponent. It is, therefore, useful to introduce the linear
operator

F̃(f̂)(x) :=
1

(2⇡)n/2

Z

Rn
dkn f̂(k)eik·x (3.80)

for the inverse Fourier transform. With this terminology, the statement of Theorem 3.14 can be expressed
as

F̃ � F(f) = f ) F � F̃(f) = f . (3.81)

Exercise 3.15. Show that the equation on the RHS of (3.81) does indeed follow from the equation on the
LHS. (Hint: Think about complex conjugation.)

Theorem 3.14 also means that a function f is uniquely (up to values on a measure zero set) determined
by its Fourier transform f̂ .

Fourier transform in L2

In Exercise 3.13 we have seen that the Fourier transform of a function in L1(Rn) may not be an element
of L1(Rn). This is somewhat unsatisfactory and we will now see that the Fourier transform has nicer
properties when defined on the space L2(Rn). We begin with the following technical Lemma.
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(inverse FT)

•  Interpretation

f̂(k) =
1

2⇡

Z

R
dx exp(i(k0 � k)x) = �(k � k0)

<latexit sha1_base64="e5SORR8Yo1FrAUrnpaLel3w7fh4="></latexit>

f(x) =
1p
2⇡

exp(ik0x) )
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contains a strong component with frequency !0 which corresponds to the peak of the Fourier transform
around !0. However, there is a spectrum of frequencies around !0 and this captures the finite decay time
⇠ 1/� of the signal. The longer the signal the closer it is to a pure signal with frequency !0 and the
narrower the peak in the Fourier transform.

We can take the sound analogy further by considering

f =
X

q=1,2...

Aq fq!0,�q , (3.65)

where the function fq!0,�q is defined in Eq. (3.62). This represents a tone with frequency !0, together
with its overtones with amplitudes Aq, frequencies q!0 and decay constants �q. The Fourier transform of
f is easily computed from linearity:

f̂(!) =
X

q=1,2,...

Aq
\fq!0,�q(!) =

X

q=1,2,...

Aq

i(q!0 � !) � �q
. (3.66)

This corresponds to a sequence of peaks at frequencies q!0, where q = 1, 2, . . . which reflects the main
frequency of the tone, together with its overtone frequencies.

Example 2
Another interesting example to consider is the Fourier transform of the one-dimensional Gaussian

f(x) = e�x
2
/2 . (3.67)

with width one. For its Fourier transform we have

f̂(k) =
1p
2⇡

Z

R
dx e�x

2
/2�ikx = e�k

2
/2 . (3.68)

Exercise 3.12. Proof Eq. (3.68). (Hint: Complete the square in the exponent.)

This result means that the Gaussian is invariant under Fourier transformation. Without much e↵ort, this
one-dimensional result can be generalised to the n-dimensional width one Gaussian

f(x) = e�|x|2/2 . (3.69)

Its Fourier transform can be split up into a product of n one-dimensional Fourier transforms as

f̂(k) =
1

(2⇡)n/2

Z

Rn
dxn e�|x|2/2�ik·x =

nY

i=1

1p
2⇡

Z

R
dxi e

�x
2
i /2�ikixi =

nY

i=1

e�k
2
i /2 = e�|k|2/2 , (3.70)

and the one-dimensional result (3.68) has been used in the second-last step. Hence, the n-dimensional
width one Gaussian is also invariant under Fourier transformation.

We would like to work out the Fourier transform of a more general Gaussian with width a > 0, given
by

fa(x) = e�
|x|2

2a2 = D1/a(f)(x) . (3.71)

where f is the Gaussian (3.69) with width one and D is the dilation operator defined in Eq. (3.52). The
fact that this can be expressed in terms of the dilation operator makes calculating the Fourier transform
quite easy, using the property (F3) in Lemma 3.1.

bfa(k) = \D1/a(f)(k) = anDa(f̂)(k) = ane�a
2|k|2/2 . (3.72)
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 uncertainty relation



f(x) = e�x2

sin(k0x)
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•  How does FT intertwine with other linear operators?

the coe�cients for the complex Fourier series are, from Eq. (3.31), given by

ak =
1

2⇡

Z
⇡

�⇡

dx |x| exp(�ikx) =

(
(�1)k�1

⇡k2
for k = 1, 2, . . .

⇡

2 for k = 0
. (3.49)

Hence the complex Fourier series is

f(x) =
⇡

2
� 2

⇡

X

k2Zodd

exp(ikx)

k2
. (3.50)

which we could have also inferred from the real Fourier series (3.42) by simply replacing cos(kx) =
(exp(ikx) + exp(�ikx))/2.

3.2 Fourier transform

As we have seen, the Fourier series provides a frequency analysis for functions on a finite interval, in
terms of a discrete spectrum of frequencies labeled by an integer k. The Fourier transform serves a similar
purpose but for functions on all of R (or Rn), leading to a frequency analysis in terms of a continuous
spectrum of frequencies.

Basic definition and properties
The natural arena to start the discussion is the Banach space L1

C(Rn), defined in Eq. (1.90), with norm
k · k1, defined in Eq. (1.91). As usual, we denote vectors in Rn by bold-face letter, so x = (x1, . . . , xn)T .
A simple observation is that for a function f 2 L1

C(Rn) we have exp(�ix · k)f 2 L1
C(Rn) for any vector

k 2 Rn. Hence, it makes sense to define 5

Definition 3.1. For functions f 2 L1
C(Rn) we define the Fourier transform Ff = f̂ : Rn ! C by

f̂(k) = F(f)(k) :=
1

(2⇡)n/2

Z

Rn
dnx exp(�ix · k)f(x) . (3.51)

Clearly, F is a linear operator, that is F(↵f + �g) = ↵F(f) + �F(g). Also note that |f̂(k)|  kfk1
(2⇡)n/2 ,

so the modulus of the Fourier transform is bounded. With some more e↵ort it can be shown that f̂ is
continuous. However, it is not clear that the Fourier transform f̂ is an element of L1

C(Rn) as well and,
it turns out, this is not always the case. (See Example 3 below.) We will rectify this later by defining a
version of the Fourier transform which provides a map L2

C(Rn) ! L2
C(Rn).

Before we compute examples of Fourier transforms it is useful to look at some of its general properties.
Recall from Section 2.3 the translation operator Ta, the modulation operator Eb and the dilation operator
D�, for a,b 2 Rn and � 2 R, defined by

Ta(f)(x) := f(x � a) , Eb(f)(x) := exp(ib · x)f(x) , D�(f)(x) := f(�x) , (3.52)

which we can also think of as maps L1
C(Rn) ! L1

C(Rn). For any function g : Rn ! C, we also have the
multiplication operator

Mg(f)(x) := g(x)f(x) . (3.53)

It is useful to work out how these operators as well as derivative operators Dxj := @

@xj
relate to the Fourier

transform.
5
There are di↵erent conventions for how to insert factors of 2⇡ into the definition of the Fourier transform. The convention

adopted below is the most symmetric choice, as we will see later.
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Before we compute examples of Fourier transforms it is useful to look at some of its general properties.
Recall from Section 2.3 the translation operator Ta, the modulation operator Eb and the dilation operator
D�, for a,b 2 Rn and � 2 R, defined by

Ta(f)(x) := f(x � a) , Eb(f)(x) := exp(ib · x)f(x) , D�(f)(x) := f(�x) , (3.52)

which we can also think of as maps L1
C(Rn) ! L1

C(Rn). For any function g : Rn ! C, we also have the
multiplication operator

Mg(f)(x) := g(x)f(x) . (3.53)

It is useful to work out how these operators as well as derivative operators Dxj := @

@xj
relate to the Fourier

transform.
5
There are di↵erent conventions for how to insert factors of 2⇡ into the definition of the Fourier transform. The convention

adopted below is the most symmetric choice, as we will see later.
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translation modulation dilatation multiplication

Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1
C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1
C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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``exchanges translation and modulation”
Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1

C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1
C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1
C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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``exchanges differentiation and multiplication”

•  Convolution

Lemma 3.1. (Some elementary properties of the Fourier transform) For f 2 L1
C(Rn) we have

(F1) \Ta(f) = E�a(f̂) or, equivalently, F � Ta = E�a � F
(F2) \Eb(f) = Tb(f̂) or, equivalently, F � Eb = Tb � F
(F3) \D�(f) = 1

|�|n D1/�(f̂) or, equivalently, F � D� = 1
|�|n D1/� � F

For f 2 C1
c (Rn) we have

(F4) [Dxjf(k) = ikj f̂(k) or, equivalently, F � Dxj = Mikj � F
(F5) dxjf(k) = iDkj f̂ or, equivalently, F � Mxj = iDkj � F .

Proof. (F1) This can be shown by direct calculation.

\Ta(f)(k) =
1

(2⇡)n/2

Z

Rn
dxn e�ix·kf(x � a)

y=x�a
=

1

(2⇡)n/2

Z

Rn
dyn e�i(y+a)·kf(y) = E�a(f̂)(k) . (3.54)

The proofs for (F2) to (F5) are similar and are left as an exercise.

Exercise 3.9. Proof (F2), (F3), (F4) and (F5) from Lemma 3.1.

Convolution
Another operation which relates to Fourier transforms in an interesting way is the convolution f ?g of two
functions f, g 2 L1(Rn) which is defined as

(f ? g)(x) :=

Z

Rn
dyn f(y)g(x � y) . (3.55)

A straightforward computation shows that the convolution is commutative, so f ? g = g ? f .

Exercise 3.10. Show that the convolution commutes.

From a mathematical point of view, we have the following statement about convolutions.

Theorem 3.11. (Property of convolutions) For f, g 2 L1(Rn) the convolution f ? g is well-defined and
f ? g 2 L1(Rn).

Proof. For the proof see, for example, Ref. [10].

How can the convolution be understood intuitively? From the integral (3.55) we can say that the convo-
lution is “smearing” the function f by the function g. For example, consider choosing f(x) = cos(x) and

g(x) =

⇢
1
2a for x 2 [�a, a]
0 for |x| > a

, (3.56)

for any a > 0. The function g is chosen so that, upon convolution, it leads to a smearing (or averaging)
of the function f over the interval [x � a, x + a] for every x. An explicit calculation shows the convolution
is given by

(f ? g)(x) =
1

2a

Z
x+a

x�a

dy cos(y) =
sin(a)

a
cos(x) . (3.57)

If we consider the limit a ! 0, so the averaging width goes to zero, we find that f ? g = f so f remains
unchanged, as one would expect. The other extreme would be to choose a = ⇡ in which case f ? g = 0. In
this case, the averaging is over a period [x � ⇡, x + ⇡] of the cos so the convoluted function vanishes for
every x. For other values of a the convolution is still a cos function but with a reduced amplitude, as one
would expect from a local averaging.

The relationship between convolutions and Fourier transforms is stated in the following Lemma.
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Lemma 3.2. For f, g 2 L1(Rn) we have [f ? g = (2⇡)n/2f̂ ĝ.

Proof. The proof works by straightforward calculation. Since (f ? g)(x) =
R

dynf(y)g(x � y) we have

[f ? g(k) =
1

(2⇡)n/2

Z
dxn dynf(y)g(x � y)e�ix·k (3.58)

=
1

(2⇡)n/2

Z
dxn dyn

⇣
f(y)e�iy·k

⌘⇣
g(x � y)e�i(x�y)·k

⌘
(3.59)

z=x�y
=

1

(2⇡)n/2

Z
dynf(y)e�iy·k

Z
dzn g(z)e�iz·k = (2⇡)n/2f̂(k)ĝ(k) . (3.60)

In other words, the Fourier transform of a convolution is (up to a constant) the product of the two Fourier
transforms. This rule is often useful to work out new Fourier transforms from given ones.

Examples of Fourier transforms
We should now discuss a few examples of Fourier transforms to get a better idea of its interpretation. In
this context it is useful to think of the function f as the amplitude of a sound signal and we will rename its
variable as x ! t, to indicate dependence on time. Correspondingly, the variable k of the Fourier transform
f̂ will be renamed as k ! !, indicating frequency. So we write (focusing on the one-dimensional case)

f̂(!) =
1p
2⇡

Z

R
dt f(t)e�i!t . (3.61)

The basic idea is that the Fourier transform provides the decomposition of the signal f into its frequency
components e�i!t, that is, f̂(!) indicates the strength with which the frequency ! is contained in the
signal f . Suppose that f is the signal from a single piano tone with frequency !0. In this case, we expect
f̂ to have a strong peak around ! = !0. However, a piano tone also contains overtones with frequencies
q!0, where q = 2, 3, . . .. This means we expect f̂ to have smaller peaks around ! = q!0. (Their height
decreases with increasing q and exactly what the pattern is determines how the tone “sounds”.) Let us
consider this in a more quantitative way.

Example 1
Consider the function

f = Af!0,� , f!0,�(t) =

⇢ p
2⇡ e��tei!0t for t � 0

0 for t < 0
, (3.62)

where A, � and !0 are real, positive constants. Using the above sound analogy, we can think of this
function as representing a sound signal with onset at t = 0, overall amplitude A, frequency !0 and a decay
time of ⇠ 1/�. Inserting into Eq. (3.61), we find the Fourier transform

f̂(!) = A [f!0,�(!) , [f!0,�(!) =

Z 1

0
dt e��te�i(!�!0)t =

1

i(!0 � !) � �
. (3.63)

To interpret this result we compute its complex modulus

|[f!0,�(!)|2 =
1

(!0 � !)2 + �2
, (3.64)

and this corresponds to a peak with width ⇠ � around ! = !0. The longer the tone, the smaller � and the
smaller the width of this peak. Note that this is precisely in line with our expectation. The original signal
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In the last step the result (3.70) for the Fourier transform f̂ of the width one Gaussian has been used. In
conclusion, the Fourier transform of a Gaussian with width a is again a Gaussian with width 1/a.

Finally, we consider a Gaussian with width a and center shifted from the origin to a point c 2 Rn

given by

fa,c(x) = exp

✓
� |x � c|2

2a2

◆
= Tc(fa)(x) . (3.73)

Note that this can be written in terms of the zero-centred Gaussian using the translation operator (3.52)
and we can now use property (F1) in Lemma 3.1 to work out the Fourier transform.

dfa,c(k) = \Tc(fa)(k) = E�c( bfa)(k) = ane�ic·k�a
2|k|2/2 . (3.74)

Example 3
Consider the characteristic function � : R ! R of the interval [�1, 1] defined by

�(x) =

⇢
1 for |x|  1
0 for |x| > 1

. (3.75)

A quick calculation shows that its Fourier transform is given by

�̂(k) =
1p
2⇡

Z 1

�1
dx e�ikx =

r
2

⇡

sin k

k
. (3.76)

Exercise 3.13. Show that the Fourier transform (3.76) of the characteristic function � is not in L1(R).
(Hint: Find a lower bound for the integral over | sin k/k| from (m� 1)⇡ to m⇡.) Use the dilation operator
to find the Fourier transform of the characteristic function �a for the interval [�a, a].

We can use this example as an illustration of convolutions and their application to Fourier transforms.
Consider the convolution f = � ? � of � with itself which is given by

f(x) =

Z

R
dy �(y)�(y � x) = max(2 � |x|, 0) . (3.77)

The graphs of � and its convolution f = � ? � are shown in Fig. 11. From the convolution theorem 3.11
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Figure 11: The graph of the characteristic function � of the interval [�1, 1] (left) and the graph of the

convolution f = � ? � (right).

and the Fourier transform �̂ in Eq. (3.76) we have
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Orthogonal polynomials



Setting:          with scalar product  

4 Orthogonal polynomials

In the previous section, we have discussed the Fourier series and have found a basis for the Hilbert space
L2[�a, a] in terms of sine and cosine functions. Of course we know from the Stone-Weierstrass theorem 1.35
combined with Theorem 2.1 that the polynomials are dense in the Hilbert space L2([a, b]) (and we have
used this for some of the proofs related to the Fourier series). So, rather than using relatively complicated,
transcendental functions such as sine and cosine as basis functions there is a much simpler possibility: a
basis for L2([a, b]) which consists of polynomials. Of course we would want this to be an ortho-normal basis
relative to the standard scalar product (1.101) on L2([a, b]). A rather pedestrian method to find ortho-
normal polynomials is to start with the monomials (1, x, x2, . . .) and apply the Gram-Schmidt procedure.

Exercise 4.1. For the Hilbert space L2([�1, 1]), apply the Gram-Schmidt procedure to the monomials

1, x, x2 and show that this leads to the ortho-normal system of polynomials 1p
2
,
q

3
2x,

q
5
8(3x2 � 1).

The polynomials in Exercise 4.1 obtained in this way are (proportional to) the first three Legendre poly-
nomials which we will discuss in more detail soon. Evidently, the Gram-Schmidt procedure, while con-
ceptually very clear, is not a particularly e�cient method in this context. We would like to obtain concise
formulae for orthogonal polynomials at all degrees. There is also an important generalisation. In addition
to finite intervals, we would also like to allow semi-infinite or infinite intervals, so we would like to allow
a = �1 or b = 1. Of course for such a semi-infinite or infinite interval, polynomials do not have a finite
norm relative to the standard scalar product (1.101) on L2([a, b]). To rectify this, we have to consider the
Hilbert spaces L2

w([a, b]) with an integrable weight function w and a scalar product defined by

hf, gi =

Z
b

a

dx w(x)f(x)g(x) , (4.1)

and choose w appropriately. Thinking about the types of intervals, that is, finite intervals [a, b], semi-
infinite intervals [a, 1] or an infinite interval [�1, 1] and corresponding suitable weight functions w
will lead to a classification of di↵erent types of orthogonal polynomials which we discuss in the following
subsection. For the remainder of the section we will be looking at various entries in this classification,
focusing on the cases which are particularly relevant to applications in physics.

4.1 General theory of ortho-normal polynomials

Basic set-up
We will be working in the Hilbert space L2

w([a, b]) with weight function w and scalar product (4.1). The
interval [a, b] can be finite but we also allow the cases |a| < 1, b = 1 of a semi-finite interval and
�a = b = 1 of the entire real line. On such a space, we would like to find a system of polynomials
(Pn)1

n=0, where we demand that Pn is of degree n, which is orthogonal, that is, which satisfies

hPn, Pmi = hn �nm , (4.2)

for positive numbers hn. (By convention, the standard orthogonal polynomials are not normalised to one,
hence the constants hn.) We also introduce the notation

Pn(x) = knxn + k0
nxn�1 + · · · , (4.3)

that is we call kn 6= 0 the coe�cient of the leading monomial xn and k0
n the coe�cient of the sub-leading

monomial xn�1 in Pn. An immediate consequence of orthogonality is the relation

hPn, pi = 0 (4.4)
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Q: Can we find an ortho-normal basis of polynomials on this space?
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Proof. For ease of notation we abbreviate D = d

dx
and evaluate Dn+1(XD(wXn)) in two di↵erent ways,

remembering that X is a polynomial of degree at most two.

Dn+1(XD(wXn)) = XDn+2(wXn) + (n + 1)X 0Dn+1(wXn) +
1

2
n(n + 1)X 00Dn(wXn)

= Kn


XD2(wPn) + (n + 1)X 0D(wPn) +

1

2
n(n + 1)X 00wPn

�

Dn+1(XD(wXn)) = Dn+1
�
XD(wX)Xn�1 + (n � 1)wXnX 0�

= Kn

⇥
(K1P1 + (n � 1)X 0)D(wPn) + (n + 1)(k1K1 + (n � 1)X 00)wPn

⇤
.

Equating these two results and replacing y = Pn gives after a straightforward calculation

wXy00 + (2Xw0 + 2X 0 � K1P1)y
0 +

✓
Xw00 + (2X 0 � K1P1)w

0 � (n + 1)

✓
k1K1 +

1

2
(n � 2)X 00

◆◆
wy = 0 .

By working out D(wX) and D2(wX) one easily concludes that

X
w0

w
= K1P1 � X 0 , X

w00

w
= (K1P1 � 2X 0)

w0

w
+ k1K1 � X 00 . (4.21)

Using these results to replace w0 in the factor of y0 and w00 in the factor of y in the above di↵erential
equation we arrive at the desired result.

Expanding in orthogonal polynomials

Conventionally, the orthogonal polynomials are not normalised to one, so k Pn k2 = hn for positive con-
stants hn which can be computed explicitly for every specific example. Of course we can define ortho-
normal systems of polynomials by simple normalising, so

P̂n :=
1

k Pn kPn =
1p
hn

Pn . (4.22)

These normalised versions of the orthogonal polynomials obviously form an ortho-normal system on
L2
w([a, b]), that is,

hP̂n, P̂mi = �nm . (4.23)

In fact, they do form an ortho-normal basis as stated in the following theorem.

Theorem 4.6. The normalised version P̂n in Eq. (4.22) of the orthogonal polynomials classified in The-
orem 4.4 form an ortho-normal basis of L2

w([a, b]).

Proof. For a finite interval [a, b] this follows by combining Theorems 2.1 and 1.35, just as we did in our
proofs for the Fourier series. For semi-infinite and infinite intervals the proofs can, for example, be found
in Ref. [7]. In the next chapter, when we discuss orthogonal polynomials as eigenvectors of hermitian
operators we will obtain an independent proof for the basis properties in those cases.

The above theorem means that every function f 2 L2
w([a, b]) can be expanded as

f =
1X

n=0

hP̂n, fi P̂n , (4.24)

or, more explicitly

f(x) =
1X

n=0

anP̂n(x) , an =

Z
b

a

dx w(x)P̂n(x)f(x) . (4.25)

This is of course completely in line with the general idea of expanding vectors in terms of an ortho-normal
basis on a Hilbert space and it can be viewed as the polynomial analogue of the Fourier series.

We should now discuss the most important orthogonal polynomials in more detail.
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We can indeed find such polynomial bases and thinking about the  
different types of intervals and different weight functions leads to

a classification.

(An elementary method to obtain the orthogonal polynomials is to apply 
 the Gram-Schmidt procedure to the monomials                     .) (1, x, x2, x3, · · · )
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[a, b] ↵, � X w(x) name symbol

[�1, 1] ↵ > �1, � > �1 x2 � 1 (1 � x)↵(x + 1)� Jacobi P (↵,�)
n

[�1, 1] ↵ = � > �1 x2 � 1 (1 � x)↵(x + 1)↵ Gegenbauer P (↵,↵)
n

[�1, 1] ↵ = � = ±1
2 x2 � 1 (1 � x)±1/2(x + 1)±1/2 Chebyshev T (±)

n

[�1, 1] ↵ = � = 0 x2 � 1 1 Legendre Pn

[0, 1] ↵ > �1 x e�xx↵ Laguerre L(↵)
n

[0, 1] ↵ = 0 x e�x Laguerre Ln

[�1, 1] 1 e�x
2

Hermite Hn

Table 1: The types of orthogonal polynomials and several sub-classes which result from the classification
in Theorem 4.4. The explicit polynomials are obtained by inserting the quantities in the Table into the
Rodriguez formula (4.18).

Theorem 4.4. The functions

Fn(x) =
1

w(x)

dn

dxn
(w(x)Xn) , X =

8
<

:

(b � x)(a � x) for |a|, |b| < 1
x � a for |a| < 1 , b = 1
1 for �a = b = 1

. (4.18)

are polynomials of degree n i↵ the weight function w is given by

w(x) =

8
<

:

(b � x)↵(x � a)� for |a|, |b| < 1
e�x(x � a)↵ for |a| < 1 , b = 1
e�x

2
for �a = b = 1

, (4.19)

where ↵ > �1 and � > �1. In this case the Fn are orthogonal and Fn = KnPn for constants Kn.

This theorem implies a classification of orthogonal polynomials in terms of the type of interval, the limits
[a, b] of the interval and the powers ↵ and � which enter the weight function. (Of course a finite interval
[a, b] can always be re-scaled to the standard interval [�1, 1] and a semi-infinite interval [a, 1] to [0, 1].)
The di↵erent types and important sub-classes of orthogonal polynomials which arise from this classification
are listed in Table 4.1. We cannot discuss all of these types in detail but in the following we will focus
on the Legendre, the ↵ = 0 Laguerre and the Hermite polynomials which are the most relevant ones
for applications in physics. Before we get to this we should derive more common properties of all these
orthogonal polynomials.

Di↵erential equation for orthogonal polynomials
All orthogonal polynomials satisfy a (second order) di↵erential equation, perhaps not surprising given
their representation in terms of derivatives, as in the Rodriguez formula.

Theorem 4.5. All orthogonal polynomials Pn covered by the classification theorem 4.4 satisfy the second
order linear di↵erential equation

Xy00 + K1P1y
0 � n

✓
k1K1 +

n � 1

2
X 00

◆
y = 0 , (4.20)

where P1 is the linear orthogonal polynomial, k1 is the coe�cient in front of its linear term, X the function
in Theorem 4.4 and the coe�cient K1 is defined in Theorem 4.3.
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their representation in terms of derivatives, as in the Rodriguez formula.

Theorem 4.5. All orthogonal polynomials Pn covered by the classification theorem 4.4 satisfy the second
order linear di↵erential equation

Xy00 + K1P1y
0 � n

✓
k1K1 +

n � 1

2
X 00

◆
y = 0 , (4.20)

where P1 is the linear orthogonal polynomial, k1 is the coe�cient in front of its linear term, X the function
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Of course we do not know whether these functions are polynomials. Whether they are depends on the
choice of weight function w and we will come back to this point shortly. But for now, let us assume that
w is such that the Fn are polynomials of degree n. For any polynomial p of degree n � 1 we then have

hFn, pi =

Z
b

a

dx
dn

dxn
(w(x)Xn) p(x) = (�1)n

Z
b

a

dx w(x)Xn
dnp

dxn
(x) = 0 , (4.11)

where we have integrated by parts n times. We recall that the orthogonality property (4.4) determines
Pn uniquely (up to an overall constant) and since Fn has the same property we conclude there must be
constants Kn such that

Fn = KnPn . (4.12)

This calculation shows the idea behind the definition (4.10) of the functions Fn. The presence of the
derivatives (and of X which ensures vanishing of the boundary terms) means that, provided the Fn are
polynomials of degree n, they are orthogonal.

Theorem 4.3. (Rodriguez formula) If the functions Fn defined in Eq. (4.10) are polynomials of degree n
they are proportional to the orthogonal polynomials Pn, so we have constants Kn such that Fn = KnPn.
It follows that

Pn(x) =
1

Knw(x)

dn

dxn
(w(x)Xn) , X =

8
<

:

(b � x)(a � x) for |a|, |b| < 1
x � a for |a| < 1 , b = 1
1 for �a = b = 1

(4.13)

and this is called the (generalised) Rodriguez formula.

Classification of orthogonal polynomials
What remains to be done is to find the weight functions w for which the Fn are indeed polynomials of
order n. We start with the case of a finite interval [a, b] with X = (b � x)(a � x) and demand that F1 be
a (linear) polynomial, so

F1(x) =
1

w(x)

d

dx
(w(x)X) =

1

w(x)
w0(x)X + X 0 !

= Ax + B ) w0(x)

w(x)
=

↵

x � b
+

�

x � a
, (4.14)

for suitable constants A, B, ↵, �. Solving the di↵erential equation leads to

w(x) = C(b � x)↵(x � a)� (4.15)

and we can set C = 1 by a re-scaling of coordinates. Further, since w needs to be integrable we have to
demand that ↵ > �1 and � > �1. Conversely, it can be shown by calculation that for any such choice of
w the functions Fn are indeed polynomials of degree n.

For the case |a| < 1 and b = 1 of the half-infinite interval we can proceed analogously and find that
the Fn are polynomials of degree n i↵

w(x) = e�x(x � a)↵ , (4.16)

where ↵ > �1.
Finally, for the entire real line, �a = b = 1 a similar calculation leads to

w(x) = e�x
2

. (4.17)

The results from this discussion can be summarised in the following
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Rodriguez formula:



Recursion formula:

for any polynomial p with degree less than n (This follows because such a p can be written as a linear
combination of P0, . . . , Pn�1 which must be orthogonal to Pn.) Furthermore, Pn is (up to an overall
constant) uniquely characterised by this property.

Recursion relation
We already know that we can get such an ortho-normal system of polynomials by applying the Gram-
Schmidt procedure to the monomials (1, x, x2, . . .) and, while this may not be very practical, it tells us that
the polynomials Pn are unique, up to overall constants (which are fixed, up to signs, once the constants
hn are fixed). This statement is made more explicit in the following

Theorem 4.2. (Recursion relations for orthogonal polynomials) The orthogonal polynomials Pn satisfy
the following recursion relation

Pn+1(x) = (Anx + Bn)Pn(x) � CnPn�1(x) , (4.5)

for n = 1, 2, . . ., where

An =
kn+1

kn
, Bn = An

✓
k0
n+1

kn+1
� k0

n

kn

◆
, Cn =

Anhn

An�1hn�1
. (4.6)

Proof. We start by considering the polynomial Pn+1 � AnxPn which (due to the above definition of An)
is of degree n, rather than n + 1, and can, hence, be written as

Pn+1 � AnxPn =
nX

i=0

↵iPi , (4.7)

for some ↵i 2 R. Taking the inner product of this relation with Pk immediately leads to ↵k = 0 for
k = 0, . . . , n � 2. This means we are left with

Pn+1 � AnxPn = bnPn � cnPn�1 , (4.8)

and it remains to be shown that bn = Bn and cn = Cn. The first of these statements follows very easily
by inserting the expressions (4.3) into Eq. (4.8) and comparing coe�cients of the xn term. To fix cn we
write Eq. (4.8) as

cnPn�1 = �Pn+1 + AnxPn + BnPn (4.9)

and take the inner product of this equation with Pn�1. This leads to

cnhn�1 = cnk Pn�1 k2 = �hPn+1, Pn�1i + AnhxPn, Pn�1i + BnhPn, Pn�1i = AnhPn, xPn�1i

=
Ankn�1

kn
hPn, Pni =

Anhn

An�1

and the desired result cn = Cn follows.

General Rodriguez formula
There is yet another way to obtain the orthogonal polynomials Pn, via a derivative formula. To see how
this works, consider the functions Fn defined by

Fn(x) =
1

w(x)

dn

dxn
(w(x)Xn) , X =

8
<

:

(b � x)(a � x) for |a|, |b| < 1
x � a for |a| < 1 , b = 1
1 for �a = b = 1

. (4.10)
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Differential equation:

[a, b] ↵, � X w(x) name symbol
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n

[�1, 1] ↵ = � > �1 x2 � 1 (1 � x)↵(x + 1)↵ Gegenbauer P (↵,↵)
n

[�1, 1] ↵ = � = ±1
2 x2 � 1 (1 � x)±1/2(x + 1)±1/2 Chebyshev T (±)

n

[�1, 1] ↵ = � = 0 x2 � 1 1 Legendre Pn

[0, 1] ↵ > �1 x e�xx↵ Laguerre L(↵)
n

[0, 1] ↵ = 0 x e�x Laguerre Ln

[�1, 1] 1 e�x
2

Hermite Hn

Table 1: The types of orthogonal polynomials and several sub-classes which result from the classification
in Theorem 4.4. The explicit polynomials are obtained by inserting the quantities in the Table into the
Rodriguez formula (4.18).

Theorem 4.4. The functions

Fn(x) =
1

w(x)

dn

dxn
(w(x)Xn) , X =

8
<

:

(b � x)(a � x) for |a|, |b| < 1
x � a for |a| < 1 , b = 1
1 for �a = b = 1

. (4.18)

are polynomials of degree n i↵ the weight function w is given by

w(x) =

8
<

:

(b � x)↵(x � a)� for |a|, |b| < 1
e�x(x � a)↵ for |a| < 1 , b = 1
e�x

2
for �a = b = 1

, (4.19)

where ↵ > �1 and � > �1. In this case the Fn are orthogonal and Fn = KnPn for constants Kn.

This theorem implies a classification of orthogonal polynomials in terms of the type of interval, the limits
[a, b] of the interval and the powers ↵ and � which enter the weight function. (Of course a finite interval
[a, b] can always be re-scaled to the standard interval [�1, 1] and a semi-infinite interval [a, 1] to [0, 1].)
The di↵erent types and important sub-classes of orthogonal polynomials which arise from this classification
are listed in Table 4.1. We cannot discuss all of these types in detail but in the following we will focus
on the Legendre, the ↵ = 0 Laguerre and the Hermite polynomials which are the most relevant ones
for applications in physics. Before we get to this we should derive more common properties of all these
orthogonal polynomials.

Di↵erential equation for orthogonal polynomials
All orthogonal polynomials satisfy a (second order) di↵erential equation, perhaps not surprising given
their representation in terms of derivatives, as in the Rodriguez formula.

Theorem 4.5. All orthogonal polynomials Pn covered by the classification theorem 4.4 satisfy the second
order linear di↵erential equation

Xy00 + K1P1y
0 � n

✓
k1K1 +

n � 1

2
X 00

◆
y = 0 , (4.20)

where P1 is the linear orthogonal polynomial, k1 is the coe�cient in front of its linear term, X the function
in Theorem 4.4 and the coe�cient K1 is defined in Theorem 4.3.
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Generating function:

for the Legendre polynomials. From the Rodriguez formula (4.26) we can easily compute the first few
Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 � 1), P3(x) =

1

2
(5x3 � 3x), P4(x) =

1

8
(35x4 � 30x2 +3) . (4.35)

Exercise 4.7. Verify that the first four Legendre polynomials in Eq. (4.35) are orthogonal and are nor-
malised as in Eq. (4.29).

We can insert the results X = x2 � 1, X 00 = 2, P1(x) = x, K1 = 2 and k1 = 1 into the general di↵erential
equation (4.20) to obtain

(1 � x2)y00 � 2xy0 + n(n + 1)y = 0 . (4.36)

This is the Legendre di↵erential equations which all Legendre polynomials Pn satisfy.

Exercise 4.8. Show that the first four Legendre polynomials in Eq. (4.35) satisfy the Legendre di↵erential
equation (4.36).

Another feature of orthogonal polynomials is the existence of a generating function G = G(x, z) defined
as

G(x, z) =
1X

n=0

Pn(x)zn (4.37)

The generating function encodes all orthogonal polynomials at once and the nth one can be read o↵ as the
coe�cient of the zn term in the expansion of G. Of course for this to be of practical use we have to find
another more concise way of writing the generating function. This can be obtained from the recursion
relation (4.34) which leads to

@G

@z
=

1X

n=1

Pn(x)nzn�1 =
1X

n=0

(n + 1)Pn+1(x)zn =
1X

n=0

[(2n + 1)xPn(x) � nPn�1(x)] zn

= 2xz
1X

n=1

Pn(x)nzn�1 + x
1X

n=0

Pn(x)zn �
1X

n=0

Pn(x)(n + 1)zn+1 = (2xz � z2)
@G

@z
+ (x � z)G ,

This provides us with a di↵erential equation for G whose solution is G(x, z) = c(1 � 2xz + z2)�1/2, where
c is a constant. Since c = G(x, 0) = P0(x) = 1, we have

G(x, z) =
1p

1 � 2xz + z2
=

1X

n=0

Pn(x)zn . (4.38)

Exercise 4.9. Check that the generating function (4.38) leads to the correct Legendre polynomials Pn, for
n = 0, 1, 2.

Note that Eq. (4.38) can be viewed as an expansion of the generating function G in the sense of Eq. (4.32),
with expansion coe�cients an = zn.

An important application of the above generating function is to the expansion of a Coulomb potential
term of the form

V (r, r0) =
1

|r � r0| , (4.39)

where r, r0 2 R3. Introducing the radii r = |r|, r0 = |r0|, the angle cos ✓ = r·r0
rr0 and setting x = cos ✓ and

z = r
0

r
we can use the generating function to re-write the above Coulomb term as

V (r, r0) =
1

r

1q
1 � 2

�
r0
r

�
cos ✓ +

�
r0
r

�2 =
1

r
G(x, z) =

1

r

1X

n=0

Pn(cos ✓)

✓
r0

r

◆
n

. (4.40)
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All these different types of orthogonal polynomials have common features:

Where do they appear in physics?

• Legendre: problem with an angle   so that                      ,  
             problems with spherical coordinates           , 
             Laplacian on sphere, spherical harmonics, 
             E&M: multipole expansion, QM: angular part of H wave function.
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(a) Legendre polynomials

•  Rodriguez formula: 

4.2 The Legendre polynomials

We recall from Table 4.1 that the Legendre polynomials are defined on the finite interval [a, b] = [�1, 1],
the function X is given by X(x) = x2 � 1 and the weight function is simply w(x) = 1, so that the relevant
Hilbert space is L2([�1, 1]). They are conventionally denoted by Pn (not to be confused with the general
notation Pn for all orthogonal polynomials we have used in the previous subsection). Their Rodriguez
formula reads

Pn(x) =
1

2nn!

dn

dxn
(x2 � 1)n ) Kn = 2nn! , (4.26)

where the pre-factor is conventional and we have read o↵ the value of the constants Kn in Theorem 4.3.
They are symmetric for n even and anti-symmetric for n odd, so Pn(x) = (�1)nPn(�x). Since (x2�1)n =
x2n + nx2n�2 + · · · we can easily read o↵ the coe�cients kn and k0

n of the monomials xn and xn�1 in Pn

as

kn =
(2n)!

2n(n!)2
, k0

n = 0 . (4.27)

For the normalisation of Pn we find from the Rodriguez formula

hn = k Pn k2 =

Z 1

�1
dx P (x)2 =

1

2nn!

Z 1

�1
dx Pn(x)

dn

dxn
(x2 � 1)n (4.28)

=
1

2nn!

Z 1

�1
dx

dnPn

dxn
(x)(1 � x2)n =

kn
2n

Z 1

�1
dx (1 � x2)n =

2

2n + 1
, (4.29)

where we have integrated by parts n times. This means the associated basis of ortho-normal polynomials
on L2([�1, 1]) is

P̂n =

r
2n + 1

2
Pn , (4.30)

and functions f 2 L2([�1, 1]) can be expanded as

f =
1X

n=0

hP̂n, fiP̂n , (4.31)

or, more explicitly, shifting the normalisation factors into the integral, as

f(x) =
1X

n=0

anPn(x) , an =
2n + 1

2

Z 1

�1
dx Pn(x)f(x) . (4.32)

Such expansions are useful and frequently appear when spherical coordinates are used and we have the
standard inclination angle ✓ 2 [0, ⇡]. In this case, the Legendre polynomials are usually a function of
x = cos ✓ which takes values in the required range [�1, 1]. We will see more explicit examples of this
shortly.

With the above results it is easy to compute the constants An, Bn and Cn which appear in the general
recursion formula (4.5) and we find

An =
2n + 1

n + 1
, Bn = 0 , Cn =

n

n + 1
. (4.33)

Using these values to specialise Eq. (4.5) we find the recursion formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x) � nPn�1(x) (4.34)
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•  First few: 

for the Legendre polynomials. From the Rodriguez formula (4.26) we can easily compute the first few
Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 � 1), P3(x) =

1

2
(5x3 � 3x), P4(x) =

1

8
(35x4 � 30x2 +3) . (4.35)

Exercise 4.7. Verify that the first four Legendre polynomials in Eq. (4.35) are orthogonal and are nor-
malised as in Eq. (4.29).

We can insert the results X = x2 � 1, X 00 = 2, P1(x) = x, K1 = 2 and k1 = 1 into the general di↵erential
equation (4.20) to obtain

(1 � x2)y00 � 2xy0 + n(n + 1)y = 0 . (4.36)

This is the Legendre di↵erential equations which all Legendre polynomials Pn satisfy.

Exercise 4.8. Show that the first four Legendre polynomials in Eq. (4.35) satisfy the Legendre di↵erential
equation (4.36).

Another feature of orthogonal polynomials is the existence of a generating function G = G(x, z) defined
as

G(x, z) =
1X

n=0

Pn(x)zn (4.37)

The generating function encodes all orthogonal polynomials at once and the nth one can be read o↵ as the
coe�cient of the zn term in the expansion of G. Of course for this to be of practical use we have to find
another more concise way of writing the generating function. This can be obtained from the recursion
relation (4.34) which leads to

@G

@z
=

1X

n=1

Pn(x)nzn�1 =
1X

n=0

(n + 1)Pn+1(x)zn =
1X

n=0

[(2n + 1)xPn(x) � nPn�1(x)] zn

= 2xz
1X

n=1

Pn(x)nzn�1 + x
1X

n=0

Pn(x)zn �
1X

n=0

Pn(x)(n + 1)zn+1 = (2xz � z2)
@G

@z
+ (x � z)G ,

This provides us with a di↵erential equation for G whose solution is G(x, z) = c(1 � 2xz + z2)�1/2, where
c is a constant. Since c = G(x, 0) = P0(x) = 1, we have

G(x, z) =
1p

1 � 2xz + z2
=

1X

n=0

Pn(x)zn . (4.38)

Exercise 4.9. Check that the generating function (4.38) leads to the correct Legendre polynomials Pn, for
n = 0, 1, 2.

Note that Eq. (4.38) can be viewed as an expansion of the generating function G in the sense of Eq. (4.32),
with expansion coe�cients an = zn.

An important application of the above generating function is to the expansion of a Coulomb potential
term of the form

V (r, r0) =
1

|r � r0| , (4.39)

where r, r0 2 R3. Introducing the radii r = |r|, r0 = |r0|, the angle cos ✓ = r·r0
rr0 and setting x = cos ✓ and

z = r
0

r
we can use the generating function to re-write the above Coulomb term as

V (r, r0) =
1

r

1q
1 � 2

�
r0
r

�
cos ✓ +

�
r0
r

�2 =
1

r
G(x, z) =

1

r

1X

n=0

Pn(cos ✓)

✓
r0

r

◆
n

. (4.40)
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•  Expansion: 

4.2 The Legendre polynomials

We recall from Table 4.1 that the Legendre polynomials are defined on the finite interval [a, b] = [�1, 1],
the function X is given by X(x) = x2 � 1 and the weight function is simply w(x) = 1, so that the relevant
Hilbert space is L2([�1, 1]). They are conventionally denoted by Pn (not to be confused with the general
notation Pn for all orthogonal polynomials we have used in the previous subsection). Their Rodriguez
formula reads

Pn(x) =
1

2nn!

dn

dxn
(x2 � 1)n ) Kn = 2nn! , (4.26)

where the pre-factor is conventional and we have read o↵ the value of the constants Kn in Theorem 4.3.
They are symmetric for n even and anti-symmetric for n odd, so Pn(x) = (�1)nPn(�x). Since (x2�1)n =
x2n + nx2n�2 + · · · we can easily read o↵ the coe�cients kn and k0

n of the monomials xn and xn�1 in Pn

as

kn =
(2n)!

2n(n!)2
, k0

n = 0 . (4.27)

For the normalisation of Pn we find from the Rodriguez formula

hn = k Pn k2 =

Z 1

�1
dx P (x)2 =

1

2nn!

Z 1

�1
dx Pn(x)

dn

dxn
(x2 � 1)n (4.28)

=
1

2nn!

Z 1

�1
dx

dnPn

dxn
(x)(1 � x2)n =

kn
2n

Z 1

�1
dx (1 � x2)n =

2

2n + 1
, (4.29)

where we have integrated by parts n times. This means the associated basis of ortho-normal polynomials
on L2([�1, 1]) is

P̂n =

r
2n + 1

2
Pn , (4.30)

and functions f 2 L2([�1, 1]) can be expanded as

f =
1X

n=0

hP̂n, fiP̂n , (4.31)

or, more explicitly, shifting the normalisation factors into the integral, as

f(x) =
1X

n=0

anPn(x) , an =
2n + 1

2

Z 1

�1
dx Pn(x)f(x) . (4.32)

Such expansions are useful and frequently appear when spherical coordinates are used and we have the
standard inclination angle ✓ 2 [0, ⇡]. In this case, the Legendre polynomials are usually a function of
x = cos ✓ which takes values in the required range [�1, 1]. We will see more explicit examples of this
shortly.

With the above results it is easy to compute the constants An, Bn and Cn which appear in the general
recursion formula (4.5) and we find

An =
2n + 1

n + 1
, Bn = 0 , Cn =

n

n + 1
. (4.33)

Using these values to specialise Eq. (4.5) we find the recursion formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x) � nPn�1(x) (4.34)
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•  Orthogonal polynomials    on 
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For the normalisation of Pn we find from the Rodriguez formula
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=
1

2nn!

Z 1

�1
dx

dnPn

dxn
(x)(1 � x2)n =

kn
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�1
dx (1 � x2)n =
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where we have integrated by parts n times. This means the associated basis of ortho-normal polynomials
on L2([�1, 1]) is

P̂n =

r
2n + 1

2
Pn , (4.30)

and functions f 2 L2([�1, 1]) can be expanded as

f =
1X

n=0

hP̂n, fiP̂n , (4.31)

or, more explicitly, shifting the normalisation factors into the integral, as

f(x) =
1X

n=0

anPn(x) , an =
2n + 1

2

Z 1

�1
dx Pn(x)f(x) . (4.32)

Such expansions are useful and frequently appear when spherical coordinates are used and we have the
standard inclination angle ✓ 2 [0, ⇡]. In this case, the Legendre polynomials are usually a function of
x = cos ✓ which takes values in the required range [�1, 1]. We will see more explicit examples of this
shortly.

With the above results it is easy to compute the constants An, Bn and Cn which appear in the general
recursion formula (4.5) and we find

An =
2n + 1

n + 1
, Bn = 0 , Cn =

n

n + 1
. (4.33)

Using these values to specialise Eq. (4.5) we find the recursion formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x) � nPn�1(x) (4.34)
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and functions f 2 L2([�1, 1]) can be expanded as

f =
1X

n=0

hP̂n, fiP̂n , (4.31)

or, more explicitly, shifting the normalisation factors into the integral, as
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Such expansions are useful and frequently appear when spherical coordinates are used and we have the
standard inclination angle ✓ 2 [0, ⇡]. In this case, the Legendre polynomials are usually a function of
x = cos ✓ which takes values in the required range [�1, 1]. We will see more explicit examples of this
shortly.

With the above results it is easy to compute the constants An, Bn and Cn which appear in the general
recursion formula (4.5) and we find

An =
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n + 1
, Bn = 0 , Cn =
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. (4.33)

Using these values to specialise Eq. (4.5) we find the recursion formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x) � nPn�1(x) (4.34)
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where we have integrated by parts n times. This means the associated basis of ortho-normal polynomials
on L2([�1, 1]) is

P̂n =

r
2n + 1

2
Pn , (4.30)

and functions f 2 L2([�1, 1]) can be expanded as

f =
1X

n=0

hP̂n, fiP̂n , (4.31)

or, more explicitly, shifting the normalisation factors into the integral, as

f(x) =
1X

n=0

anPn(x) , an =
2n + 1

2

Z 1

�1
dx Pn(x)f(x) . (4.32)

Such expansions are useful and frequently appear when spherical coordinates are used and we have the
standard inclination angle ✓ 2 [0, ⇡]. In this case, the Legendre polynomials are usually a function of
x = cos ✓ which takes values in the required range [�1, 1]. We will see more explicit examples of this
shortly.

With the above results it is easy to compute the constants An, Bn and Cn which appear in the general
recursion formula (4.5) and we find

An =
2n + 1

n + 1
, Bn = 0 , Cn =

n

n + 1
. (4.33)

Using these values to specialise Eq. (4.5) we find the recursion formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x) � nPn�1(x) (4.34)
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•  Recursion formula: 

for the Legendre polynomials. From the Rodriguez formula (4.26) we can easily compute the first few
Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 � 1), P3(x) =

1

2
(5x3 � 3x), P4(x) =

1

8
(35x4 � 30x2 +3) . (4.35)

Exercise 4.7. Verify that the first four Legendre polynomials in Eq. (4.35) are orthogonal and are nor-
malised as in Eq. (4.29).

We can insert the results X = x2 � 1, X 00 = 2, P1(x) = x, K1 = 2 and k1 = 1 into the general di↵erential
equation (4.20) to obtain

(1 � x2)y00 � 2xy0 + n(n + 1)y = 0 . (4.36)

This is the Legendre di↵erential equations which all Legendre polynomials Pn satisfy.

Exercise 4.8. Show that the first four Legendre polynomials in Eq. (4.35) satisfy the Legendre di↵erential
equation (4.36).

Another feature of orthogonal polynomials is the existence of a generating function G = G(x, z) defined
as

G(x, z) =
1X

n=0

Pn(x)zn (4.37)

The generating function encodes all orthogonal polynomials at once and the nth one can be read o↵ as the
coe�cient of the zn term in the expansion of G. Of course for this to be of practical use we have to find
another more concise way of writing the generating function. This can be obtained from the recursion
relation (4.34) which leads to

@G

@z
=

1X

n=1

Pn(x)nzn�1 =
1X

n=0

(n + 1)Pn+1(x)zn =
1X
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= 2xz
1X
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1X

n=0
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1X

n=0

Pn(x)(n + 1)zn+1 = (2xz � z2)
@G

@z
+ (x � z)G ,

This provides us with a di↵erential equation for G whose solution is G(x, z) = c(1 � 2xz + z2)�1/2, where
c is a constant. Since c = G(x, 0) = P0(x) = 1, we have

G(x, z) =
1p

1 � 2xz + z2
=

1X

n=0

Pn(x)zn . (4.38)

Exercise 4.9. Check that the generating function (4.38) leads to the correct Legendre polynomials Pn, for
n = 0, 1, 2.

Note that Eq. (4.38) can be viewed as an expansion of the generating function G in the sense of Eq. (4.32),
with expansion coe�cients an = zn.

An important application of the above generating function is to the expansion of a Coulomb potential
term of the form

V (r, r0) =
1

|r � r0| , (4.39)

where r, r0 2 R3. Introducing the radii r = |r|, r0 = |r0|, the angle cos ✓ = r·r0
rr0 and setting x = cos ✓ and

z = r
0

r
we can use the generating function to re-write the above Coulomb term as

V (r, r0) =
1

r

1q
1 � 2

�
r0
r

�
cos ✓ +

�
r0
r

�2 =
1

r
G(x, z) =

1

r

1X

n=0

Pn(cos ✓)

✓
r0

r

◆
n

. (4.40)
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Application: Multipole expansion of Coulomb term
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(a) Hermite polynomials

•  Orthogonal polynomials    on       , where       

4.4 The Hermite polynomials

From Table 4.1, the Hermite polynomials are defined on the interval [a, b] = [�1, 1] = R, we have X = 1
and the weight function is w(x) = e�x

2
, so the relevant Hilbert space is L2

w(R). They are denoted Hn

and, from Eq. (4.3), their Rodriguez formula reads

Hn(x) = (�1)nex
2 dn

dxn
e�x

2
, (4.56)

where the pre-factor is conventional and implies that Kn = (�1)n. Their symmetry properties are Hn(x) =
(�1)nHn(�x). From this formula it is easy to read o↵ the coe�cients kn and k0

n of the leading and sub-
leading monomials xn and xn�1 in Hn as

kn = 2n , k0
n = 0 . (4.57)

The normalisation of the Hermite polynomials is computed as before, by using the Rodriguez formula (4.56)
combined with partial integration:

hn = k Hn k2 =

Z

R
dx e�x

2
Hn(x)2 = (�1)n

Z

R
dx Hn(x)

dn

dxn
e�x

2
=

Z

R
dx

dnHn

dxn
(x)e�x

2

=knn!

Z

R
dx e�x

2
=

p
⇡2nn! . (4.58)

Hence, the ortho-normal basis of L2
w(R) is given by

Ĥn(x) =
1pp
⇡2nn!

Hn(x) ) hĤn, Ĥmi = �nm , (4.59)

and functions f 2 L2
w(R) can be expanded as

f =
1X

n=0

hĤn, fiĤn . (4.60)

More explicitly and rearranging the coe�cients this reads

f(x) =
1X

n=0

anHn(x) , an =
1p

⇡2nn!

Z

R
dx e�x

2
Hn(x)f(x) . (4.61)

The Hermite polynomials are useful for expanding functions defined on the entire real line and they make
a prominent appearance in the wave functions for the quantum harmonic oscillator.

From the above results for kn, k0
n and hn it is easy, by inserting into Eq. (4.6), to work out

An = 2 , Bn = 0 , Cn = 2n , (4.62)

and, from Eq. (4.5), this leads to the recursion relation

Hn+1(x) = 2xHn(x) � 2nHn�1(x) (4.63)

for the Hermite polynomials. Rodriguez’s formula (4.56) can be used to work out the first few Hermite
polynomials which are given by

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 � 2 , H3(x) = 8x3 � 12x . (4.64)
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•  Differential equation:     

With X = 1, X 00 = 0, K1 = �1, H1(x) = 2x and k1 = 2 Eq. (4.20) turns into the di↵erential equation for
Hemite polynomials

y00 � 2xy0 + 2ny = 0 . (4.65)

The generating function

G(x, z) =
1X

n=0

Hn(x)
zn

n!
(4.66)

can be derived from the di↵erential equation

@G

@z
= 2(x � z)G , (4.67)

which, as in the case of the Legendre and Laguerre polynomials, follows by di↵erentiating Eq. (4.66) and
using the recursion relation (4.63). The solution is

G(x, z) = exp
�
2xz � z2

�
=

1X

n=0

Hn(x)
zn

n!
(4.68)

Exercise 4.12. Show that the generating function G for the Hermite polynomials satisfies the di↵erential
equation (4.67) and verify that it is solved by Eq. (4.68).
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Application: Quantum harmonic oscillator

(d) Let f be an eigenvector of U with eigenvalue � so that Uf = �f . Unitarity of U means
that hUg, Uhi = hg, hi for all g, h 2 V . Hence hf, fi = hUf, Ufi = h�f,�fi = |�|

2
hf, fi

and |�| = 1 follows.

(e) Unitarity follow by direct calculation:

hTaf, Tagi =

Z

R
dx (Taf)(x)

⇤(Tag)(x) =

Z

R
dx f(x� a)⇤g(x� a)

y=x�a
=

Z

R
dy f(y)⇤g(y) = hf, gi . (19)

4) (Quantum harmonic oscillator)
Consider the operator

H = �
~2
2m

d
2

d⇠2
+

1

2
m!

2
⇠
2
, (20)

associated to the quantum harmonic oscillator, where ⇠ 2 R. We would like to solve the
eigenvalue problem H = E .

(a) Introduce the new coordinate x =
p

m!

~ ⇠ and ✏ = E

~! and show that the equation H =
E can be re-written as

H = ✏ , H =
1

2

✓
�

d
2

dx2
+ x

2

◆
. (21)

Comment on the practical and physical significance of this re-writing.

(b) Write  (x) = y(x)e�x
2
/2. Show that  satisfies the di↵erential equation (21) i↵ y satisfies

the Hermite di↵erential equation y
00
� 2xy0 + (2✏� 1)y = 0.

(c) Show that the solutions to equation (21) in L
2(R) are given by the hermite functions

hn(x) = Hn(x)e�x
2
/2
/An with ✏ = n + 1

2 . (Here, An = ⇡
1/42n/2

p
n! is a normalisation

factor such that k hn k = 1.)

(d) Define the operators a = 1p
2

�
x+ d

dx

�
, a† = 1p

2

�
x�

d

dx

�
and N = a

†
a and show that

H = N + 1
2 .

(e) Define |ni := |hni and show that a†|ni =
p
n+ 1|n+1i, a|ni =

p
n|n�1i andN |ni = n|ni.

(Hint: Use the relations for Hermite polynomials from question 2(b).) Hence, verify that
H|ni =

�
n+ 1

2

�
|ni.

Solution

(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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(b) Write  (x) = y(x)e�x
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/2. Show that  satisfies the di↵erential equation (21) i↵ y satisfies

the Hermite di↵erential equation y
00
� 2xy0 + (2✏� 1)y = 0.

(c) Show that the solutions to equation (21) in L
2(R) are given by the hermite functions
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H|ni =

�
n+ 1

2

�
|ni.

Solution

(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
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system will be given in units of ~! since ✏ must be a number.
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and |�| = 1 follows.
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associated to the quantum harmonic oscillator, where ⇠ 2 R. We would like to solve the
eigenvalue problem H = E .
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(b) Write  (x) = y(x)e�x
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/2. Show that  satisfies the di↵erential equation (21) i↵ y satisfies

the Hermite di↵erential equation y
00
� 2xy0 + (2✏� 1)y = 0.
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|ni.

Solution

(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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associated to the quantum harmonic oscillator, where ⇠ 2 R. We would like to solve the
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(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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(b) Again a straightforward calculation, inserting  (x) = y(x)e�x
2
/2 into H = ✏ .

(c) The key here is that we ask for solutions in L
2(R). They are obtained only if the solution

y to the Hermite di↵erential equation is a polynomial (all infinite series solutions will
overcome the e

�x
2
/2 suppression). This happens only if 2✏ � 1 = 2n in which case the

solution for y is proportional to Hn and the eigenvalue is

✏ =
E

~! = n+
1

2
. (22)

The correct normalisation factor in hn, so that k hn k = 1, is inferred from question (2).
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(e) With the relations from question 2(b) and An+1
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The result a|ni =
p
n|n� 1i follows analogously. Hence, N |ni = a

†
a|ni =

p
na

†
|n� 1i =

n|ni. With H = N + 1
2 it follows easily that H|ni =

�
N + 1

2

�
|ni =

�
n+ 1

2

�
|ni.

Of course this is a good opportunity to discuss the operator treatment of the harmonic
oscillator and point out that the Hermite polynomials are not actually needed for much
of it. It is easy to verify from the definition of a and a

† that [a, a†] = 1 and this implies
that [N, a

†] = a
† and [N, a] = �a. Then, defining the ground state |0i by a|0i = 0 and

h0|0i = 1 and the other states by |ni := kn(a†)n|0i with kn real and positive such that
hn|ni = 1 it is easy to show that kn = 1/

p
n!. This leads to a

†
|ni =

p
n+ 1|n + 1i,

a|ni =
p
n|n� 1i and N |ni = n|ni.

5) (Sturm-Liouville operators)

(a) Show that every second order di↵erential operator

T = ↵2(x)
d
2

dx2
+ ↵1(x)

d

dx
+ ↵0(x) (25)

where ↵2(x) 6= 0 can be written in Sturm-Liouville form.

(b) Write the Legendre, Laguerre and Hermite di↵erential equations as a Sturm-Liouville
eigenvalue problem, TSLy = �y, and find the explicit form of TSL in each case.
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oscillator and point out that the Hermite polynomials are not actually needed for much
of it. It is easy to verify from the definition of a and a

† that [a, a†] = 1 and this implies
that [N, a

†] = a
† and [N, a] = �a. Then, defining the ground state |0i by a|0i = 0 and

h0|0i = 1 and the other states by |ni := kn(a†)n|0i with kn real and positive such that
hn|ni = 1 it is easy to show that kn = 1/

p
n!. This leads to a

†
|ni =

p
n+ 1|n + 1i,

a|ni =
p
n|n� 1i and N |ni = n|ni.

5) (Sturm-Liouville operators)

(a) Show that every second order di↵erential operator

T = ↵2(x)
d
2

dx2
+ ↵1(x)

d

dx
+ ↵0(x) (25)

where ↵2(x) 6= 0 can be written in Sturm-Liouville form.

(b) Write the Legendre, Laguerre and Hermite di↵erential equations as a Sturm-Liouville
eigenvalue problem, TSLy = �y, and find the explicit form of TSL in each case.
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(d) Let f be an eigenvector of U with eigenvalue � so that Uf = �f . Unitarity of U means
that hUg, Uhi = hg, hi for all g, h 2 V . Hence hf, fi = hUf, Ufi = h�f,�fi = |�|

2
hf, fi

and |�| = 1 follows.

(e) Unitarity follow by direct calculation:

hTaf, Tagi =

Z

R
dx (Taf)(x)

⇤(Tag)(x) =

Z

R
dx f(x� a)⇤g(x� a)

y=x�a
=

Z

R
dy f(y)⇤g(y) = hf, gi . (19)

4) (Quantum harmonic oscillator)
Consider the operator

H = �
~2
2m

d
2

d⇠2
+

1

2
m!

2
⇠
2
, (20)

associated to the quantum harmonic oscillator, where ⇠ 2 R. We would like to solve the
eigenvalue problem H = E .

(a) Introduce the new coordinate x =
p

m!

~ ⇠ and ✏ = E

~! and show that the equation H =
E can be re-written as

H = ✏ , H =
1

2

✓
�

d
2

dx2
+ x

2

◆
. (21)

Comment on the practical and physical significance of this re-writing.

(b) Write  (x) = y(x)e�x
2
/2. Show that  satisfies the di↵erential equation (21) i↵ y satisfies

the Hermite di↵erential equation y
00
� 2xy0 + (2✏� 1)y = 0.

(c) Show that the solutions to equation (21) in L
2(R) are given by the hermite functions

hn(x) = Hn(x)e�x
2
/2
/An with ✏ = n + 1

2 . (Here, An = ⇡
1/42n/2

p
n! is a normalisation

factor such that k hn k = 1.)

(d) Define the operators a = 1p
2

�
x+ d

dx

�
, a† = 1p

2

�
x�

d

dx

�
and N = a

†
a and show that

H = N + 1
2 .

(e) Define |ni := |hni and show that a†|ni =
p
n+ 1|n+1i, a|ni =

p
n|n�1i andN |ni = n|ni.

(Hint: Use the relations for Hermite polynomials from question 2(b).) Hence, verify that
H|ni =

�
n+ 1

2

�
|ni.

Solution

(a) This is a simple rescaling and the result follows easily. This is useful from a practical
point of view since it removes all constants, except ✏, from the equation. Physically, this
is introducing dimensionless quantities and it tells us that the energy, E = ~!✏, of the
system will be given in units of ~! since ✏ must be a number.
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(iii) relation between (i) and (ii)

 n(x) = hx|ni
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Ordinary linear differential equations



The problem
Solve ordinary, second order homogeneous or inhomogeneous diff. eqs.:

5 Ordinary linear di↵erential equations

In this chapter, our focus will be on linear, second order di↵erential equations of the form

↵2(x)y00 + ↵1(x)y0 + ↵0(x)y = f(x)
↵2(x)y00 + ↵1(x)y0 + ↵0(x)y = 0

�
(5.1)

where ↵0, ↵1 and ↵2 as well as f are given functions. Clearly, the upper equation is inhomogeneous with
source f and the lower equation is its homogeneous counterpart. In operator form this can be written as

Ty = f
Ty = 0

�
T = ↵2D

2 + ↵1D + ↵0 , (5.2)

where D = d

dx
. For the range of x we would like to consider the interval [a, b] ⇢ R (where the semi-infinite

and infinite case is allowed) and, provided ↵i 2 C1([a, b]), we can think of T as a linear operator T :
C1([a, b]) ! C1([a, b]). We note that the general di↵erential equations (4.20) for orthogonal polynomials
(and, hence, the Legendre, Laguerre and Hermitian di↵erentials equations in Eqs. (4.36), (4.52) and (4.65))
are homogeneous equations of the form (5.1).

The above equations are usually solved subject to additional conditions on the solution y and there
are two ways of imposing such conditions. The first one, which leads to what is called an initial value
problem, is to ask for solutions to either of Eqs. (5.1) which, in addition, satisfy the “initial conditions”

y(x0) = y0 , y0(x0) = y00 , (5.3)

for x0 2 [a, b] and given values y0, y00 2 R. Another possibility, which defines a boundary value problem, is
to ask for solutions to either of Eqs. (5.1) which satisfy the conditions

day(a) + nay
0(a) = ca , dby(b) + nby

0(b) = cb , (5.4)

where da, db, na, nb, ca, cb 2 R are given constants. In other words, we impose linear conditions on the
function at both endpoints of the interval [a, b]. If da = db = 0 so these become conditions on the first
derivate only they are called von Neumann boundary conditions. The opposite case na = nb = 0, when
the boundary conditions only involve y but not y0 are called Dirichlet boundary conditions. The general
case is referred to as mixed boundary conditions. For ca = cb = 0 the boundary conditions are called
homogeneous, otherwise they are called inhomogeneous.

Initial and boundary value problems, although related, are conceptually quite di↵erent. In physics,
the former are usually considered when the problem involves time evolution (so x corresponds to time)
and the initial state of the system needs to be specified at a particular time. Boundary value problems
frequently arise in physics when x has the interpretation of a spatial variable, for example the argument
of a wave function in quantum mechanics which needs to satisfy certain conditions at the boundary.

In this section, we will mainly be concerned with boundary value problems (initial value problems
having been the focus of the first year courses on di↵erential equations). We begin with a quick review of
the relevant basic mathematics.

5.1 Basic theory⇤

Systems of linear first order di↵erential equations
The most basic question which arises for di↵erential equations is about the existence and uniqueness of
solutions. To discuss this in the present case, it is useful to consider a somewhat more general problem of
a system of first order inhomogeneous and homogeneous di↵erential equations

y0 = A(x)y + g(x)
y0 = A(x)y

�
(5.5)
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(5.1)

where ↵0, ↵1 and ↵2 as well as f are given functions. Clearly, the upper equation is inhomogeneous with
source f and the lower equation is its homogeneous counterpart. In operator form this can be written as

Ty = f
Ty = 0

�
T = ↵2D

2 + ↵1D + ↵0 , (5.2)

where D = d

dx
. For the range of x we would like to consider the interval [a, b] ⇢ R (where the semi-infinite

and infinite case is allowed) and, provided ↵i 2 C1([a, b]), we can think of T as a linear operator T :
C1([a, b]) ! C1([a, b]). We note that the general di↵erential equations (4.20) for orthogonal polynomials
(and, hence, the Legendre, Laguerre and Hermitian di↵erentials equations in Eqs. (4.36), (4.52) and (4.65))
are homogeneous equations of the form (5.1).

The above equations are usually solved subject to additional conditions on the solution y and there
are two ways of imposing such conditions. The first one, which leads to what is called an initial value
problem, is to ask for solutions to either of Eqs. (5.1) which, in addition, satisfy the “initial conditions”

y(x0) = y0 , y0(x0) = y00 , (5.3)

for x0 2 [a, b] and given values y0, y00 2 R. Another possibility, which defines a boundary value problem, is
to ask for solutions to either of Eqs. (5.1) which satisfy the conditions

day(a) + nay
0(a) = ca , dby(b) + nby

0(b) = cb , (5.4)

where da, db, na, nb, ca, cb 2 R are given constants. In other words, we impose linear conditions on the
function at both endpoints of the interval [a, b]. If da = db = 0 so these become conditions on the first
derivate only they are called von Neumann boundary conditions. The opposite case na = nb = 0, when
the boundary conditions only involve y but not y0 are called Dirichlet boundary conditions. The general
case is referred to as mixed boundary conditions. For ca = cb = 0 the boundary conditions are called
homogeneous, otherwise they are called inhomogeneous.

Initial and boundary value problems, although related, are conceptually quite di↵erent. In physics,
the former are usually considered when the problem involves time evolution (so x corresponds to time)
and the initial state of the system needs to be specified at a particular time. Boundary value problems
frequently arise in physics when x has the interpretation of a spatial variable, for example the argument
of a wave function in quantum mechanics which needs to satisfy certain conditions at the boundary.

In this section, we will mainly be concerned with boundary value problems (initial value problems
having been the focus of the first year courses on di↵erential equations). We begin with a quick review of
the relevant basic mathematics.

5.1 Basic theory⇤

Systems of linear first order di↵erential equations
The most basic question which arises for di↵erential equations is about the existence and uniqueness of
solutions. To discuss this in the present case, it is useful to consider a somewhat more general problem of
a system of first order inhomogeneous and homogeneous di↵erential equations

y0 = A(x)y + g(x)
y0 = A(x)y

�
(5.5)
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x = x0
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Solutions and how to find them

Back to second order linear di↵erential equations
How is the above discussion of first order di↵erential equations relevant to our original problem (5.1) of
second order di↵erential equations? The answer is, of course, that higher order di↵erential equations can
be converted into systems of first order di↵erential equations. To see this, start with the system (5.1) and
define an associated two-dimensional first order system of the form (5.5) given by

y =

✓
ỹ1
ỹ2

◆
, A =

✓
0 1

�↵0
↵2

�↵1
↵2

◆
, g =

✓
0
f

↵2

◆
. (5.10)

(We assume ↵2 is non-zero everywhere.) The solutions of this first-order system and the ones of the second
order equation (5.1) are then in one-to-one correspondence via the identification ỹ1 = y and ỹ2 = y0. Given
this observation we can now translate the previous statements for first order systems into statements for
second order di↵erential equations.

Theorem 5.4. Let ↵i, f : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]). Then we have the following
statements:

(a) For given y0, y00 2 R and x0 2 [a, b], the inhomogeneous equation (5.1) has a unique solution y : [a, b] !
F with y(x0) = y0 and y0(x0) = y00.

(b)The solutions y : [a, b] ! F to the homogeneous equation form a two-dimensional vector space VH over
F . Two solutions y1 and y2 to the homogeneous equation form a basis of VH i↵ the matrix

✓
y1 y2
y01 y02

◆
(x) (5.11)

is non-singular for at least one x 2 [a, b] or, equivalently, i↵ the Wronski determinant

W := det

✓
y1 y2
y01 y02

◆
(x) = (y1y

0
2 � y2y

0
1)(x) (5.12)

is non-zero for at least one x 2 [a, b].

(c) The solution space VI of the inhomogeneous equation (5.1) is given by VI = y0 + VH , where y0 is any
solution to the inhomogeneous equation (5.1).

Proof. All these statements follow directly from the analogoues statements for first order systems in
Theorems 5.1 and 5.2 by using the correspondence (5.10).

The procedure of variation of constants in Theorem 5.3 can also be transferred to second order di↵erential
equations and leads to

Theorem 5.5. (Variation of constants) Let ↵i, g : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]) and
y1, y2 : [a, b] ! F a basis of solutions for the homogeneous system (5.1). Then, a solution y : [a, b] ! F
of the inhomogeneous system is given by

y(x) =

Z
x

x0

dt G(x, t)f(t) , (5.13)

where G is called the Green function, given by

G(x, t) =
y1(t)y2(x) � y1(x)y2(t)

↵2(t)W (t)
, (5.14)

with the Wronski determinant W = y1y02 � y2y01.
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be converted into systems of first order di↵erential equations. To see this, start with the system (5.1) and
define an associated two-dimensional first order system of the form (5.5) given by
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(We assume ↵2 is non-zero everywhere.) The solutions of this first-order system and the ones of the second
order equation (5.1) are then in one-to-one correspondence via the identification ỹ1 = y and ỹ2 = y0. Given
this observation we can now translate the previous statements for first order systems into statements for
second order di↵erential equations.

Theorem 5.4. Let ↵i, f : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]). Then we have the following
statements:

(a) For given y0, y00 2 R and x0 2 [a, b], the inhomogeneous equation (5.1) has a unique solution y : [a, b] !
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(c) The solution space VI of the inhomogeneous equation (5.1) is given by VI = y0 + VH , where y0 is any
solution to the inhomogeneous equation (5.1).

Proof. All these statements follow directly from the analogoues statements for first order systems in
Theorems 5.1 and 5.2 by using the correspondence (5.10).

The procedure of variation of constants in Theorem 5.3 can also be transferred to second order di↵erential
equations and leads to

Theorem 5.5. (Variation of constants) Let ↵i, g : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]) and
y1, y2 : [a, b] ! F a basis of solutions for the homogeneous system (5.1). Then, a solution y : [a, b] ! F
of the inhomogeneous system is given by
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where G is called the Green function, given by
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y1(t)y2(x) � y1(x)y2(t)
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y1(x) = sin(x) , y2(x) = cos(x)
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W = � sin2(x)� cos2(x) = �1
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) (y1, y2) basis of VH
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•  How to get an inhom. solution   from a basis         of     :   y
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Back to second order linear di↵erential equations
How is the above discussion of first order di↵erential equations relevant to our original problem (5.1) of
second order di↵erential equations? The answer is, of course, that higher order di↵erential equations can
be converted into systems of first order di↵erential equations. To see this, start with the system (5.1) and
define an associated two-dimensional first order system of the form (5.5) given by

y =

✓
ỹ1
ỹ2

◆
, A =

✓
0 1

�↵0
↵2

�↵1
↵2

◆
, g =

✓
0
f

↵2

◆
. (5.10)

(We assume ↵2 is non-zero everywhere.) The solutions of this first-order system and the ones of the second
order equation (5.1) are then in one-to-one correspondence via the identification ỹ1 = y and ỹ2 = y0. Given
this observation we can now translate the previous statements for first order systems into statements for
second order di↵erential equations.

Theorem 5.4. Let ↵i, f : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]). Then we have the following
statements:

(a) For given y0, y00 2 R and x0 2 [a, b], the inhomogeneous equation (5.1) has a unique solution y : [a, b] !
F with y(x0) = y0 and y0(x0) = y00.

(b)The solutions y : [a, b] ! F to the homogeneous equation form a two-dimensional vector space VH over
F . Two solutions y1 and y2 to the homogeneous equation form a basis of VH i↵ the matrix

✓
y1 y2
y01 y02

◆
(x) (5.11)

is non-singular for at least one x 2 [a, b] or, equivalently, i↵ the Wronski determinant

W := det

✓
y1 y2
y01 y02

◆
(x) = (y1y

0
2 � y2y

0
1)(x) (5.12)

is non-zero for at least one x 2 [a, b].

(c) The solution space VI of the inhomogeneous equation (5.1) is given by VI = y0 + VH , where y0 is any
solution to the inhomogeneous equation (5.1).

Proof. All these statements follow directly from the analogoues statements for first order systems in
Theorems 5.1 and 5.2 by using the correspondence (5.10).

The procedure of variation of constants in Theorem 5.3 can also be transferred to second order di↵erential
equations and leads to

Theorem 5.5. (Variation of constants) Let ↵i, g : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]) and
y1, y2 : [a, b] ! F a basis of solutions for the homogeneous system (5.1). Then, a solution y : [a, b] ! F
of the inhomogeneous system is given by

y(x) =

Z
x

x0

dt G(x, t)f(t) , (5.13)

where G is called the Green function, given by

G(x, t) =
y1(t)y2(x) � y1(x)y2(t)

↵2(t)W (t)
, (5.14)

with the Wronski determinant W = y1y02 � y2y01.
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this observation we can now translate the previous statements for first order systems into statements for
second order di↵erential equations.

Theorem 5.4. Let ↵i, f : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]). Then we have the following
statements:

(a) For given y0, y00 2 R and x0 2 [a, b], the inhomogeneous equation (5.1) has a unique solution y : [a, b] !
F with y(x0) = y0 and y0(x0) = y00.

(b)The solutions y : [a, b] ! F to the homogeneous equation form a two-dimensional vector space VH over
F . Two solutions y1 and y2 to the homogeneous equation form a basis of VH i↵ the matrix

✓
y1 y2
y01 y02

◆
(x) (5.11)

is non-singular for at least one x 2 [a, b] or, equivalently, i↵ the Wronski determinant

W := det

✓
y1 y2
y01 y02

◆
(x) = (y1y

0
2 � y2y

0
1)(x) (5.12)

is non-zero for at least one x 2 [a, b].

(c) The solution space VI of the inhomogeneous equation (5.1) is given by VI = y0 + VH , where y0 is any
solution to the inhomogeneous equation (5.1).

Proof. All these statements follow directly from the analogoues statements for first order systems in
Theorems 5.1 and 5.2 by using the correspondence (5.10).

The procedure of variation of constants in Theorem 5.3 can also be transferred to second order di↵erential
equations and leads to

Theorem 5.5. (Variation of constants) Let ↵i, g : [a, b] ! F be continuous (and ↵2 non-zero on [a, b]) and
y1, y2 : [a, b] ! F a basis of solutions for the homogeneous system (5.1). Then, a solution y : [a, b] ! F
of the inhomogeneous system is given by

y(x) =

Z
x

x0

dt G(x, t)f(t) , (5.13)

where G is called the Green function, given by

G(x, t) =
y1(t)y2(x) � y1(x)y2(t)

↵2(t)W (t)
, (5.14)

with the Wronski determinant W = y1y02 � y2y01.

74

Green function

Example: 

As in the Legendre case, the di↵erential equation (5.35) also makes sense if n is a real number. If n /2 N
then the numerator in Eq. (5.37) never vanishes and both solutions to (5.35) are non-polynomial. (This
observation plays a role for the energy quantisation of the quantum harmonic oscillator.)

Of course the above procedure can be repeated for the Laguerre di↵erential equation (4.52) as in the
following

Exercise 5.11. Insert the series Ansatz (5.27) into the Laguerre di↵erential equation (4.52) and find
the recursion relation for the coe�cients ak. Discuss the result and identify the choices which lead to the
Laguerre polynomials.

A simple inhomogeneous example
For a simple inhomogeneous case, let us consider the equation

Ty = f , T =
d2

dx2
+ 1 (5.38)

on the interval [a, b] = [0, ⇡

2 ], where f is an arbitrary function. (This describes a driven harmonic oscillator
with driving force f .) It is clear that the solution space of the associated homogeneous equation, Ty = 0,
is given by

VH = Span (y1(x) = sin(x), y2(x) = cos(x)) . (5.39)

As a sanity check we can work out the Wronski determinant

W = y1y
0
2 � y2y

0
1 = �1 , (5.40)

and since this is non-vanishing the two solutions are indeed linearly independent. To find the solution
space of the inhomogeneous equation we can use the variation of constant method from Theorem 5.5.
Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.14) we find for the Green function

G(x, t) = sin(x � t) . (5.41)

From Eq. (5.19) this means a special solution to the inhomogeneous equation is given by

y0(x) =

Z
x

x0

dt G(x, t)f(t) =

Z
x

x0

dt sin(x � t)f(t) , (5.42)

and, hence, the solution space of the inhomogeneous equation is

VI = y0 + VH . (5.43)

Exercise 5.12. Check explicitly that y0 from Eq. (5.42) satisfies the equation Ty0 = f .

Let us now consider Eq. (5.38) as a boundary value problem on the interval [a, b] = [0, ⇡

2 ] with Dirichlet
boundary conditions y(0) = y(⇡/2) = 0 and apply the results of Theorem 5.6. First, we note that
y1(0) = y2(⇡/2) = 0 so our chosen homogeneous solutions do indeed satisfy the requirements of the
Theorem. Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.20) gives the Green function

G(x, t) = � sin(t) cos(x) ✓(x � t) � sin(x) cos(t) ✓(t � x) , (5.44)

and hence

y(x) =

Z
⇡/2

0
dt G(x, t)f(t) (5.45)

satisfies Ty = f as well as the correct boundary conditions y(0) = y(⇡/2) = 0. We note that there is no
non-trivial solution in VH which satisfies y(0) = y(⇡/2) = 0 so Eq. (5.45) is the unique solution to the
boundary value problem.
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VH = Span(y1 = sin y2 = cos) , W = �1 , ↵2 = 1
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As in the Legendre case, the di↵erential equation (5.35) also makes sense if n is a real number. If n /2 N
then the numerator in Eq. (5.37) never vanishes and both solutions to (5.35) are non-polynomial. (This
observation plays a role for the energy quantisation of the quantum harmonic oscillator.)

Of course the above procedure can be repeated for the Laguerre di↵erential equation (4.52) as in the
following

Exercise 5.11. Insert the series Ansatz (5.27) into the Laguerre di↵erential equation (4.52) and find
the recursion relation for the coe�cients ak. Discuss the result and identify the choices which lead to the
Laguerre polynomials.

A simple inhomogeneous example
For a simple inhomogeneous case, let us consider the equation

Ty = f , T =
d2

dx2
+ 1 (5.38)

on the interval [a, b] = [0, ⇡

2 ], where f is an arbitrary function. (This describes a driven harmonic oscillator
with driving force f .) It is clear that the solution space of the associated homogeneous equation, Ty = 0,
is given by

VH = Span (y1(x) = sin(x), y2(x) = cos(x)) . (5.39)

As a sanity check we can work out the Wronski determinant

W = y1y
0
2 � y2y

0
1 = �1 , (5.40)

and since this is non-vanishing the two solutions are indeed linearly independent. To find the solution
space of the inhomogeneous equation we can use the variation of constant method from Theorem 5.5.
Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.14) we find for the Green function

G(x, t) = sin(x � t) . (5.41)

From Eq. (5.19) this means a special solution to the inhomogeneous equation is given by

y0(x) =

Z
x

x0

dt G(x, t)f(t) =

Z
x

x0

dt sin(x � t)f(t) , (5.42)

and, hence, the solution space of the inhomogeneous equation is

VI = y0 + VH . (5.43)

Exercise 5.12. Check explicitly that y0 from Eq. (5.42) satisfies the equation Ty0 = f .

Let us now consider Eq. (5.38) as a boundary value problem on the interval [a, b] = [0, ⇡

2 ] with Dirichlet
boundary conditions y(0) = y(⇡/2) = 0 and apply the results of Theorem 5.6. First, we note that
y1(0) = y2(⇡/2) = 0 so our chosen homogeneous solutions do indeed satisfy the requirements of the
Theorem. Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.20) gives the Green function

G(x, t) = � sin(t) cos(x) ✓(x � t) � sin(x) cos(t) ✓(t � x) , (5.44)

and hence

y(x) =

Z
⇡/2

0
dt G(x, t)f(t) (5.45)

satisfies Ty = f as well as the correct boundary conditions y(0) = y(⇡/2) = 0. We note that there is no
non-trivial solution in VH which satisfies y(0) = y(⇡/2) = 0 so Eq. (5.45) is the unique solution to the
boundary value problem.
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•  How to find a solution to the hom. eqs. (if you already have one)

Suppose   is a solution,         . Then, another solution    can be obtained by  

Proof. The two homogeneous solutions y1 and y2 satisfy Ty1 = Ty2 = 0 with the operator T from Eq. (5.2)
and the conditions y1(a) = y2(b) = 0 can always be imposed since we know there exists a solution for any
choice of initial condition. Now we start with a typical variation of constant Ansatz

y(x) = u1(x)y1(x) + u2(x)y2(x) , (5.21)

where u1, u2 are two functions to be determined. If we impose on those two functions the condition

u0
1y1 + u0

2y2 = 0 (5.22)

an easy calculation shows that

Ty = ↵2(u
0
1y

0
1 + u0

2y
0
2)

!
= f . (5.23)

Solving Eqs. (5.22) and (5.23) for u1 and u2 leads to

u1(x) = �
Z

x

x1

dt
y2(t)f(t)

↵2(t)W (t)
, u2(x) =

Z
x

x2

dt
y1(t)f(t)

↵2(t)W (t)
, (5.24)

where x1, x2 2 [a, b] are two otherwise arbitrary constants. To implement the boundary conditions y(a) =
y(b) = 0 it su�ces to demand that u1(b) = u2(a) = 0 (given our assumptions about the boundary values
of y1 and y2) and this is guaranteed by choosing x1 = b and x2 = a. Inserting these values into Eq. (5.24)
and the expressions for ui back into the Ansatz (5.21) gives the desired result.

Whether Eq. (5.19) is the unique solutions to the boundary value problem (5.18) depends on whether
there is a non-trivial solution to the homogeneous equations in VH which satisfies the relevant boundary
conditions y(a) = y(b) = 0. If there is it can be added to (5.19) and the solution is not unique, otherwise
it is. More generally, going back to the way we have split up the problem into two steps in Eqs. (5.16) and
(5.17), we have now found a method to find a solutions to the second problem (5.17) (the inhomogeneous
equation with the homogeneous boundary conditions) for the Dirichlet case. Any solution to the first
problem (5.16) (the homogeneous equation with inhomogeneous boundary conditions) can be added to
this.

Solving the homogeneous equation
It remains to discuss methods for how to solve the homogeneous equation (5.1). If one solution to this
equation is known a second, linearly independent solution is obtained from the following

Theorem 5.7. (Reduction of order) Let y : [a, b] ! F be a solution of Ty = 0 with T given in Eq. (5.2)
and I ⇢ [a, b] be an interval for which y and ↵2 are everywhere non-vanishing. Then ỹ : I ! F defined by

ỹ(x) = y(x)u(x) , u0(x) =
1

y(x)2
exp

✓
�
Z

x

x0

dt
↵1(t)

↵2(t)

◆
(5.25)

satisfies T ỹ = 0 and is linearly independent from y.

Proof. An easy calculation shows that the function u, defined above, satisfies the di↵erential equation

u00 +

✓
2
y0

y
+

↵1

↵2

◆
u0 = 0 . (5.26)
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and this is non-zero since the last expression is precisely the exponential in Eq. (5.25). Hence, the two
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satisfies T ỹ = 0 and is linearly independent from y.

Proof. An easy calculation shows that the function u, defined above, satisfies the di↵erential equation

u00 +

✓
2
y0

y
+

↵1

↵2

◆
u0 = 0 . (5.26)
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Example: The other solution to the (n=1) Legendre diff. eqn.

Exercise 5.8. Show explicitly that, for suitable choices of a0 and a1, the recursion formula (5.30) repro-
duces the first few Legendre polynomials in Eq. (4.35).

Of course the di↵erential equation (5.28) also makes sense if n is a real number, rather than an integer,
and the above calculation leading to the coe�cients ak remains valid in this case. However, if n /2 N, the
numerator in Eq. (5.30) never vanishes and both solutions to (5.28) are non-polynomial.

To find the second solution we can also use the reduction of order method from Theorem 5.7. To
demonstrate how this works we focus on the case n = 1 with di↵erential equation

(1 � x2)y00 � 2xy0 + 2y = 0 . (5.31)

which is solved by the Legendre polynomial y(x) = P1(x) = x. Inserting this, together with ↵1(x) = �2x
and ↵2(x) = 1 � x2 into Eq. (5.25) gives

u0(x) =
1

x2
exp

✓Z
x

dt
2t

1 � t2

◆
=

1

x2(1 � x2)
(5.32)

A further integration leads to

u(x) = �1

x
+

1

2
ln

1 + x

1 � x
(5.33)

so the second solution to the Legendre equation (5.31) for n = 1 is

ỹ(x) = xu(x) =
x

2
ln

1 + x

1 � x
� 1 . (5.34)

Exercise 5.9. Find the Taylor series of the solution (5.34) around x = 0 and show that the coe�cients
in this series are consistent with the recursion formula (5.30).

Hermite di↵erential equation
Recall from Eq. (4.65) that the Hermite di↵erential equation is given by

y00 � 2xy0 + 2ny = 0 . (5.35)

To find its solutions we can proceed like we did in the Legendre case and insert the series (5.27). This
leads to

1X

k=0

[(k + 1)(k + 2)ak+2 � 2(k � n)ak] x
k = 0 , (5.36)

and, hence, the recursion relation

ak+2 =
2(k � n)

(k + 1)(k + 2)
ak . (5.37)

As before, we have a free choice of a0 and a1 but with those two coe�cients fixed the recursion formula
determines all others. From the numerator in Eq. (5.37) it is clear that ak = 0 for k = n+2, n+4, . . .. For
n even and (a0, a1) = (1, 0) we get a polynomial with only even powers of x - up to an overall constant
the Hermite Polynomial Hn with n even - while (a0, a1) = (0, 1) leads to an infinite series with only odd
powers of x - the second solution of (5.28). For n odd the choice (a0, a1) = (0, 1) leads to a polynomial
solution with only odd powers of x which is proportional to the Hermite polynomials Hn for n odd, while
the choice (a0, a1) = (1, 0) leads to a power series with only even powers of x.

Exercise 5.10. Show that, for appropriate choices of a0 and a1 the recursion formula reproduces the first
few Hermite polynomials (4.64).
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in this series are consistent with the recursion formula (5.30).

Hermite di↵erential equation
Recall from Eq. (4.65) that the Hermite di↵erential equation is given by

y00 � 2xy0 + 2ny = 0 . (5.35)

To find its solutions we can proceed like we did in the Legendre case and insert the series (5.27). This
leads to

1X

k=0

[(k + 1)(k + 2)ak+2 � 2(k � n)ak] x
k = 0 , (5.36)

and, hence, the recursion relation

ak+2 =
2(k � n)

(k + 1)(k + 2)
ak . (5.37)

As before, we have a free choice of a0 and a1 but with those two coe�cients fixed the recursion formula
determines all others. From the numerator in Eq. (5.37) it is clear that ak = 0 for k = n+2, n+4, . . .. For
n even and (a0, a1) = (1, 0) we get a polynomial with only even powers of x - up to an overall constant
the Hermite Polynomial Hn with n even - while (a0, a1) = (0, 1) leads to an infinite series with only odd
powers of x - the second solution of (5.28). For n odd the choice (a0, a1) = (0, 1) leads to a polynomial
solution with only odd powers of x which is proportional to the Hermite polynomials Hn for n odd, while
the choice (a0, a1) = (1, 0) leads to a power series with only even powers of x.

Exercise 5.10. Show that, for appropriate choices of a0 and a1 the recursion formula reproduces the first
few Hermite polynomials (4.64).
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Exercise 5.8. Show explicitly that, for suitable choices of a0 and a1, the recursion formula (5.30) repro-
duces the first few Legendre polynomials in Eq. (4.35).

Of course the di↵erential equation (5.28) also makes sense if n is a real number, rather than an integer,
and the above calculation leading to the coe�cients ak remains valid in this case. However, if n /2 N, the
numerator in Eq. (5.30) never vanishes and both solutions to (5.28) are non-polynomial.

To find the second solution we can also use the reduction of order method from Theorem 5.7. To
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•  How to find a solution to the hom. eqs. in the first place

Obtaining a second independent solution from a known one can be useful but how can we find a solution
in the first place? A very common and e�cient method is to start with a power series Ansatz

y(x) =
1X

k=0

akx
k . (5.27)

Of course, this is only practical if the functions ↵i which appear in T are polynomial. In this case, the idea
is to insert the Ansatz (5.27) into Ty = 0, assemble the coe�cient in front of xk and set this coe�cient
to zero for every k. In this way, one obtains a recursion relation for the ak and inserting the resulting
ak back into Eq (5.27) gives the solution in terms of a power series. Of course this is where the di�cult
work starts. Now one has to understand the properties of the so-obtained series, such as convergence,
singularities or asymptotic behaviour. All this is best demonstrated for examples and we will do this
shortly.

5.2 Examples

We would now like to apply some of the methods and results from the previous subsection to examples.

Legendre di↵erential equation
Recall from Eq. (4.36) the Legendre di↵erential equation

(1 � x2)y00 � 2xy0 + n(n + 1)y = 0 . (5.28)

Of course we know that the Legendre polynomials are solutions but we would like to derive this indepen-
dently (as well as finding the second solution which must exist) by using the power series method. Inserting
the series (5.27) into the Legendre di↵erential equation gives (after re-defining some of the summation
indices)

1X

k=0

[(k + 2)(k + 1)ak+2 � (k(k + 1) � n(n + 1))ak] x
k = 0 . (5.29)

Demanding that the coe�cient in front of every monomial xk vanishes (then and only then is a power
series identical to zero) we obtain the recursion formula

ak+2 =
k(k + 1) � n(n + 1)

(k + 1)(k + 2)
ak , k = 0, 1, . . . , (5.30)

for the coe�cients ak. There are a number of interesting features of this formula. First, the coe�cients a0
and a1 are not fixed but once values have been chosen for them the above recursion formula determines all
other ak. This freedom of choosing two coe�cients precisely corresponds to the two independent solutions
we expect. The second interesting feature is that, due to the structure of the numerator in Eq. (5.30),
ak = 0 for k = n + 2, n + 4, . . ..

To see what happens in more detail let’s first assume that n is even. Choose (a0, a1) = (1, 0). In this
case all ak with k odd vanish and the ak with k even are non-zero only for k  n. This means, the series
breaks down and turns into a polynomial - this is of course (propertional to) the Legendre polynomial Pn

for n even. Still for n even, make the complementary choice (a0, a1) = (0, 1). In this case all the ak with
k even are zero. However, for k odd and n even the numerator in Eq. (5.30) never vanishes so this leads
to an infinite series which only contains odd powers of x. This is the second solution, in addition to the
Legendre polynomials. For n odd the situation is of course similar but reversed. For (a0, a1) = (0, 1) we
get polynomials - the Legendre polynomial Pn for n odd - while for (a0, a1) = (1, 0) we get the second
solution, an infinite series with only even powers of x.
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Example: Legendre differential equation

Obtaining a second independent solution from a known one can be useful but how can we find a solution
in the first place? A very common and e�cient method is to start with a power series Ansatz

y(x) =
1X

k=0

akx
k . (5.27)

Of course, this is only practical if the functions ↵i which appear in T are polynomial. In this case, the idea
is to insert the Ansatz (5.27) into Ty = 0, assemble the coe�cient in front of xk and set this coe�cient
to zero for every k. In this way, one obtains a recursion relation for the ak and inserting the resulting
ak back into Eq (5.27) gives the solution in terms of a power series. Of course this is where the di�cult
work starts. Now one has to understand the properties of the so-obtained series, such as convergence,
singularities or asymptotic behaviour. All this is best demonstrated for examples and we will do this
shortly.
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We would now like to apply some of the methods and results from the previous subsection to examples.
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Of course we know that the Legendre polynomials are solutions but we would like to derive this indepen-
dently (as well as finding the second solution which must exist) by using the power series method. Inserting
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ak+2 =
k(k + 1) � n(n + 1)

(k + 1)(k + 2)
ak , k = 0, 1, . . . , (5.30)

for the coe�cients ak. There are a number of interesting features of this formula. First, the coe�cients a0
and a1 are not fixed but once values have been chosen for them the above recursion formula determines all
other ak. This freedom of choosing two coe�cients precisely corresponds to the two independent solutions
we expect. The second interesting feature is that, due to the structure of the numerator in Eq. (5.30),
ak = 0 for k = n + 2, n + 4, . . ..

To see what happens in more detail let’s first assume that n is even. Choose (a0, a1) = (1, 0). In this
case all ak with k odd vanish and the ak with k even are non-zero only for k  n. This means, the series
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solution, an infinite series with only even powers of x.

77

)

<latexit sha1_base64="kxdq/6bguWOHRbWm9Gtuq6BtAWo=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0cIiYGMZxXzA5Qh7m71kyd7tsTunhJCfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphKYdB1v53Cyura+kZxs7S1vbO7V94/aBqVacYbTEml2yE1XIqEN1Cg5O1UcxqHkrfC4c3Ubz1ybYRKHnCU8iCm/UREglG0kt+5F/0BUq3VU7dccavuDGSZeDmpQI56t/zV6SmWxTxBJqkxvuemGIypRsEkn5Q6meEpZUPa576lCY25CcazkyfkxCo9EiltK0EyU39PjGlszCgObWdMcWAWvan4n+dnGF0FY5GkGfKEzRdFmSSoyPR/0hOaM5QjSyjTwt5K2IBqytCmVLIheIsvL5PmWdU7r17cnVdq13kcRTiCYzgFDy6hBrdQhwYwUPAMr/DmoPPivDsf89aCk88cwh84nz+R5ZFv</latexit>

Obtaining a second independent solution from a known one can be useful but how can we find a solution
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we expect. The second interesting feature is that, due to the structure of the numerator in Eq. (5.30),
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•  How to satisfy the boundary conditions

- Find all hom. solutions, VH
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•  How to find a solution to inhom. eqs. which satisfies boundary conditions

Proof. This follows directly from the above results for first order systems. More specifically, inserting

Y =

✓
y1 y2
y01 y02

◆
, Y �1 =

1

W

✓
y02 �y2

�y01 y1

◆
(5.15)

together with g from Eq. (5.10) into Eq. (5.8) gives the result.

Back to the boundary value problem
We have now collected a number of standard results which imply that the initial value problem defined
by Eqs. (5.1) and (5.3) always has a unique solution. Also, we have gained insight into the structure
of the total solution space VH of the homogeneous Eq. (5.1) and we know that this space is a two-
dimensional vector space. Further, the space of solutions VI to the inhomogeneous Equation (5.1) is given
by VI =  + VH , where  is any solution to the inhomogeneous equation. We have also seen that we can
use a basis of solutions in VH to construct a Green function (5.14) which allows us, via Eq. (5.19), to find
a solution to the inhomogeneous equation.

Armed with this information, we should now come back to the boundary value problem defined by
Eqs. (5.1) and (5.4). It is quite useful to split this problem up in the following way. Consider first finding
a solution y0 to the problem

↵2(x)y000 + ↵1(x)y00 + ↵0(x)y0 = 0 , day0(a) + nay
0
0(a) = ca , dby0(b) + nby

0
0(b) = cb , (5.16)

that is, to the homogeneous equation with the inhomogeneous boundary conditions. Next, find a solution
ỹ to

↵2(x)ỹ00 + ↵1(x)ỹ0 + ↵0(x)ỹ = f(x) , daỹ(a) + naỹ
0(a) = 0 , dbỹ(b) + nbỹ

0(b) = 0 , (5.17)

that is, to the inhomogeneous di↵erential equation with a homogeneous version of the boundary conditions.
It is easy to see that, thanks to linearity, the sum y = y0 + ỹ provides a solution to the general problem,
that is, to the inhomogeneous Eq. (5.1) with inhomogeneous boundary conditions (5.4). We can deal with
the first problem (5.16) by finding the most general solution to the homogeneous di↵erential equation,
that is, determine the solution space VH , and then build in the boundary condition. We will discuss some
practical methods to do this soon but for now, let us assume this has been accomplished and we want to
solve the problem (5.17).

The idea is to do this by modifying the variation of constants approach from Theorem (5.5) and
construct a Green function which leads to the correct boundary conditions. Let’s address this for the case
of Dirichlet boundary conditions, so we are considering the problem

↵2(x)y00 + ↵1(x)y0 + ↵0(x)y = f(x) , y(a) = 0 , y(b) = 0 . (5.18)

Theorem 5.6. Let y1, y2 : [a, b] ! F be a basis of VH , that is, a basis of solutions to the homogeneous
system (5.1), satisfying y1(a) = y2(b) = 0. Then a solution y : [a, b] ! F to the Dirichlet boundary value
problem (5.18) is given by

y(x) =

Z
b

a

dt G(x, t)f(t) , (5.19)

where the Green function G is given by

G(x, t) =
y1(t)y2(x)✓(x � t) + y1(x)y2(t)✓(t � x)

↵2(t)W (t)
. (5.20)

Here ✓ is the Heaviside function defined by ✓(x) = 1 for x � 0 and ✓(x) = 0 for x < 0.
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↵2(t)W (t)
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(where                  ) 

Example: 

As in the Legendre case, the di↵erential equation (5.35) also makes sense if n is a real number. If n /2 N
then the numerator in Eq. (5.37) never vanishes and both solutions to (5.35) are non-polynomial. (This
observation plays a role for the energy quantisation of the quantum harmonic oscillator.)

Of course the above procedure can be repeated for the Laguerre di↵erential equation (4.52) as in the
following

Exercise 5.11. Insert the series Ansatz (5.27) into the Laguerre di↵erential equation (4.52) and find
the recursion relation for the coe�cients ak. Discuss the result and identify the choices which lead to the
Laguerre polynomials.

A simple inhomogeneous example
For a simple inhomogeneous case, let us consider the equation

Ty = f , T =
d2

dx2
+ 1 (5.38)

on the interval [a, b] = [0, ⇡

2 ], where f is an arbitrary function. (This describes a driven harmonic oscillator
with driving force f .) It is clear that the solution space of the associated homogeneous equation, Ty = 0,
is given by

VH = Span (y1(x) = sin(x), y2(x) = cos(x)) . (5.39)

As a sanity check we can work out the Wronski determinant

W = y1y
0
2 � y2y

0
1 = �1 , (5.40)

and since this is non-vanishing the two solutions are indeed linearly independent. To find the solution
space of the inhomogeneous equation we can use the variation of constant method from Theorem 5.5.
Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.14) we find for the Green function

G(x, t) = sin(x � t) . (5.41)

From Eq. (5.19) this means a special solution to the inhomogeneous equation is given by

y0(x) =

Z
x

x0

dt G(x, t)f(t) =

Z
x

x0

dt sin(x � t)f(t) , (5.42)

and, hence, the solution space of the inhomogeneous equation is

VI = y0 + VH . (5.43)

Exercise 5.12. Check explicitly that y0 from Eq. (5.42) satisfies the equation Ty0 = f .

Let us now consider Eq. (5.38) as a boundary value problem on the interval [a, b] = [0, ⇡

2 ] with Dirichlet
boundary conditions y(0) = y(⇡/2) = 0 and apply the results of Theorem 5.6. First, we note that
y1(0) = y2(⇡/2) = 0 so our chosen homogeneous solutions do indeed satisfy the requirements of the
Theorem. Inserting y1 = sin, y2 = cos, W = �1 and ↵2 = 1 into Eq. (5.20) gives the Green function

G(x, t) = � sin(t) cos(x) ✓(x � t) � sin(x) cos(t) ✓(t � x) , (5.44)

and hence

y(x) =

Z
⇡/2

0
dt G(x, t)f(t) (5.45)

satisfies Ty = f as well as the correct boundary conditions y(0) = y(⇡/2) = 0. We note that there is no
non-trivial solution in VH which satisfies y(0) = y(⇡/2) = 0 so Eq. (5.45) is the unique solution to the
boundary value problem.
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Lemma 5.2. The functions Ĵ⌫k for k = 1, 2, . . ., defined in Eq. (5.61) form an orthogonal system of
functions on L2

w([0, a]), where w(x) = x, which is ortho-normal for suitable choices of the constans N⌫k.

Proof. A calculation using the definition (5.61) and the Bessel di↵erential equations shows that the Ĵ⌫k

satisfy

T Ĵ⌫k = �
z2
⌫k

a2
Ĵ⌫k , T =

1

x

d

dx

✓
x

d

dx

◆
� ⌫2

x2
. (5.62)

Hence, the Ĵ⌫k are eigenvectors of the operator T with eigenvalues �z2
⌫k

/a2. On the space L2
w,per([0, a])

of functions with f(0) = f(a) and weight function w(x) = x the operator T is hermitian and Ĵ⌫k 2
L2
w,per([0, a]) (since they vanish at x = 0, a). Since eigenvectors of a hermitian operator which correspond to

di↵erent eigenvalues are orthogonal this must be the case for the Ĵ⌫k since all the zeros z⌫k are di↵erent.

In fact, we have the following stronger statement.

Theorem 5.14. For ⌫ > �1, the functions Ĵ⌫k for k = 1, 2, . . ., defined in Eq. (5.61), with suitable choices
for N⌫k, form an ortho-normal basis of L2

w([0, a]), where w(x) = x.

Proof. The direct proof is technical and can be found in Ref. [7]. In the next subsection, we will see an
independent argument.

The theorem implies that every function f 2 L2
w([0, a]) can be expanded in terms of Bessel functions as

f =
1X

k=1

akĴ⌫k , ak = hĴ⌫k, fi =

Z
a

0
dx xĴ⌫k(x)f(x) . (5.63)

5.4 The operator perspective - Sturm-Liouville operators

So far we have discussed second order linear di↵erentials equations in a somewhat down-to-earth way,
using methods of basic analysis. We would now like to make contact with functional analysis and our
earlier discussion of Hilbert spaces.

Sturm-Liouville operators
A second order di↵erential operator of the form

TSL =
1

w(x)


d

dx

✓
p(x)

d

dx

◆
+ q(x)

�
(5.64)

with (real-valued) smooth functions w, p and q is called a Sturm-Liouville operator. For now, we would
like to think of this as an operator on the space

L([a, b]) := L2
w([a, b]) \ C1([a, b]) (5.65)

on the space square integrable functions, relative to a weight function w, on an interval [a, b] which are
also infinitely many times di↵erentiable. Accordingly, we should demand that w, p and q are smooth
functions and that w, as a weight function, is strictly positive.

Lemma 5.3. Consider a linear second order di↵erential operator of the form

T = ↵2(x)
d2

dx2
+ ↵1(x)

d

dx
+ ↵0(x) , (5.66)
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where 

where x 2 [a, b] and I ⇢ [a, b] is an interval such that ↵2(x) 6= 0 for all x 2 I. Then, on I, the operator T
can be written in Sturm-Liouville form (5.64) with

p(x) = exp

✓Z
x

x0

dt
↵1(t)

↵2(t)

◆
, w(x) =

p(x)

↵2(x)
, q(x) = ↵0(x)w(x) , (5.67)

where x0 2 I.

Proof. Abbreviating D = d

dx
and noting that p0 = ↵1

↵2
p we obtain, by inserting into the Sturm-Liouville

operator,

TSL =
p

w
D2 +

p0

w
D +

q

w
= ↵2D

2 +
↵1p

↵2w
D + ↵0 = ↵2D

2 + ↵1D + ↵0 = T . (5.68)

Introducing the interval I in the above theorem is to avoid an undefined integrand in the first Eq. (5.67)
due to the vanishing of ↵2. Even when this happens (such as, for example, for the Legendre di↵erential
equation at x = ±1) and the interval I is, at first, chosen to be genuinely smaller than [a, b] it turns out
the final result for w, p and q can often be extended to and is well-defined on [a, b].

An obvious question is whether TSL is self-adjoint as an operator on the space L([a, b]), relative to the
standard inner product

hf, gi =

Z
b

a

dx w(x)f(x)g(x) , (5.69)

with weight function w. A quick calculation shows that

hf, TSLgi =

Z
b

a

dx (fD(pDg) + fqg) = [pfDg]b
a

�
Z

b

a

dx (pDfDg � qfg)

= [pfDg]b
a

� [pgDf ]b
a

+

Z
b

a

dx (D(pDf)g + qfg) =
⇥
pfg0 � pgf 0⇤b

a
+ hTSLf, gi . (5.70)

So TSL is superficially self-adjoint but we have to ensure that the boundary terms on the RHS vanish.
There are two obvious ways in which this can be achieved. First, the interval [a, b] might be chosen such
that p(a) = p(b) = 0 - this is also called the natural choice of the interval. In this case, the boundary term
vanishes without any additional condition on the functions f , g and TSL is self-adjoint on L([a, b]). If this
doesn’t work we can consider the subspace

Lb([a, b]) := {f 2 L([a, b]) | daf(a) + naf
0(a) = dbf(b) + nbf

0(b) = 0} , (5.71)

of smooth functions which satisfy mixed homogeneous boundary conditions at a and b. For such functions
the above boundary term also vanishes. If p(a) = p(b) the boundary term also vanishes for periodic
functions

Lp([a, b]) := {f 2 L([a, b]) | f(a) = f(b) , f 0(a) = f 0(b)} . (5.72)

Hence, we have

Lemma 5.4. Let TSL be a Sturm-Liouville operator (5.64). If p(a) = p(b) = 0 then TSL is self-adjoint as
on operator on the space L([a, b]) in Eq. (9.112). It is also self-adjoint on the space of functions Lb([a, b])
with mixed homogeneous boundary in Eq. (5.71). If p(a) = p(b) it is self-adjoint on the space Lp([a, b]) of
periodic functions in Eq. (5.72).
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An obvious question is whether TSL is self-adjoint as an operator on the space L([a, b]), relative to the
standard inner product
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with weight function w. A quick calculation shows that
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b
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= [pfDg]b
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� [pgDf ]b
a
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Z
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a

dx (D(pDf)g + qfg) =
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pfg0 � pgf 0⇤b

a
+ hTSLf, gi . (5.70)

So TSL is superficially self-adjoint but we have to ensure that the boundary terms on the RHS vanish.
There are two obvious ways in which this can be achieved. First, the interval [a, b] might be chosen such
that p(a) = p(b) = 0 - this is also called the natural choice of the interval. In this case, the boundary term
vanishes without any additional condition on the functions f , g and TSL is self-adjoint on L([a, b]). If this
doesn’t work we can consider the subspace

Lb([a, b]) := {f 2 L([a, b]) | daf(a) + naf
0(a) = dbf(b) + nbf

0(b) = 0} , (5.71)

of smooth functions which satisfy mixed homogeneous boundary conditions at a and b. For such functions
the above boundary term also vanishes. If p(a) = p(b) the boundary term also vanishes for periodic
functions

Lp([a, b]) := {f 2 L([a, b]) | f(a) = f(b) , f 0(a) = f 0(b)} . (5.72)

Hence, we have

Lemma 5.4. Let TSL be a Sturm-Liouville operator (5.64). If p(a) = p(b) = 0 then TSL is self-adjoint as
on operator on the space L([a, b]) in Eq. (9.112). It is also self-adjoint on the space of functions Lb([a, b])
with mixed homogeneous boundary in Eq. (5.71). If p(a) = p(b) it is self-adjoint on the space Lp([a, b]) of
periodic functions in Eq. (5.72).
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A:       is a hermitian operator for the scalar product

    (if boundary terms can be made to vanish) 

Consider Sturm-Liouville eigenvalue problem: 

To simplify the notation, we will refer to the space on which the Sturm-Liouville operator is defined
and self-adjoint as LSL([a, b]). From the previous Lemma, this can be L([a, b]), Lb([a, b]) or Lp([a, b]),
depending on the case.

It is now interesting to consider a Sturm-Liouville eigenvalue problem, that is, to consider the eigenvalue
equation

TSLy = �y , (5.73)

on LSL([a, b]). Since TSL is hermitian, we already know from general arguments (see Theorem 1.24) that the
eigenvalues � must be real and that eigenvectors for di↵erent eigenvalues must be orthogonal. Since all the
second order di↵erential equations discussed so far can be phrased as a Sturm-Liouville eigenvalue problem
(see Table 2) this provides a uniform reason for the appearance of the various orthogonal function systems
we have encountered. It is tempting to go further and try to use Theorem 2.9 to argue that orthogonal

name DEQ p q w LSL[a, b] bound. cond. � y

sine Fourier y00 = �y 1 0 1 Lb([0, a]) y(0) = y(⇡) = 0 �⇡2k2

a2 sin
�

k⇡x
a

�

cosine Fourier y00 = �y 1 0 1 Lb([0, a]) y0(0) = y0(⇡) = 0 �⇡2k2

a2 cos
�

k⇡x
a

�

Fourier y00 = �y 1 0 1 Lp([�a, a]) periodic �⇡2k2

a2 sin
�

k⇡x
a

�

�⇡2k2

a2 cos
�

k⇡x
a

�

Legendre (1 � x2)y00 � 2xy0 = �y 1 � x2 0 1 L([�1, 1]) �n(n + 1) Pn

Laguerre xy00 + (1 � x)y0 = �y xe�x 0 e�x L([0, 1]) �n Ln

Hermite y00 � 2xy0 = �y e�x2

0 e�x2 L([�1, 1]) �2n Hn

Bessel y00 + 1
xy0 � ⌫2

x2 y = �y x � ⌫2

x2 x Lb([0, a]) y(0) = y(a) = 0 � z2
⌫k
a2 Ĵ⌫k

Table 2: The second order di↵erential equations discussed so far and their formulation as a Sturm-Liouville
eigenvalue problem.

systems of eigenfunctions of Sturm-Liouville operators must, in fact, form an ortho-normal basis. Arguing
in this way would be incorrect for two reasons. First, so far the Sturm-Liouville operator is only defined
on the space LSL which consists of certain smooth functions. While this space may well be dense in the
appropriate L2 Hilbert space it is not a Hilbert space itself. Secondly, Theorem 2.9 applies to compact
operators and we know from Exercise 1.13 that di↵erential operators are not bounded and, hence, not
compact.

One way to make progress is to convert the Sturm-Liouville di↵erential operator into an integral
operator. Some of the hard work has already been done in Theorem 5.6 where we have shown that,
provided Ker(TSL) = {0} we know (for Dirichlet boundary conditions) that

TSLy = f () y = Ĝf , Ĝf(x) :=

Z
b

a

dt G(x, t)f(t) , (5.74)

where G is the Green function. The integral operator Ĝ, defined in terms of the Green function kernel
G, can be thought of as the inverse of the Sturm-Liouville operator and, as an integral operator, we can
extend it to act on the space L2

w([a, b]) (with appropriate boundary conditions). Moreover, we have

Lemma 5.5. If Ker(TSL) = {0} then the operator Ĝ in Eq. (5.74) is self-adjoint and compact on L2
w([a, b])

(with Dirichlet boundary conditions).

Proof. The proof can, for example, be found in Ref. [5].

If we set f = �y in Eq. (5.74) we get

TSLy = �y () Ĝy =
1

�
y . (5.75)
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-> eigenfunctions are orthogonal w.r.t. above scalar product
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Orthogonal functions can be understood in terms of SL eigenvalue problem:

Example: Hermite differential equation in SL form

T =
d2

dx2
� 2x

d

dx
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Partial linear differential equations



Laplace equation

6 Laplace equation

The Laplace operator � in Rn with coordinates (x1, . . . , xn) is defined as

� =
nX

i=1

@2

@x2
i

. (6.1)

It gives rise to the homogeneous and inhomogeneous Laplace equations

�� = 0 , �� = ⇢ , (6.2)

where ⇢ : Rn ! R is a given function. We are asking for the solutions � to these equations on a compact set
V ⇢ U ⇢ Rn (where U is open), usually subject to certain boundary conditions on the smooth boundary
@V of V. A solution to the homogeneous Laplace equation is also called a harmonic function. There are
two types of boundary conditions which are frequently imposed:

�|@V = h (Dirichlet) n · r�|@V = h (von Neumann) (6.3)

where h is a given function on the boundary prescribing the boundary values and n is the normal vector
to the boundary. (Linear combinations of these conditions, referred to as mixed boundary conditions, are
also possible.) If the choice of boundary condition involves setting h = 0 and we define the “force field”
E = �r� then Dirichlet boundary conditions imply that the boundary is an equipotential surface, so
E is perpendicular to it. Under the same conditions, von Neumann boundary conditions imply that the
component of E normal to the boundary vanishes.

The above equations are of considerable importance in physics. For example, they govern the theory
of electrostatics (with � being the electrostatic potential, ⇢, up to a constant, the charge density, E the
electric field and boundary conditions implemented, for example, by the presence of conducting surfaces)
and the theory of Newtonian gravity (with � being the Newtonian gravitational potential, ⇢, up to constant,
being the mass density and E the gravitational field). The Laplace operator also appears as part of many
partial di↵erential equations in physics, for example in the context of the Schrödinger equation in quantum
mechanics.

Eqs. (6.2) are obviously linear so we already know that, before imposing any boundary conditions, the
solutions to the homogeneous Laplace equation form a vector space and the solutions to the inhomogeneous
equation can be obtained by adding all solutions of the homogeneous equation to a particular solution of
the inhomogeneous equation.

It is often useful to write the Laplacian in other than Cartesian coordinates and this is facilitated by
the following

Lemma 6.1. (Laplacian in general coordinates) Given the (twice di↵erentiable) map X : V ! U (a
“parametrisation” or a “coordinate change”), with V ⇢ Rk and U ⇢ Rn open, we consider the space
M = X(V ). Introducing coordinates t = (t1, . . . , tk) on V we write X as t 7! x(t) = (x1(t), . . . , xn(t)).
With the tangent vectors @x

@ti
(required to be linearly independent), define the k ⇥ k metric G with entries

Gij =
@x

@ti
· @x

@tj
, g := det(G) . (6.4)

The entries of its inverse G�1 are denoted by Gij. Then, the Laplacian �X relative to the parametrisation
X is given by

�X =
1

p
g

@

@ti

✓
p

g Gij
@

@tj

◆
. (6.5)

The measure for integration relative to X is given by dS =
p

g dt1 · · · dtk.
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electric field and boundary conditions implemented, for example, by the presence of conducting surfaces)
and the theory of Newtonian gravity (with � being the Newtonian gravitational potential, ⇢, up to constant,
being the mass density and E the gravitational field). The Laplace operator also appears as part of many
partial di↵erential equations in physics, for example in the context of the Schrödinger equation in quantum
mechanics.

Eqs. (6.2) are obviously linear so we already know that, before imposing any boundary conditions, the
solutions to the homogeneous Laplace equation form a vector space and the solutions to the inhomogeneous
equation can be obtained by adding all solutions of the homogeneous equation to a particular solution of
the inhomogeneous equation.

It is often useful to write the Laplacian in other than Cartesian coordinates and this is facilitated by
the following

Lemma 6.1. (Laplacian in general coordinates) Given the (twice di↵erentiable) map X : V ! U (a
“parametrisation” or a “coordinate change”), with V ⇢ Rk and U ⇢ Rn open, we consider the space
M = X(V ). Introducing coordinates t = (t1, . . . , tk) on V we write X as t 7! x(t) = (x1(t), . . . , xn(t)).
With the tangent vectors @x

@ti
(required to be linearly independent), define the k ⇥ k metric G with entries

Gij =
@x

@ti
· @x

@tj
, g := det(G) . (6.4)

The entries of its inverse G�1 are denoted by Gij. Then, the Laplacian �X relative to the parametrisation
X is given by

�X =
1

p
g

@

@ti

✓
p

g Gij
@

@tj

◆
. (6.5)

The measure for integration relative to X is given by dS =
p

g dt1 · · · dtk.
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6 Laplace equation

The Laplace operator � in Rn with coordinates (x1, . . . , xn) is defined as

� =
nX

i=1

@2

@x2
i

. (6.1)

It gives rise to the homogeneous and inhomogeneous Laplace equations

�� = 0 , �� = ⇢ , (6.2)

where ⇢ : Rn ! R is a given function. We are asking for the solutions � to these equations on a compact set
V ⇢ U ⇢ Rn (where U is open), usually subject to certain boundary conditions on the smooth boundary
@V of V. A solution to the homogeneous Laplace equation is also called a harmonic function. There are
two types of boundary conditions which are frequently imposed:

�|@V = h (Dirichlet) n · r�|@V = h (von Neumann) (6.3)

where h is a given function on the boundary prescribing the boundary values and n is the normal vector
to the boundary. (Linear combinations of these conditions, referred to as mixed boundary conditions, are
also possible.) If the choice of boundary condition involves setting h = 0 and we define the “force field”
E = �r� then Dirichlet boundary conditions imply that the boundary is an equipotential surface, so
E is perpendicular to it. Under the same conditions, von Neumann boundary conditions imply that the
component of E normal to the boundary vanishes.

The above equations are of considerable importance in physics. For example, they govern the theory
of electrostatics (with � being the electrostatic potential, ⇢, up to a constant, the charge density, E the
electric field and boundary conditions implemented, for example, by the presence of conducting surfaces)
and the theory of Newtonian gravity (with � being the Newtonian gravitational potential, ⇢, up to constant,
being the mass density and E the gravitational field). The Laplace operator also appears as part of many
partial di↵erential equations in physics, for example in the context of the Schrödinger equation in quantum
mechanics.

Eqs. (6.2) are obviously linear so we already know that, before imposing any boundary conditions, the
solutions to the homogeneous Laplace equation form a vector space and the solutions to the inhomogeneous
equation can be obtained by adding all solutions of the homogeneous equation to a particular solution of
the inhomogeneous equation.

It is often useful to write the Laplacian in other than Cartesian coordinates and this is facilitated by
the following

Lemma 6.1. (Laplacian in general coordinates) Given the (twice di↵erentiable) map X : V ! U (a
“parametrisation” or a “coordinate change”), with V ⇢ Rk and U ⇢ Rn open, we consider the space
M = X(V ). Introducing coordinates t = (t1, . . . , tk) on V we write X as t 7! x(t) = (x1(t), . . . , xn(t)).
With the tangent vectors @x

@ti
(required to be linearly independent), define the k ⇥ k metric G with entries

Gij =
@x

@ti
· @x

@tj
, g := det(G) . (6.4)

The entries of its inverse G�1 are denoted by Gij. Then, the Laplacian �X relative to the parametrisation
X is given by

�X =
1

p
g

@

@ti
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g Gij
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. (6.5)

The measure for integration relative to X is given by dS =
p

g dt1 · · · dtk.
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6 Laplace equation

The Laplace operator � in Rn with coordinates (x1, . . . , xn) is defined as

� =
nX

i=1

@2

@x2
i

. (6.1)

It gives rise to the homogeneous and inhomogeneous Laplace equations

�� = 0 , �� = ⇢ , (6.2)

where ⇢ : Rn ! R is a given function. We are asking for the solutions � to these equations on a compact set
V ⇢ U ⇢ Rn (where U is open), usually subject to certain boundary conditions on the smooth boundary
@V of V. A solution to the homogeneous Laplace equation is also called a harmonic function. There are
two types of boundary conditions which are frequently imposed:

�|@V = h (Dirichlet) n · r�|@V = h (von Neumann) (6.3)

where h is a given function on the boundary prescribing the boundary values and n is the normal vector
to the boundary. (Linear combinations of these conditions, referred to as mixed boundary conditions, are
also possible.) If the choice of boundary condition involves setting h = 0 and we define the “force field”
E = �r� then Dirichlet boundary conditions imply that the boundary is an equipotential surface, so
E is perpendicular to it. Under the same conditions, von Neumann boundary conditions imply that the
component of E normal to the boundary vanishes.

The above equations are of considerable importance in physics. For example, they govern the theory
of electrostatics (with � being the electrostatic potential, ⇢, up to a constant, the charge density, E the
electric field and boundary conditions implemented, for example, by the presence of conducting surfaces)
and the theory of Newtonian gravity (with � being the Newtonian gravitational potential, ⇢, up to constant,
being the mass density and E the gravitational field). The Laplace operator also appears as part of many
partial di↵erential equations in physics, for example in the context of the Schrödinger equation in quantum
mechanics.

Eqs. (6.2) are obviously linear so we already know that, before imposing any boundary conditions, the
solutions to the homogeneous Laplace equation form a vector space and the solutions to the inhomogeneous
equation can be obtained by adding all solutions of the homogeneous equation to a particular solution of
the inhomogeneous equation.

It is often useful to write the Laplacian in other than Cartesian coordinates and this is facilitated by
the following

Lemma 6.1. (Laplacian in general coordinates) Given the (twice di↵erentiable) map X : V ! U (a
“parametrisation” or a “coordinate change”), with V ⇢ Rk and U ⇢ Rn open, we consider the space
M = X(V ). Introducing coordinates t = (t1, . . . , tk) on V we write X as t 7! x(t) = (x1(t), . . . , xn(t)).
With the tangent vectors @x

@ti
(required to be linearly independent), define the k ⇥ k metric G with entries

Gij =
@x

@ti
· @x

@tj
, g := det(G) . (6.4)

The entries of its inverse G�1 are denoted by Gij. Then, the Laplacian �X relative to the parametrisation
X is given by

�X =
1

p
g

@

@ti

✓
p

g Gij
@

@tj

◆
. (6.5)

The measure for integration relative to X is given by dS =
p

g dt1 · · · dtk.
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•  Laplacian in different coordinates

- 2d Cartesian:

Proof. This formula is proved in Appendix A which contains an account of some basic di↵erential geometry,
a subject somewhat outside the main thrust of this lecture.

Exercise 6.1. Consider a curve [a, b] 3 t ! x(t) 2 Rn and use Lemma 6.1 to derive the measure dS for
integration over a curve. Do the same with a surface (t1, t2) ! x(t1, t2) 2 R3 and convince yourself that
the measure dS you obtain reproduces what you have learned about integration over surfaces.

Let us apply this formula to derive the Laplacian in several useful coordinate systems.

Two-dimensional Laplacian

In R2 with Cartesian coordinates x = (x, y)T the Laplacian is given by

�2 =
@2

@x2
+

@2

@y2
(6.6)

The two-dimensional case is somewhat special since R2 ⇠= C and we can introduce complex coordinates
z = x + iy and z̄ = x � iy. Introducing the Wirtinger derivatives

@

@z
=

1

2

✓
@

@x
� i

@

@y

◆
,

@

@z̄
=

1

2

✓
@

@x
+ i

@

@y

◆
, (6.7)

a short calculation shows that

�2 = 4
@2

@z@z̄
, (6.8)

This formula is extremely useful. We note that a holomorphic function, � = �(z), is, loosely speaking,
a function which does not depend on z̄ and, hence, satisfies @�

@z̄
= 0. Eq. (6.8) says that every holomor-

phic function � = �(z) solves the two-dimensional homogeneous Laplace equation, �2� = 0, so we can
immediately write down large classes of solutions to this equation. We will come back to this observation
later.

Another common set of coordinates in R2 are two-dimensional polar coordinates t = (r, '), where
r 2 [0, 1] and ' 2 [0, 2⇡[, related to Cartesian coordinates by

x(r, ') = r(cos ', sin ') . (6.9)

In the language of Lemma (6.1), the corresponding tangent vectors are

@x

@r
= (cos ', sin ') ,

@x

@'
= r(� sin ', cos ') , (6.10)

which gives G = diag(1, r2) and g = r2. Inserting this into the general formula (6.5) gives the two-
dimensional Laplacian in polar coordinates

�2,pol =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
. (6.11)

(The integration measure in two-dimensional polar coordinates is dS =
p

g dr d' = r dr d'.)

Three-dimensional Laplacian
In R3 with coordinates x = (x, y, z) the Laplacian in Cartesian coordinates is given by

�3 =
@2

@x2
+

@2

@y2
+

@2

@z2
. (6.12)
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- 2d complex:

Proof. This formula is proved in Appendix A which contains an account of some basic di↵erential geometry,
a subject somewhat outside the main thrust of this lecture.

Exercise 6.1. Consider a curve [a, b] 3 t ! x(t) 2 Rn and use Lemma 6.1 to derive the measure dS for
integration over a curve. Do the same with a surface (t1, t2) ! x(t1, t2) 2 R3 and convince yourself that
the measure dS you obtain reproduces what you have learned about integration over surfaces.

Let us apply this formula to derive the Laplacian in several useful coordinate systems.

Two-dimensional Laplacian

In R2 with Cartesian coordinates x = (x, y)T the Laplacian is given by

�2 =
@2

@x2
+

@2

@y2
(6.6)

The two-dimensional case is somewhat special since R2 ⇠= C and we can introduce complex coordinates
z = x + iy and z̄ = x � iy. Introducing the Wirtinger derivatives
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=
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◆
,
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=
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2

✓
@

@x
+ i
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@y

◆
, (6.7)

a short calculation shows that

�2 = 4
@2

@z@z̄
, (6.8)

This formula is extremely useful. We note that a holomorphic function, � = �(z), is, loosely speaking,
a function which does not depend on z̄ and, hence, satisfies @�

@z̄
= 0. Eq. (6.8) says that every holomor-

phic function � = �(z) solves the two-dimensional homogeneous Laplace equation, �2� = 0, so we can
immediately write down large classes of solutions to this equation. We will come back to this observation
later.

Another common set of coordinates in R2 are two-dimensional polar coordinates t = (r, '), where
r 2 [0, 1] and ' 2 [0, 2⇡[, related to Cartesian coordinates by

x(r, ') = r(cos ', sin ') . (6.9)

In the language of Lemma (6.1), the corresponding tangent vectors are

@x

@r
= (cos ', sin ') ,

@x

@'
= r(� sin ', cos ') , (6.10)

which gives G = diag(1, r2) and g = r2. Inserting this into the general formula (6.5) gives the two-
dimensional Laplacian in polar coordinates

�2,pol =
1

r
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@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
. (6.11)

(The integration measure in two-dimensional polar coordinates is dS =
p

g dr d' = r dr d'.)

Three-dimensional Laplacian
In R3 with coordinates x = (x, y, z) the Laplacian in Cartesian coordinates is given by

�3 =
@2

@x2
+

@2

@y2
+

@2

@z2
. (6.12)
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- 2d polar:

Proof. This formula is proved in Appendix A which contains an account of some basic di↵erential geometry,
a subject somewhat outside the main thrust of this lecture.

Exercise 6.1. Consider a curve [a, b] 3 t ! x(t) 2 Rn and use Lemma 6.1 to derive the measure dS for
integration over a curve. Do the same with a surface (t1, t2) ! x(t1, t2) 2 R3 and convince yourself that
the measure dS you obtain reproduces what you have learned about integration over surfaces.

Let us apply this formula to derive the Laplacian in several useful coordinate systems.

Two-dimensional Laplacian

In R2 with Cartesian coordinates x = (x, y)T the Laplacian is given by

�2 =
@2

@x2
+

@2

@y2
(6.6)

The two-dimensional case is somewhat special since R2 ⇠= C and we can introduce complex coordinates
z = x + iy and z̄ = x � iy. Introducing the Wirtinger derivatives
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=
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@x
� i
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@y

◆
,

@

@z̄
=

1
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+ i
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, (6.7)

a short calculation shows that

�2 = 4
@2

@z@z̄
, (6.8)

This formula is extremely useful. We note that a holomorphic function, � = �(z), is, loosely speaking,
a function which does not depend on z̄ and, hence, satisfies @�

@z̄
= 0. Eq. (6.8) says that every holomor-

phic function � = �(z) solves the two-dimensional homogeneous Laplace equation, �2� = 0, so we can
immediately write down large classes of solutions to this equation. We will come back to this observation
later.

Another common set of coordinates in R2 are two-dimensional polar coordinates t = (r, '), where
r 2 [0, 1] and ' 2 [0, 2⇡[, related to Cartesian coordinates by

x(r, ') = r(cos ', sin ') . (6.9)

In the language of Lemma (6.1), the corresponding tangent vectors are

@x

@r
= (cos ', sin ') ,

@x

@'
= r(� sin ', cos ') , (6.10)

which gives G = diag(1, r2) and g = r2. Inserting this into the general formula (6.5) gives the two-
dimensional Laplacian in polar coordinates

�2,pol =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
. (6.11)

(The integration measure in two-dimensional polar coordinates is dS =
p

g dr d' = r dr d'.)

Three-dimensional Laplacian
In R3 with coordinates x = (x, y, z) the Laplacian in Cartesian coordinates is given by

�3 =
@2

@x2
+

@2

@y2
+

@2

@z2
. (6.12)
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- 3d Cartesian:

Proof. This formula is proved in Appendix A which contains an account of some basic di↵erential geometry,
a subject somewhat outside the main thrust of this lecture.

Exercise 6.1. Consider a curve [a, b] 3 t ! x(t) 2 Rn and use Lemma 6.1 to derive the measure dS for
integration over a curve. Do the same with a surface (t1, t2) ! x(t1, t2) 2 R3 and convince yourself that
the measure dS you obtain reproduces what you have learned about integration over surfaces.

Let us apply this formula to derive the Laplacian in several useful coordinate systems.

Two-dimensional Laplacian

In R2 with Cartesian coordinates x = (x, y)T the Laplacian is given by

�2 =
@2

@x2
+

@2

@y2
(6.6)

The two-dimensional case is somewhat special since R2 ⇠= C and we can introduce complex coordinates
z = x + iy and z̄ = x � iy. Introducing the Wirtinger derivatives
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� i
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◆
,

@

@z̄
=
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+ i

@
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, (6.7)

a short calculation shows that

�2 = 4
@2

@z@z̄
, (6.8)

This formula is extremely useful. We note that a holomorphic function, � = �(z), is, loosely speaking,
a function which does not depend on z̄ and, hence, satisfies @�

@z̄
= 0. Eq. (6.8) says that every holomor-

phic function � = �(z) solves the two-dimensional homogeneous Laplace equation, �2� = 0, so we can
immediately write down large classes of solutions to this equation. We will come back to this observation
later.

Another common set of coordinates in R2 are two-dimensional polar coordinates t = (r, '), where
r 2 [0, 1] and ' 2 [0, 2⇡[, related to Cartesian coordinates by

x(r, ') = r(cos ', sin ') . (6.9)

In the language of Lemma (6.1), the corresponding tangent vectors are

@x

@r
= (cos ', sin ') ,

@x

@'
= r(� sin ', cos ') , (6.10)

which gives G = diag(1, r2) and g = r2. Inserting this into the general formula (6.5) gives the two-
dimensional Laplacian in polar coordinates

�2,pol =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
. (6.11)

(The integration measure in two-dimensional polar coordinates is dS =
p

g dr d' = r dr d'.)

Three-dimensional Laplacian
In R3 with coordinates x = (x, y, z) the Laplacian in Cartesian coordinates is given by

�3 =
@2

@x2
+

@2

@y2
+

@2

@z2
. (6.12)

88- 3d cylindrical:

Cylindrical coordinates t = (r, ', z), where r 2 [0, 1], ' 2 [0, 2⇡[ and z 2 R, are related to their Cartesian
counterparts by

x(r, ', z) = (r cos ', r sin ', z) . (6.13)

The tangent vectors

@x

@r
= (cos ', sin ', 0) ,

@x

@'
= (�r sin ', r cos ', 0) ,

@x

@z
= (0, 0, 1) , (6.14)

imply the metric G = diag(1, r2, 1) with determinant g = r2 and hence, by inserting into Eq. (6.5), the
three-dimensional Laplacian in cylindrical coordinates

�3 =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
+

@2

@z2
= �2,pol +

@2

@z2
. (6.15)

(For the integration measure in cylindrical coordinates we get the well-known result dS =
p

g dr d' dz =
rdr d' dz.)

We can repeat this analysis for three-dimensional spherical coordinates t = (r, ✓, '), where r 2 [0, 1],
✓ 2 [0, ⇡[ and ' 2 [0, 2⇡[, defined by

x(r, ✓, ') = r(sin ✓ cos ', sin ✓ sin ', cos ✓) . (6.16)

The tangent vectors are

@x

@r
= (sin ✓ cos ', sin ✓ sin ', cos ✓)

@x

@✓
= r(cos ✓ cos ', cos ✓ sin ', � sin ✓)

@x

@'
= r(� sin ✓ sin ', sin ✓ cos ', 0)

which leads to the metric G = diag(1, r2, r2 sin2 ✓) with determinant g = r4 sin2 ✓. Inserting into Eq. (6.5)
gives the three-dimensional Lagrangian in spherical coordinates

�3,sph =
1

r2
@

@r

✓
r2

@

@r

◆
+

1

r2


1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2 ✓

@2

@'2

�
. (6.17)

(The integration measure for three-dimensional polar coordinates is dS =
p

g dr d✓ d' = r2 sin ✓ dr d✓ d'.)

Laplacian on the sphere
We can also use Lemma 6.1 to find the Laplacian on non-trivial manifolds, such as a two-sphere S2 = {x 2
R3 | |x| = 1}. We parametrise the two-sphere by coordinates t = (✓, '), where ✓ 2 [0, ⇡[ and ' 2 [0, 2⇡[,
by writing

x(✓,') = (sin ✓ cos ', sin ✓ sin ', cos ✓) . (6.18)

The two tangent vectors are

@x

@✓
= (cos ✓ cos ', cos ✓ sin ', � sin ✓) ,

@x

@'
= (� sin ✓ sin ', sin ✓ cos ', 0) , (6.19)

with associated metric G = diag(1, sin2 ✓) and determinant g = sin2 ✓. Inserting into Eq. (6.5) gives the
Laplacian on the two-sphere

�S2 =
1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2 ✓

@2

@'2
. (6.20)
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- on sphere:

Cylindrical coordinates t = (r, ', z), where r 2 [0, 1], ' 2 [0, 2⇡[ and z 2 R, are related to their Cartesian
counterparts by

x(r, ', z) = (r cos ', r sin ', z) . (6.13)

The tangent vectors

@x

@r
= (cos ', sin ', 0) ,

@x

@'
= (�r sin ', r cos ', 0) ,

@x

@z
= (0, 0, 1) , (6.14)

imply the metric G = diag(1, r2, 1) with determinant g = r2 and hence, by inserting into Eq. (6.5), the
three-dimensional Laplacian in cylindrical coordinates

�3 =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2
@2

@'2
+

@2

@z2
= �2,pol +

@2

@z2
. (6.15)

(For the integration measure in cylindrical coordinates we get the well-known result dS =
p

g dr d' dz =
rdr d' dz.)

We can repeat this analysis for three-dimensional spherical coordinates t = (r, ✓, '), where r 2 [0, 1],
✓ 2 [0, ⇡[ and ' 2 [0, 2⇡[, defined by
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@x

@'
= r(� sin ✓ sin ', sin ✓ cos ', 0)

which leads to the metric G = diag(1, r2, r2 sin2 ✓) with determinant g = r4 sin2 ✓. Inserting into Eq. (6.5)
gives the three-dimensional Lagrangian in spherical coordinates

�3,sph =
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r2
@

@r

✓
r2

@

@r

◆
+

1

r2
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✓
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◆
+

1

sin2 ✓
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@'2

�
. (6.17)

(The integration measure for three-dimensional polar coordinates is dS =
p

g dr d✓ d' = r2 sin ✓ dr d✓ d'.)
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R3 | |x| = 1}. We parametrise the two-sphere by coordinates t = (✓, '), where ✓ 2 [0, ⇡[ and ' 2 [0, 2⇡[,
by writing

x(✓,') = (sin ✓ cos ', sin ✓ sin ', cos ✓) . (6.18)

The two tangent vectors are

@x

@✓
= (cos ✓ cos ', cos ✓ sin ', � sin ✓) ,

@x

@'
= (� sin ✓ sin ', sin ✓ cos ', 0) , (6.19)

with associated metric G = diag(1, sin2 ✓) and determinant g = sin2 ✓. Inserting into Eq. (6.5) gives the
Laplacian on the two-sphere

�S2 =
1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2 ✓

@2

@'2
. (6.20)

89

Comparison with Eq. (6.17) shows that the three-dimensional Laplacian can be expressed as

�3,sph =
1

r2
@

@r

✓
r2

@

@r

◆
+

1

r2
�S2 . (6.21)

(The integration measure on the two-sphere is dS =
p

g d✓ d' = sin ✓ d✓ d'.)

Green Identities
Our discussion below will frequently require Green’s identities which follow from Gauss’s integral theorem

Z

V
r · A dV =

Z

@V
A · n dS . (6.22)

where A is a continuously di↵erentiable vector field on the open set U ⇢ Rn and V ⇢ U is a compact set
with smooth boundary @V. Consider two twice continuously di↵erentiable functions f, g : U ! R and set
A = f rg. If we use

r · A = r · (f rg) = f�g + rf · rg , A · n = f rg · n (6.23)

Gauss’s theorem turns into the first Green formula
Z

V
(f�g + rf · rg)dV =

Z

@V
f rg · n dS . (6.24)

Exchanging f and g in this formula and subtracting the two resulting equations gives the second Green
formula or Green’s identity

Z

V
(f�g � g�f)dV =

Z

@V
(frg � grf) · n dS . (6.25)

After this preparation we are now ready to delve into the task of solving the Laplace equation.

6.1 Basic theory⇤

In this subsection we discuss a number of basic mathematical results for the Laplace equation in Rn (with
Cartesian coordinates x = (x1, . . . , xn)T ), starting with the inhomogeneous version

�� = ⇢ , � =
nX

i=1

@2

@x2
i

, (6.26)

of the equation. Define the generalised Newton (or Coulomb) potentials as

G(x � a) = Ga(x) =

(
� 1

(n�2)vn
1

|x�a|n�2 for n > 2
1
2⇡ ln |x � a| for n = 2

, (6.27)

where vn is the surface “area” of the n � 1-dimensional sphere, Sn�1 (and the constants have been
included for later convenience). In electromagnetism, Ga corresponds the the electrostatic potential of a
point charge located at a. Clearly, Ga is well-defined for all x 6= a. It is straightforward to verify by direct
calculation that

�Ga = 0 for all x 6= a . (6.28)
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rectangular boundary conditions

rectangular boundary conditions

``2d slices”, use holomorphic fcts.

circle boundaries

spherical boundaries

cylindrical boundaries

= �L2
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-> quantum mechanics



•  Green function of Laplacian ( = Coulomb potential)

Comparison with Eq. (6.17) shows that the three-dimensional Laplacian can be expressed as
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Gauss’s theorem turns into the first Green formula
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Exchanging f and g in this formula and subtracting the two resulting equations gives the second Green
formula or Green’s identity
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(frg � grf) · n dS . (6.25)

After this preparation we are now ready to delve into the task of solving the Laplace equation.

6.1 Basic theory⇤

In this subsection we discuss a number of basic mathematical results for the Laplace equation in Rn (with
Cartesian coordinates x = (x1, . . . , xn)T ), starting with the inhomogeneous version
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i=1
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of the equation. Define the generalised Newton (or Coulomb) potentials as

G(x � a) = Ga(x) =

(
� 1

(n�2)vn
1

|x�a|n�2 for n > 2
1
2⇡ ln |x � a| for n = 2

, (6.27)

where vn is the surface “area” of the n � 1-dimensional sphere, Sn�1 (and the constants have been
included for later convenience). In electromagnetism, Ga corresponds the the electrostatic potential of a
point charge located at a. Clearly, Ga is well-defined for all x 6= a. It is straightforward to verify by direct
calculation that

�Ga = 0 for all x 6= a . (6.28)
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<latexit sha1_base64="RG8XcvTxWEzvoslD1bPlcg0z7qU=">AAACK3icbVDLSgNBEJyN7/iKevQyGIR4MOyKogcFUUGPKkYD2RB6Z2eTwdmHM71qWPI/XvwVD3rwgVf/w0nMQRMLmi6qupnp8hIpNNr2u5UbGR0bn5icyk/PzM7NFxYWL3WcKsYrLJaxqnqguRQRr6BAyauJ4hB6kl9514dd/+qWKy3i6ALbCa+H0IxEIBigkRqFA/dcNFsISsV37k0KPnWPuESgx6XM9QJ631nvdeis7bl+1xnSG4WiXbZ7oMPE6ZMi6eO0UXh2/ZilIY+QSdC65tgJ1jNQKJjknbybap4Au4YmrxkaQch1Pevd2qGrRvFpECtTEdKe+nsjg1DrduiZyRCwpQe9rvifV0sx2KlnIkpS5BH7eShIJcWYdoOjvlCcoWwbAkwJ81fKWqCAoYk3b0JwBk8eJpcbZWezvHW2Wdzf7ccxSZbJCikRh2yTfXJCTkmFMPJAnsgrebMerRfrw/r8Gc1Z/Z0l8gfW1zf4MKbb</latexit>

Then, we can write down the solutions to             as  

Exercise 6.2. Show that the gradient of the Newton potentials (6.27) is given by

rGa(x) =
1

vn

x � a

|x � a|n . (6.29)

Also, verify that the Newton potentials satisfy the homogeneous Laplace equation for all x 6= a.

Lemma 6.2. For f 2 C1(U) and a 2 U we have

f(a) = lim
✏!0

Z

|x�a|=✏

(f(x)rGa(x) � Ga(x)rf(x)) · dS . (6.30)

Proof. With dS = n dS and the unit normal vector n to the sphere given by n = x�a
|x�a| we have

rGa · dS =
1

vn

1

|x � a|n�1
dS . (6.31)

This gives for the first part of the above integral

lim
✏!0

Z

|x�a|=✏

f(x)rGa(x) · dS = lim
✏!0

1

vn✏n�1

Z

|x�a|=✏

f(x)dS

y=(x�a)/✏
=

1

vn
lim
✏!0

Z

|y|=1
f(a + ✏y)dS = f(a) . (6.32)

For the second integral, using that |rf(x) · n|  K for some constant K, we have

�����

Z

|x�a|=✏

Ga(x)rf(x) · dS

�����  const

Z

|x�a|=✏

✏2�ndS = ✏

Z

|y|=1
dS

✏!0�! 0 , (6.33)

and this completes the proof.

This Lemma was the technical preparation for the following important statement.

Theorem 6.3. Let ⇢ 2 C2
c (Rn) and define the function

�(x) :=

Z

Rn
dyn G(x � y)⇢(y) (6.34)

for all x 2 Rn. Then �� = ⇢, that is, the above � satisfies the inhomogeneous Laplace equation with
source ⇢.

Proof. Introducing the coordinate z = y � x, a region V✏ = {z 2 Rn | ✏  |z|  R} with R so large that
⇢(x + z) = 0 for |z| > R (which is possible since ⇢ has compact support) and ⇢x(z) := ⇢(x + z), we have

��(x) =

Z

Rn
dzn G(z)�⇢(x + z) = lim

✏!0

Z

V✏

dzn G �⇢x = lim
✏!0

Z

V✏

dzn (G �⇢x � ⇢x�G)

= lim
✏!0

Z

@V✏

(Gr⇢x � ⇢xrG) · dS = ⇢x(0) = ⇢(x) , (6.35)

where we have used Green’s formula (6.25) and Lemma (6.2).
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The above function G is also sometimes referred to as the Green function of the Laplace operator. Of
course, the solution (6.34) is not unique but we know that two solutions to the inhomogeneous Laplace
equation di↵er by a solution to the homogeneous one. Hence, the general solution to the inhomogeneous
Laplace equation can be written as

�(x) = �H(x) +

Z

Rn
dyn G(x � y)⇢(y) where ��H = 0 . (6.36)

The homogeneous solution �H can be used to satisfy the boundary conditions on �. Note that the
requirement on ⇢ to have compact support also makes physical sense: normally charge or mass distributions
are localised in space.

Via Eq. (6.36), we have now reduced the problem of solving the inhomogeneous Laplace equation to
that of solving the homogeneous Laplace equation and this is what we discuss next. A twice di↵erential
function � which solves the homogeneous Laplace equation,

�� = 0 , (6.37)

is called a harmonic function. Harmonic functions have a number of remarkable properties which we now
derive. We begin with another technical Lemma.

Lemma 6.3. For U ⇢ Rn open, V ⇢ U compact with smooth boundary @V and � harmonic on V̊ := V\@V
we have Z

@V
(�rGa � Gar�) · dS =

⇢
�(a) for a 2 V̊
0 for a 2 Rn \ V (6.38)

Proof. For the second case, a 2 Rn \ V we have from Green’s formula

Z

@V
(�rGa � Gar�) · dS =

Z

V
(��Ga � Ga��)dV = 0 , (6.39)

since �Ga = �� = 0 for all x 2 V.
For the first case, we define V✏ = V \ B✏(a), that is, we excise a ball with radius ✏ around a. Just like

above it follows from Green’s formula that
Z

@V✏

(�rGa � Gar�) · dS = 0 . (6.40)

Since the boundary @V✏ consists of the two components @V and @B✏(a) this implies

Z

@V
(�rGa � Gar�) · dS =

Z

@B✏(a)
(�rGa � Gar�) · dS

✏!0�! �(a) , (6.41)

where Lemma (6.2) has been used in the final step. Since the integral on the LHS is independent of ✏ this
completes the proof.

We are now ready to proof the first important property of harmonic functions.

Theorem 6.4. (Mean value property of harmonic functions) Let U ⇢ Rn be open, � harmonic on U and
Br(a) ⇢ U . Then

�(a) =
1

vn

Z

|y|=1
�(a + ry)dS (6.42)
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can be chosen to satisfy

boundary conditions

check: �x�(x) = �x�H(x)| {z }
=0

+

Z

Rn

dny �xG(x� y)| {z }
=�(x�y)

⇢(y) = ⇢(x)
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And now for explicit solution methods . . .



Example: Point sources in three dimensions

⇢(x) =
X

i

qi�(x� xi)
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G(x) = � 1

4⇡|x|

<latexit sha1_base64="TjFKX0qO3DAIiwdUT73jt4zu04k=">AAACDHicbVDLSsNAFL3xWeur6tLNYBHqwpJIRRcKBRe6rGAf0IQymU7aoZMHMxOxpPkAN/6KGxeKuPUD3Pk3TtsstPXAwOGcc7lzjxtxJpVpfhsLi0vLK6u5tfz6xubWdmFntyHDWBBaJyEPRcvFknIW0LpiitNWJCj2XU6b7uBq7DfvqZAsDO7UMKKOj3sB8xjBSkudQvG6lNiuhx7So8tj2xOYJFaaVOyIjTJ9lOqUWTYnQPPEykgRMtQ6hS+7G5LYp4EiHEvZtsxIOQkWihFO07wdSxphMsA92tY0wD6VTjI5JkWHWukiLxT6BQpN1N8TCfalHPquTvpY9eWsNxb/89qx8s6dhAVRrGhApou8mCMVonEzqMsEJYoPNcFEMP1XRPpYN6J0f3ldgjV78jxpnJStSvn0tlKsXmR15GAfDqAEFpxBFW6gBnUg8AjP8ApvxpPxYrwbH9PogpHN7MEfGJ8/7pSa7w==</latexit>

�(x) =

Z

R3

d3y G(x� y)⇢(y)
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= �
X

i

qi

Z

R3

d3y
�(y � xi)

4⇡|x� y|
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= �
X

i

qi
4⇡|x� xi|
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)

<latexit sha1_base64="kxdq/6bguWOHRbWm9Gtuq6BtAWo=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0cIiYGMZxXzA5Qh7m71kyd7tsTunhJCfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphKYdB1v53Cyura+kZxs7S1vbO7V94/aBqVacYbTEml2yE1XIqEN1Cg5O1UcxqHkrfC4c3Ubz1ybYRKHnCU8iCm/UREglG0kt+5F/0BUq3VU7dccavuDGSZeDmpQI56t/zV6SmWxTxBJqkxvuemGIypRsEkn5Q6meEpZUPa576lCY25CcazkyfkxCo9EiltK0EyU39PjGlszCgObWdMcWAWvan4n+dnGF0FY5GkGfKEzRdFmSSoyPR/0hOaM5QjSyjTwt5K2IBqytCmVLIheIsvL5PmWdU7r17cnVdq13kcRTiCYzgFDy6hBrdQhwYwUPAMr/DmoPPivDsf89aCk88cwh84nz+R5ZFv</latexit>

x

<latexit sha1_base64="2wmISyXLeuRoTU2N+gVbd0GyALA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2FZoQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84hK81jemUmCfkSHkoecUWOl5lO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Uvm7VKvZbHUYQTOIVz8OAK6nALDWgBA4RneIU358F5cd6dj0VrwclnjuEPnM8f5JuM9g==</latexit>

y

<latexit sha1_base64="dvHHlBP31zGajVlgEloEMNEeuWI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsp+3azSbsboQQ+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBZcG9f9dgobm1vbO8Xd0t7+weFR+fikraNEMWyxSESqG1CNgktsGW4EdmOFNAwEdoLp3dzvPKHSPJIPJo3RD+lY8hFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHEkhClYYJq3fPc2PgZVYYzgbNSP9EYUzalY+xZKmmI2s8Wh87IhVWGZBQpW9KQhfp7IqOh1mkY2M6Qmole9ebif14vMaNbP+MyTgxKtlw0SgQxEZl/TYZcITMitYQyxe2thE2ooszYbEo2BG/15XXSvqp6tep1s1ap1/I4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kD5h+M9w==</latexit>

(x1, q1)

<latexit sha1_base64="ErvtP222dJn8C2d0kzRn7jiLwNc=">AAAB+HicbVBNS8NAEJ34WetHox69LBahgpREKnosePFYwX5AG8Jmu2mXbjZxdyPW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBQlnSjvOt7Wyura+sVnYKm7v7O6V7P2DlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD0fXUbz9QqVgs7vQ4oV6EB4KFjGBtJN8uVbJeEKLHie+e3fvuqW+XnaozA1ombk7KkKPh21+9fkzSiApNOFaq6zqJ9jIsNSOcToq9VNEEkxEe0K6hAkdUedns8Ak6MUofhbE0JTSaqb8nMhwpNY4C0xlhPVSL3lT8z+umOrzyMiaSVFNB5ovClCMdo2kKqM8kJZqPDcFEMnMrIkMsMdEmq6IJwV18eZm0zqturXpxWyvXa3kcBTiCY6iAC5dQhxtoQBMIpPAMr/BmPVkv1rv1MW9dsfKZQ/gD6/MHBZmR/Q==</latexit>

(x2, q2)

<latexit sha1_base64="68qMFe0NrpGu3Lkg8yhOw0947MU=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIFaQkpaLHghePFewHtCVstpt26WYTdzdiDf0lXjwo4tWf4s1/47bNQVsfDDzem2Fmnh9zprTjfFu5tfWNza38dmFnd2+/aB8ctlSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj69nfvuBSsUicacnMe2HeChYwAjWRvLsYjnt+QF6nHrV83uveubZJafizIFWiZuREmRoePZXbxCRJKRCE46V6rpOrPsplpoRTqeFXqJojMkYD2nXUIFDqvrp/PApOjXKAAWRNCU0mqu/J1IcKjUJfdMZYj1Sy95M/M/rJjq46qdMxImmgiwWBQlHOkKzFNCASUo0nxiCiWTmVkRGWGKiTVYFE4K7/PIqaVUrbq1ycVsr1WtZHHk4hhMogwuXUIcbaEATCCTwDK/wZj1ZL9a79bFozVnZzBH8gfX5Awinkf8=</latexit>

(x3, q3)

<latexit sha1_base64="162N9sCHdaJbA5vBWhKQ+snBV/U=">AAAB+HicbVBNS8NAEJ34WetHox69LBahgpTEVvRY8OKxgv2AtoTNdtMu3Wzi7kasob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zM82POlHacb2tldW19YzO3ld/e2d0r2PsHTRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35o+up33qgUrFI3OlxTHshHggWMIK1kTy7UEq7foAeJ17l7N6rnHp20Sk7M6Bl4makCBnqnv3V7UckCanQhGOlOq4T616KpWaE00m+mygaYzLCA9oxVOCQql46O3yCTozSR0EkTQmNZurviRSHSo1D33SGWA/VojcV//M6iQ6ueikTcaKpIPNFQcKRjtA0BdRnkhLNx4ZgIpm5FZEhlphok1XehOAuvrxMmudlt1q+uK0Wa9UsjhwcwTGUwIVLqMEN1KEBBBJ4hld4s56sF+vd+pi3rljZzCH8gfX5Awu1kgE=</latexit>

(x4, q4)

<latexit sha1_base64="NYsYaUh9RyjKLg0w5NTApt7cvn8=">AAAB+HicbVBNS8NAEJ34WetHox69LBahgpREInosePFYwX5AW8Jmu2mXbjZxdyPW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBQlnSjvOt7Wyura+sVnYKm7v7O6V7P2DpopTSWiDxDyW7QArypmgDc00p+1EUhwFnLaC0fXUbz1QqVgs7vQ4ob0IDwQLGcHaSL5dqmTdIESPE987u/e9U98uO1VnBrRM3JyUIUfdt7+6/ZikERWacKxUx3US3cuw1IxwOil2U0UTTEZ4QDuGChxR1ctmh0/QiVH6KIylKaHRTP09keFIqXEUmM4I66Fa9Kbif14n1eFVL2MiSTUVZL4oTDnSMZqmgPpMUqL52BBMJDO3IjLEEhNtsiqaENzFl5dJ87zqetWLW69c8/I4CnAEx1ABFy6hBjdQhwYQSOEZXuHNerJerHfrY966YuUzh/AH1ucPDsOSAw==</latexit>

z

<latexit sha1_base64="Y5gL0wjkufAf/hS3ZhqsJSziUko=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2FZoQ9lsJ+3azSbsboQa+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84hK81jemUmCfkSHkoecUWOl5lO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Uvm7VKvZbHUYQTOIVz8OAK6nALDWgBA4RneIU358F5cd6dj0VrwclnjuEPnM8f56OM+A==</latexit>

Example: Rod in two dimensions

G(x) =
1

2⇡
ln(|x|)

<latexit sha1_base64="jvRKwz1yt6j1MVgXmkXxILhGvV8=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0VsNyUpFd0IBRe6rGAf0IQymU7aoZNJmJmIJc0nuPFX3LhQxK1Ld/6N0zYLbT1w4XDOvdx7jxcxKpVlfRu5ldW19Y38ZmFre2d3z9w/aMkwFpg0cchC0fGQJIxy0lRUMdKJBEGBx0jbG11N/fY9EZKG/E6NI+IGaMCpTzFSWuqZp9elxPF8+JCWLx1fIJzYaVJ1Ipo6jJcmmTcp98yiVbFmgMvEzkgRZGj0zC+nH+I4IFxhhqTs2lak3AQJRTEjacGJJYkQHqEB6WrKUUCkm8weSuGJVvrQD4UuruBM/T2RoEDKceDpzgCpoVz0puJ/XjdW/oWbUB7FinA8X+THDKoQTtOBfSoIVmysCcKC6lshHiIdi9IZFnQI9uLLy6RVrdi1ytltrVivZXHkwRE4BiVgg3NQBzegAZoAg0fwDF7Bm/FkvBjvxse8NWdkM4fgD4zPH8TLnGc=</latexit>

⇢(x) =

⇢
q�(y) for � l/2  x  l/2
0 otherwise

<latexit sha1_base64="7dIbOqR9RKA3v+DBcDHLjtrMLQg=">AAACXXicbVHBbtQwEHUChXYpZQsHDlwsVqDtgW1SLWovSJW4cCxSt620Xq0cZ7Kx6tipPaEbRflJbnDhV3C2OUDbOVhv3swbj5+TUkmHUfQrCJ883Xr2fHtn8GL35d6r4f7rC2cqK2AmjDL2KuEOlNQwQ4kKrkoLvEgUXCbXX7v65Q+wThp9jnUJi4KvtMyk4Oip5RCZzc24YUlG1+3BF6YgQ+ZTWEndcGt53TZCtTcsBYV8XB98ZEVi1k1mLG0/qcMjr7ih683ZZSzqGwzmYG+lg5aBTvtRzMpVjpPlcBRNok3QhyDuwYj0cbYc/mSpEVUBGoXizs3jqMSFH4pSKGgHrHJQcnHNVzD3UPMC3KLZuNPSD55JabdwZjTSDfuvouGFc3WR+M6CY+7u1zrysdq8wuxk0UhdVgha3F2UVYqioZ3VNJUWBKraAy6s9LtSkXPLBfoPGXgT4vtPfggujibxdPL5+3R0Ou3t2CbvyHsyJjE5JqfkGzkjMyLI74AEO8Eg+BNuhbvh3l1rGPSaN+S/CN/+BXmutm8=</latexit>

� l

2

<latexit sha1_base64="w5BjEhszTBlt0F9p7GxzPVG8prc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyUpFT0WvHisYD+gCWWz3bRLN7thdyOUkL/hxYMiXv0z3vw3btsctPXBwOO9GWbmhQln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8SaciZoxzDDaT9RFMchp71wejf3e09UaSbFo5klNIjxWLCIEWys5F/5kcIk43nWyIfVmlt3F0DrxCtIDQq0h9UvfyRJGlNhCMdaDzw3MUGGlWGE07zip5ommEzxmA4sFTimOsgWN+fowiojFEllSxi0UH9PZDjWehaHtjPGZqJXvbn4nzdITXQbZEwkqaGCLBdFKUdGonkAaMQUJYbPLMFEMXsrIhNsUzA2pooNwVt9eZ10G3WvWb9+aNZazSKOMpzBOVyCBzfQgntoQwcIJPAMr/DmpM6L8+58LFtLTjFzCn/gfP4A/RWRnw==</latexit>

l

2

<latexit sha1_base64="dd3PrLgz0c64MHYFM258zwdB4yM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloseCF48VbCu0oWy2m3bpZjfsToQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcoOd9O6WNza3tnfJuZW//4PCoenzSNSrVlHWoEko/hsQwwSXrIEfBHhPNSBwK1gunt3O/98S04Uo+4CxhQUzGkkecErRSfxBpQjORZ418WK15dW8Bd534BalBgfaw+jUYKZrGTCIVxJi+7yUYZEQjp4LllUFqWELolIxZ31JJYmaCbHFy7l5YZeRGStuS6C7U3xMZiY2ZxaHtjAlOzKo3F//z+ilGN0HGZZIik3S5KEqFi8qd/++OuGYUxcwSQjW3t7p0QmwKaFOq2BD81ZfXSbdR95v1q/tmrdUs4ijDGZzDJfhwDS24gzZ0gIKCZ3iFNwedF+fd+Vi2lpxi5hT+wPn8AZH6kWg=</latexit>

x

<latexit sha1_base64="2wmISyXLeuRoTU2N+gVbd0GyALA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2FZoQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84hK81jemUmCfkSHkoecUWOl5lO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Uvm7VKvZbHUYQTOIVz8OAK6nALDWgBA4RneIU358F5cd6dj0VrwclnjuEPnM8f5JuM9g==</latexit>

y

<latexit sha1_base64="dvHHlBP31zGajVlgEloEMNEeuWI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsp+3azSbsboQQ+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBZcG9f9dgobm1vbO8Xd0t7+weFR+fikraNEMWyxSESqG1CNgktsGW4EdmOFNAwEdoLp3dzvPKHSPJIPJo3RD+lY8hFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHEkhClYYJq3fPc2PgZVYYzgbNSP9EYUzalY+xZKmmI2s8Wh87IhVWGZBQpW9KQhfp7IqOh1mkY2M6Qmole9ebif14vMaNbP+MyTgxKtlw0SgQxEZl/TYZcITMitYQyxe2thE2ooszYbEo2BG/15XXSvqp6tep1s1ap1/I4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kD5h+M9w==</latexit>

x = (x, y) , y = (x0, y0)

<latexit sha1_base64="fhgHINk6GoWpbHBcMAVaM58lDkI=">AAACDnicbZDLSsNAFIYnXmu9RV26GSylLZSSSEVBhIIblxXsBZpSJtNJO3QyiTMTaQh9Aje+ihsXirh17c63cdpmoa0/DPx85xzOnN8NGZXKsr6NldW19Y3NzFZ2e2d3b988OGzKIBKYNHDAAtF2kSSMctJQVDHSDgVBvstIyx1dT+utByIkDfidikPS9dGAU49ipDTqmfnEcT04nlwVx+W45FyWnfsI9eGMxlNaKMeFUs/MWR VrJrhs7NTkQKp6z/xy+gGOfMIVZkjKjm2FqpsgoShmZJJ1IklChEdoQDracuQT2U1m50xgXpM+9AKhH1dwRn9PJMiXMvZd3ekjNZSLtSn8r9aJlHfRTSgPI0U4ni/yIgZVAKfZwD4VBCsWa4OwoPqvEA+RQFjpBLM6BHvx5GXTPK3Y1crZbTVXq6ZxZMAxOAFFYINzUAM3oA4aAINH8AxewZvxZLwY78bHvHXFSGeOwB8Znz/jaZoO</latexit>

)

<latexit sha1_base64="pjZnK5vpihd08Kz84Q92ubtm+iU=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF49V7Ae0oWy2m3bpJht2J0oJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVqxptMSaU7ATVcipg3UaDknURzGgWSt4PxzcxvP3JthIofcJJwP6LDWISCUbRSt3cvhiOkWqunfrniVt05yCrxclKBHI1++as3UCyNeIxMUmO6npugn1GNgkk+LfVSwxPKxnTIu5bGNOLGz+YnT8mZVQYkVNpWjGSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzEScp8pgtFoWpJKjI7H8yEJozlBNLKNPC3krYiGrK0KZUsiF4yy+vktZF1atVL+9qlXotj6MIJ3AK5+DBFdThFhrQBAYKnuEV3hx0Xpx352PRWnDymWP4A+fzB499kWc=</latexit>

�(x) =

Z

R2

d2y G(x� y)⇢(y)

<latexit sha1_base64="Z/42sGNbtUgdmODuOQyHVzgcZWo="></latexit>

=
q

4⇡

Z l/2

�l/2
dx0

Z

R
dy0 �(y0) ln((x� x0)2 + (y � y0)2)

<latexit sha1_base64="ilN44Y3gzAWxGbVVJ2k0If68C78=">AAACQHicbZDPT9swFMcd2IB1G3TsyCVaNTXV1pJUneAyCYnLjmVaKVJdKsdxioXjBPsFNbLyp3HhT+DGmcsOm6Zdd8Jpe+DHnmTro+/3PdnvG2aCa/D9W2dl9cXLtfWNV7XXb95ubtXfbR/rNFeUDWgqUnUSEs0El2wAHAQ7yRQjSSjYMDw/rPzhJVOap/IHFBkbJ2QqecwpAStN6sOvOFaEmovS9HDGS8wlTExb7HbLU1Pd0aw513BC4CwMzfcyKpr4M46YAOIVzRYW0vNm7Vmzddr95BXtooLWpN7wO/683OcQLKGBltWf1G9wlNI8YRKoIFqPAj+DsSEKOBWsrOFcs4zQczJlI4uSJEyPzTyA0v1olciNU2WPBHeuPpwwJNG6SELbWa2hn3qV+D9vlEO8PzZcZjkwSRcPxblwIXWrNN2IK0ZBFBYIVdz+1aVnxAYKNvOaDSF4uvJzOO52gl7ny1GvcdBbxrGBdtAH5KEA7aED9A310QBRdIXu0C/027l2fjp/nL+L1hVnOfMePSrn3z0/+q4j</latexit>

=
q

4⇡

Z l/2

�l/2
dx0 ln(y2 + (x� x0)2)

<latexit sha1_base64="nKFmWtpzAcFcPT4XsPiIsTegYg8="></latexit>

= a bit horrible . . .

<latexit sha1_base64="yZkLSw3MELsQCGq6zMAtT92VN6U=">AAACBnicbVBLSwMxGMz6rPW16lGEYBE8LbtS0YtQ8OKxgn1Au5Rsmm1D81iSrFiWnrz4V7x4UMSrv8Gb/8ZsuwdtnRAYZr4h+SZKGNXG97+dpeWV1bX10kZ5c2t7Z9fd229qmSpMGlgyqdoR0oRRQRqGGkbaiSKIR4y0otF17rfuidJUijszTkjI0UDQmGJkrNRzj666PJIPGUQwogYOpVLUZqGXn0nPrfiePwVcJEFBKqBAved+dfsSp5wIgxnSuhP4iQkzpAzFjEzK3VSTBOERGpCOpQJxosNsusYEnlilD2Op7BUGTtXfiQxxrcc8spMcmaGe93LxP6+TmvgyzKhIUkMEnj0UpwwaCfNOYJ8qgg0bW4KwovavEA+RQtjY5sq2hGB+5UXSPPOCqnd+W63UqkUdJXAIjsEpCMAFqIEbUAcNgMEjeAav4M15cl6cd+djNrrkFJkD8AfO5w+1+JdP</latexit>



•  Quick and dirty - separation of variables

e.g. 2d Cartesian coordinates:

Complex methods
We have already pointed out that every holomorphic function w = w(z) solves the two-dimensional Laplace
equation. Of course, normally we are interested in real-valued solutions but, since the Laplacian is a real
operator, both the real and imaginary part of w(z) are also harmonic. To make this explicit, we write

w = u + iv . (6.54)

If w is holomorphic then @w

@z̄
= 0 and using the derivatives (6.7) together with the decomposition (6.54)

this translates into the Cauchy-Riemann equations

@u

@x
=

@v

@y
,

@u

@y
= �@v

@x
. (6.55)

These equations immediately imply that

ru · rv = 0 , (6.56)

which means that the curves u = const and v = const are perpendicular to one another. Furthermore, we
have

�w = 0 ) �u = �v = 0 . (6.57)

Our strategy for solving the two-dimensional Laplace equation is based on these simple equations and is
probably best explained by an example.

Suppose we want to solve Laplace’s equation in the positive quadrant {(x, y) | x � 0, y � 0} and we
impose Dirichlet boundary conditions �(0, y) = �(x, 0) = 0 along the positive x and y axis. (See Fig. 14.)
It is clear that the holomorphic function w = z2 has a vanishing imaginary part along the real and
imaginary axis (just insert z = x and z = iy to check this) and, hence, the choice � = v = Im(z2) = 2xy
leads to a harmonic function with the desired boundary property. On the other hand, if we had imposed
Neumann boundary conditions @�

@x
(0, y) = @�

@y
(x, 0) = 0 along the positive x and y axis, the real part of

w (having perpendicular equipotential lines) leads to a viable solution � = u = Re(z2) = x2 � y2. (Of
course any even power of z would also do the job so the solution is not unique. This is because we haven’t
specified boundary conditions at infinity.) The equipotential lines for both solutions are shown in Fig. 15.

For another example, consider solving Laplace’s equation on U = {z 2 C | |z| > 1} with Dirichlet
boundary condition �||z|=1 = 0. (See Fig. 14.) It is clear that the function w = z + z�1 is real for |z| = 1
(and it is holomorphic on U) so with z = rei' we have a solution � = v = Im(z + z�1) = (r � r�1) sin '.
(Again, this is not unique since we have to specify another boundary condition, for example at infinity.)
The equipotential lines for this solution are shown in Fig. 15. The solution for |z|  0 is of course � = 0,
the unique solution consistent with the boundary conditions at |z| = 1.

Separation of variables
Separation of variables is a general technique for solving di↵erential equations which is based on factoring
the problem into one-dimensional di↵erential equations. It is useful to demonstrate the technique for the
simple example of the two-dimensional homogeneous Laplace equation

�� = 0 , � =
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in Cartesian coordinates. We start by considering solutions of the separated form

�(x, y) = X(x)Y (y) , (6.59)
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(Again, this is not unique since we have to specify another boundary condition, for example at infinity.)
The equipotential lines for this solution are shown in Fig. 15. The solution for |z|  0 is of course � = 0,
the unique solution consistent with the boundary conditions at |z| = 1.

Separation of variables
Separation of variables is a general technique for solving di↵erential equations which is based on factoring
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where X = X(x) and Y = Y (y) are functions of their indicated arguments only. Inserting this Ansatz
into Eq. (6.58) gives

X 00

X
(x)

| {z }
=�↵2

+
Y 00

Y
(y)

| {z }
=↵2

= 0 . (6.60)

The argument goes that the two terms, being functions of di↵erent variables, can only add up to zero
if they are equal to constants ↵2 and �↵2 individually, as indicated above. Solving the resulting two
ordinary di↵erential equations

X 00 = �↵2X , Y 00 = ↵2Y , (6.61)

results in the solutions

X(x) = a↵ cos(↵x) + b↵ sin(↵x) , Y (y) = c↵e↵y + d↵e�↵y , (6.62)

where a↵, b↵, c↵ and d↵ are arbitrary constants. This by itself gives a rather special solution to the
equation but it does so for every choice of the constant ↵. Since the equation we are solving is linear we
can, hence, construct more general solutions by linearly combining solutions of the above type for di↵erent
values of ↵. This leads to

�(x, y) =
X

↵

(a↵ cos(↵x) + b↵ sin(↵x))(c↵e↵y + d↵e�↵y) , (6.63)
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The argument goes that the two terms, being functions of di↵erent variables, can only add up to zero
if they are equal to constants ↵2 and �↵2 individually, as indicated above. Solving the resulting two
ordinary di↵erential equations
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results in the solutions
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where a↵, b↵, c↵ and d↵ are arbitrary constants. This by itself gives a rather special solution to the
equation but it does so for every choice of the constant ↵. Since the equation we are solving is linear we
can, hence, construct more general solutions by linearly combining solutions of the above type for di↵erent
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The argument goes that the two terms, being functions of di↵erent variables, can only add up to zero
if they are equal to constants ↵2 and �↵2 individually, as indicated above. Solving the resulting two
ordinary di↵erential equations

X 00 = �↵2X , Y 00 = ↵2Y , (6.61)

results in the solutions

X(x) = a↵ cos(↵x) + b↵ sin(↵x) , Y (y) = c↵e↵y + d↵e�↵y , (6.62)

where a↵, b↵, c↵ and d↵ are arbitrary constants. This by itself gives a rather special solution to the
equation but it does so for every choice of the constant ↵. Since the equation we are solving is linear we
can, hence, construct more general solutions by linearly combining solutions of the above type for di↵erent
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Example: Potential on an infinite strip
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Figure 14: Examples of boundary conditions for two-dimensional Laplace equations.
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Figure 15: Equipotential lines for �(x, y) = xy (left) and �(x, y) = x2�y2 (middle) and �(x, y) = Im(z+z�1).

where X = X(x) and Y = Y (y) are functions of their indicated arguments only. Inserting this Ansatz
into Eq. (6.58) gives

X 00

X
(x)

| {z }
=�↵2

+
Y 00

Y
(y)

| {z }
=↵2

= 0 . (6.60)

The argument goes that the two terms, being functions of di↵erent variables, can only add up to zero
if they are equal to constants ↵2 and �↵2 individually, as indicated above. Solving the resulting two
ordinary di↵erential equations

X 00 = �↵2X , Y 00 = ↵2Y , (6.61)

results in the solutions

X(x) = a↵ cos(↵x) + b↵ sin(↵x) , Y (y) = c↵e↵y + d↵e�↵y , (6.62)

where a↵, b↵, c↵ and d↵ are arbitrary constants. This by itself gives a rather special solution to the
equation but it does so for every choice of the constant ↵. Since the equation we are solving is linear we
can, hence, construct more general solutions by linearly combining solutions of the above type for di↵erent
values of ↵. This leads to

�(x, y) =
X

↵

(a↵ cos(↵x) + b↵ sin(↵x))(c↵e↵y + d↵e�↵y) , (6.63)
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•  More systematic - expanding in an orthonormal function system

e.g. 2d polar coordinates: 

where the sum ranges over some suitable set of ↵ values. Of course this is a large class of solutions which
can be narrowed down, or be made unique by imposing boundary conditions. Whether this works out in
practice depends on the type of boundary conditions and if they are “compatible” with the chosen set of
coordinates and resulting solution. Here, we are working with Cartesian coordinates and this goes well
together with boundary conditions imposed along lines with x = const and y = const. More generally,
building in boundary conditions tends to be easiest if coordinates are chosen such that the boundaries are
defined by one of the coordinates being constants. For example, polar or spherical coordinates go well
with imposing boundary conditions on circles or spheres, as we will see below.

To see how this works in practice, consider solving the problem on the rectangle V = [0, a] ⇥ [0, b]
with � vanishing on all sides of the rectangle except at y = b where we impose the boundary condition
�(x, b) = h(x) for some given function h. First consider the boundary conditions �(0, y) = �(a, y) = 0
which we can satisfy by setting a↵ = 0 and ↵ = ⇡k

a
. Further, satisfying �(x, 0) = 0 can be achieved by

setting d↵ = �c↵ = 1/2. Putting this together we end up with
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, (6.64)

which, for any fixed y, is a sine Fourier series on the interval [0, a]. This already indicates how we built
in the final boundary condition �(x, b) = h(x). Setting y = b in the above formula, we can determine the
coe�cients simply by standard (sine) Fourier series techniques and obtain
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For any given boundary potential h these coe�cients can be calculated and inserting these back into
Eq. (6.64) gives the complete solution.

Polar coordinates
From Eq. (6.11) the two-dimensional Laplacian in polar coordinates reads
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where r 2 [0, 1) and ' 2 [0, 2⇡). Just as in the Cartesian case, we can try to solve the two-dimensional
Laplace equation in polar coordinates by separation of variables as in the following

Exercise 6.6. Solve the two-dimensional homogeneous Laplace equation in polar coordinates by separation
of variables.

However, there is a more systematic way forward. For any fixed radius r > 0, a functions �(r, ') can be
thought of as a function on the circle S1 and can, hence, be expanded in a Fourier series. In other words,
we can write

�(r, ') =
A0(r)

2
+

1X

k=1

(Ak(r) cos(k') + Bk(r) sin(k')) , (6.67)

where the Fourier coe�cients Ak(r) and Bk(r) can of course change with the radius. Note, there is no
assumption involved yet. Eq. (6.67) still represents a general function. Inserting (6.67) into the Laplace
equation �� = 0 gives
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where the sum ranges over some suitable set of ↵ values. Of course this is a large class of solutions which
can be narrowed down, or be made unique by imposing boundary conditions. Whether this works out in
practice depends on the type of boundary conditions and if they are “compatible” with the chosen set of
coordinates and resulting solution. Here, we are working with Cartesian coordinates and this goes well
together with boundary conditions imposed along lines with x = const and y = const. More generally,
building in boundary conditions tends to be easiest if coordinates are chosen such that the boundaries are
defined by one of the coordinates being constants. For example, polar or spherical coordinates go well
with imposing boundary conditions on circles or spheres, as we will see below.

To see how this works in practice, consider solving the problem on the rectangle V = [0, a] ⇥ [0, b]
with � vanishing on all sides of the rectangle except at y = b where we impose the boundary condition
�(x, b) = h(x) for some given function h. First consider the boundary conditions �(0, y) = �(a, y) = 0
which we can satisfy by setting a↵ = 0 and ↵ = ⇡k
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which, for any fixed y, is a sine Fourier series on the interval [0, a]. This already indicates how we built
in the final boundary condition �(x, b) = h(x). Setting y = b in the above formula, we can determine the
coe�cients simply by standard (sine) Fourier series techniques and obtain
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For any given boundary potential h these coe�cients can be calculated and inserting these back into
Eq. (6.64) gives the complete solution.

Polar coordinates
From Eq. (6.11) the two-dimensional Laplacian in polar coordinates reads
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where r 2 [0, 1) and ' 2 [0, 2⇡). Just as in the Cartesian case, we can try to solve the two-dimensional
Laplace equation in polar coordinates by separation of variables as in the following

Exercise 6.6. Solve the two-dimensional homogeneous Laplace equation in polar coordinates by separation
of variables.

However, there is a more systematic way forward. For any fixed radius r > 0, a functions �(r, ') can be
thought of as a function on the circle S1 and can, hence, be expanded in a Fourier series. In other words,
we can write
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where the Fourier coe�cients Ak(r) and Bk(r) can of course change with the radius. Note, there is no
assumption involved yet. Eq. (6.67) still represents a general function. Inserting (6.67) into the Laplace
equation �� = 0 gives
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where the sum ranges over some suitable set of ↵ values. Of course this is a large class of solutions which
can be narrowed down, or be made unique by imposing boundary conditions. Whether this works out in
practice depends on the type of boundary conditions and if they are “compatible” with the chosen set of
coordinates and resulting solution. Here, we are working with Cartesian coordinates and this goes well
together with boundary conditions imposed along lines with x = const and y = const. More generally,
building in boundary conditions tends to be easiest if coordinates are chosen such that the boundaries are
defined by one of the coordinates being constants. For example, polar or spherical coordinates go well
with imposing boundary conditions on circles or spheres, as we will see below.

To see how this works in practice, consider solving the problem on the rectangle V = [0, a] ⇥ [0, b]
with � vanishing on all sides of the rectangle except at y = b where we impose the boundary condition
�(x, b) = h(x) for some given function h. First consider the boundary conditions �(0, y) = �(a, y) = 0
which we can satisfy by setting a↵ = 0 and ↵ = ⇡k
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. Further, satisfying �(x, 0) = 0 can be achieved by

setting d↵ = �c↵ = 1/2. Putting this together we end up with
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which, for any fixed y, is a sine Fourier series on the interval [0, a]. This already indicates how we built
in the final boundary condition �(x, b) = h(x). Setting y = b in the above formula, we can determine the
coe�cients simply by standard (sine) Fourier series techniques and obtain
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For any given boundary potential h these coe�cients can be calculated and inserting these back into
Eq. (6.64) gives the complete solution.

Polar coordinates
From Eq. (6.11) the two-dimensional Laplacian in polar coordinates reads
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where r 2 [0, 1) and ' 2 [0, 2⇡). Just as in the Cartesian case, we can try to solve the two-dimensional
Laplace equation in polar coordinates by separation of variables as in the following

Exercise 6.6. Solve the two-dimensional homogeneous Laplace equation in polar coordinates by separation
of variables.

However, there is a more systematic way forward. For any fixed radius r > 0, a functions �(r, ') can be
thought of as a function on the circle S1 and can, hence, be expanded in a Fourier series. In other words,
we can write

�(r, ') =
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(Ak(r) cos(k') + Bk(r) sin(k')) , (6.67)

where the Fourier coe�cients Ak(r) and Bk(r) can of course change with the radius. Note, there is no
assumption involved yet. Eq. (6.67) still represents a general function. Inserting (6.67) into the Laplace
equation �� = 0 gives
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where the sum ranges over some suitable set of ↵ values. Of course this is a large class of solutions which
can be narrowed down, or be made unique by imposing boundary conditions. Whether this works out in
practice depends on the type of boundary conditions and if they are “compatible” with the chosen set of
coordinates and resulting solution. Here, we are working with Cartesian coordinates and this goes well
together with boundary conditions imposed along lines with x = const and y = const. More generally,
building in boundary conditions tends to be easiest if coordinates are chosen such that the boundaries are
defined by one of the coordinates being constants. For example, polar or spherical coordinates go well
with imposing boundary conditions on circles or spheres, as we will see below.

To see how this works in practice, consider solving the problem on the rectangle V = [0, a] ⇥ [0, b]
with � vanishing on all sides of the rectangle except at y = b where we impose the boundary condition
�(x, b) = h(x) for some given function h. First consider the boundary conditions �(0, y) = �(a, y) = 0
which we can satisfy by setting a↵ = 0 and ↵ = ⇡k
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. Further, satisfying �(x, 0) = 0 can be achieved by
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which, for any fixed y, is a sine Fourier series on the interval [0, a]. This already indicates how we built
in the final boundary condition �(x, b) = h(x). Setting y = b in the above formula, we can determine the
coe�cients simply by standard (sine) Fourier series techniques and obtain
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For any given boundary potential h these coe�cients can be calculated and inserting these back into
Eq. (6.64) gives the complete solution.
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From Eq. (6.11) the two-dimensional Laplacian in polar coordinates reads
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where r 2 [0, 1) and ' 2 [0, 2⇡). Just as in the Cartesian case, we can try to solve the two-dimensional
Laplace equation in polar coordinates by separation of variables as in the following

Exercise 6.6. Solve the two-dimensional homogeneous Laplace equation in polar coordinates by separation
of variables.

However, there is a more systematic way forward. For any fixed radius r > 0, a functions �(r, ') can be
thought of as a function on the circle S1 and can, hence, be expanded in a Fourier series. In other words,
we can write
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where the Fourier coe�cients Ak(r) and Bk(r) can of course change with the radius. Note, there is no
assumption involved yet. Eq. (6.67) still represents a general function. Inserting (6.67) into the Laplace
equation �� = 0 gives
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This is a Fourier series which must be identical to zero so all the Fourier coe�cients must vanish. This
leads to a set of ordinary di↵erential equations
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k
)0 = k2Bk , (6.69)

for Ak and Bk. They are easy to solve and lead to

A0(r) = a0 + ã0 ln r , Ak(r) = akr
k + ãkr

�k , Bk(r) = bkr
k + b̃kr

�k . (6.70)

Inserting these results back into Eq. (6.67) gives for the general solution of the two-dimensional homoge-
neous Laplace equation in polar coordinates
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The coe�cients ak, bk, ãk and b̃k are arbitrary at this stage and have to be fixed by boundary conditions.
For example, consider solving the problem on the unit disk {(r, ') | r  1} with the boundary condition

�(1, ') = h('), where h is a given function on S1. Since the origin is in this region we do not want any
negative powers of r for a non-singular solution, so ãk = b̃k = 0. Then, the boundary condition at r = 1
reads

�(1, ') =
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2

+
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k=1

(ak cos(k') + bk sin(k'))
!
= h(') , (6.72)

This is simply the Fourier series for the function h and we can find the Fourier coe�cients ak and bk by
the usual formulae (3.22).

Now consider solving the problem for the same boundary condition �(1, ') = h(') but for the “ex-
terior” region {(r, ') | r � 1} imposing, in addition, that � remains finite as r ! 1. The last condition
demands that ã0 = 0 and ak = bk = 0 for k = 1, 2, . . . so we have
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(ãk cos(k') + b̃k sin(k'))
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= h(') . (6.73)

As before, this is a Fourier series for h and we can determine the Fourier coe�cients by the standard
formulae (3.22). So the full solution for � is
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k cos(k') + bkrk sin(k')) for r  1
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, (6.74)

where ak and bk are the Fourier coe�cients of the function h. Note that the two parts of this solution fit
together at r = 1 as they must.

6.3 Laplace equation on the two-sphere

The Laplacian and the Laplace equation on the two-sphere are of significance for a number of reasons.
First of all, we have seen in Eq. (6.21) that the three-dimensional Laplacian in spherical coordinates can
be expressed in terms of the Laplacian on S2 plus a radial piece. Also, as we will discover later, the
Laplacian on the two-sphere is closely connected to the mathematics of the group of rotations. More
practically, two-spheres are all around us - quite literally so in the case of the celestial two-sphere.

Functions on S2

We recall that the two-sphere is usually parametrised by two angles (✓,') 2 [0, ⇡]⇥[0, 2⇡[, as in Eq. (6.18).
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This is a Fourier series which must be identical to zero so all the Fourier coe�cients must vanish. This
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Inserting these results back into Eq. (6.67) gives for the general solution of the two-dimensional homoge-
neous Laplace equation in polar coordinates
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�k) cos(k') +
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(bkr
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�k) sin(k') . (6.71)

The coe�cients ak, bk, ãk and b̃k are arbitrary at this stage and have to be fixed by boundary conditions.
For example, consider solving the problem on the unit disk {(r, ') | r  1} with the boundary condition

�(1, ') = h('), where h is a given function on S1. Since the origin is in this region we do not want any
negative powers of r for a non-singular solution, so ãk = b̃k = 0. Then, the boundary condition at r = 1
reads

�(1, ') =
a0
2

+
1X

k=1

(ak cos(k') + bk sin(k'))
!
= h(') , (6.72)

This is simply the Fourier series for the function h and we can find the Fourier coe�cients ak and bk by
the usual formulae (3.22).

Now consider solving the problem for the same boundary condition �(1, ') = h(') but for the “ex-
terior” region {(r, ') | r � 1} imposing, in addition, that � remains finite as r ! 1. The last condition
demands that ã0 = 0 and ak = bk = 0 for k = 1, 2, . . . so we have

�(1, ') =
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+
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k=1

(ãk cos(k') + b̃k sin(k'))
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= h(') . (6.73)

As before, this is a Fourier series for h and we can determine the Fourier coe�cients by the standard
formulae (3.22). So the full solution for � is

�(r, ') =

⇢
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2 +
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k cos(k') + bkrk sin(k')) for r  1
a0
2 +
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k=1(akr

�k cos(k') + bkr�k sin(k')) for r � 1
, (6.74)

where ak and bk are the Fourier coe�cients of the function h. Note that the two parts of this solution fit
together at r = 1 as they must.

6.3 Laplace equation on the two-sphere

The Laplacian and the Laplace equation on the two-sphere are of significance for a number of reasons.
First of all, we have seen in Eq. (6.21) that the three-dimensional Laplacian in spherical coordinates can
be expressed in terms of the Laplacian on S2 plus a radial piece. Also, as we will discover later, the
Laplacian on the two-sphere is closely connected to the mathematics of the group of rotations. More
practically, two-spheres are all around us - quite literally so in the case of the celestial two-sphere.

Functions on S2

We recall that the two-sphere is usually parametrised by two angles (✓,') 2 [0, ⇡]⇥[0, 2⇡[, as in Eq. (6.18).
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•  Laplacian on the two-sphere

eigenvalue problem: 

Alternatively and often more conveniently, we can use the coordinates (x, ') 2 [�1, 1] ⇥ [0, 2⇡[ where
x = cos ✓. Sometimes it is also useful to parametrise the two-sphere by unit vectors n 2 R3. In terms of
the coordinates (x, ') the Laplacian (6.20) takes the form

�S2 = (1 � x2)
@2

@x2
� 2x

@

@x
+

1

1 � x2

@2

@'2
. (6.75)

We should add a word of caution about functions f : S2 ! F on the two-sphere. In practice, we describe
these as functions f = f(x, ') of the coordinates but not all of these are well-defined on S2. First of all,
a continuous f needs to be periodic in ', so f(✓, 0) = f(✓, 2⇡). There is another, more basic condition
which arises because the parametrisation (6.18) breaks down at (x, ') = (±1, ') which correspond to the
same two points (the north and the south pole) for all values of '. Hence, a function f = f(x, ') is only
well-defined on S2 if f(±1, ') is independent of '. So, for example, f(x, ') = x sin ' is not well-defined
on S2 while f(x, ') = (1 � x2) sin ' is. This discussion can be summarised by saying that we can expand
a function f on the two-sphere in a Fourier series

f(x, ') =
X

m2Z
ym(x)eim' , (6.76)

with ym(±1) = 0 for all m 6= 0.
Another useful observation is that as an operator on the inner product space C1(S2) with scalar

product

hf, giS2 =

Z

S2
f(x)⇤g(x) dS , dS = sin ✓d✓ d' = dx d' , (6.77)

the Laplacian �S2 is self-adjoint. This is most elegantly seen by using the general formulae from
Lemma 6.1.

hf, �giS2 =

Z

X

f⇤�g dS =

Z

V

f(t)⇤
1

p
g

@

@ti

✓
p

gGij
@g

@tj
(t)

◆
p

gdkt =

Z

X

(�f)⇤g dS = h�f, giS2 . (6.78)

Hence, we know that the eigenvalues of �S2 are real and eigenvectors for di↵erent eigenvalue are orthogonal
relative to the above inner product.

Eigenvalue problem for the Laplacian on S2

Solving the eigenvalue problem
�S2 f = �f , (6.79)

is immensely useful and our main task. Inserting the expansion (6.76) into the eigenvalue equation (6.79)
and using the form (6.75) of the Laplacian it is easy to see that the functions ym have to satisfy the
di↵erential equation

(1 � x2)y00m � 2xy0m +

✓
�� � m2

1 � x2

◆
ym = 0 . (6.80)

Comparison with Eq. (4.43) shows that this is precisely of the same form as the di↵erential equation
solved by the associated Legendre polynomials Pm

l
with eigenvalue � = �l(l + 1), where l = 0, 1, . . . and

m = �l, . . . , l. Of course Eq. (6.80) has another solution for � = �l(l + 1) and solutions for other values
of �. However, it can be checked, for example using the power series method explained earlier, that the
Pm

l
are the only solutions which are suitable to define functions on S2. Conversely, Eq. (4.41) shows that

Pm

l
(±1) = 0 for all m 6= 0 so they do have the required behaviour for functions on S2. The conclusion is

that the eigenfunctions and eigenvalues of the Laplacian on the two-sphere are

Pm

l
(x)eim' , � = �l(l + 1) , l = 0, 1, . . . , m = �l, . . . , l . (6.81)
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eigenfcts. are spherical harmonics: 
It is customary to include a suitable normalisation factor and define the spherical harmonics

Y m

l
(✓,') =

s
2l + 1

4⇡

(l � m)!

(l + m)!
Pm

l
(cos ✓)eim' , l = 0, 1, . . . , m = �l, . . . , l . (6.82)

We also note the relation

Y 0
l
(✓,') =

r
2l + 1

4⇡
Pl(cos ✓) , (6.83)

between the Legendre polynomials and the spherical harmonics with m = 0.

Exercise 6.7. Show that Y m

l
= (�1)m(Y �m

l
)⇤. Also show that the first few spherical harmonics are given

by

Y 0
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1p
4⇡

, Y ±1
1 = ⌥

r
3

8⇡
sin ✓e±i' , Y 0

1 =

r
3
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cos ✓ . (6.84)

From what we have seen, the Y m

l
are eigenfunctions

�S2 Y m

l
= �l(l + 1)Y m

l
(6.85)

of �S2 and all Y m

l
for m = �l, . . . , l have the same eigenvalue � = �l(l +1) which, hence, has degeneracy

2l+1. We already know that Y m

l
and Y m

l0 must be orthogonal for l 6= l0 but, in fact, due to the orthogonality
of the eim' functions the Y m

l
form an orthogonal system. A detailed calculation, based on Eq. (4.44),

shows that
hY m

l
, Y m

0
l0 iS2 = �ll0�

mm
0
, (6.86)

so they form an ortho-normal system on L2(S2). In fact, we have

Theorem 6.8. The spherical harmonics Y m
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form an orthogonal basis on L2(S2).

Proof. The proof can, for example, be found in Ref. [7].
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f =
1X

l=0

lX

m=�l

almY m

l
, alm = hY m

l
, fiS2 =

Z

S2
(Y m

l
)⇤f dS . (6.87)

If f happens to be independent of the angle ' then we only need the m = 0 terms in the above expansion
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Multipole expansion
A two-sphere can be parametrised by the set of all three-dimensional unit vector n. Consider two such
unit vectors n and n0 and the functions Pl(n · n0), where Pl are the Legendre polynomials. For fixed n0

(say) these functions should have an expansion of the type (6.87) and the precise form of this expansion
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•  Laplacian in 3d spherical coordinates

satisfies �� = �4⇡⇢ outside the sphere. We should try to fix q̃ and ã so that �||r|=b = 0 and a short
calculation shows this is satisfied if

q̃ = � b

a
q , ã =

b2

a
. (6.99)

Cartesian coordinates
We would like to solve the three-dimensional homogeneous Laplace equation

�� = 0 , � =
@2

@x2
+

@2

@y2
+

@2

@z2
. (6.100)

One way to proceed is by a separation Ansatz just as we did in the two-dimensional case with Cartesian
coordinates but here we would like to follow a related by slightly di↵erent logic based on a Fourier series
expansion.

Exercise 6.10. Solve the three-dimensional Laplace equation in Cartesian coordinates by separation of
variables.

Suppose we are interested in a solution in the box V = [0, a] ⇥ [0, b] ⇥ [0, c] and assume, for now, that
� = 0 an all boundaries with x = 0, a and y = 0, b. For fixed z, any function � 2 L2([0, a] ⇥ [0, b]) with
these boundary conditions can be expanded in a (double) sine Fourier series

�(x, y, z) =
1X

k,l=1

Zk,l(z) sin

✓
⇡kx

a

◆
sin

✓
⇡ly

b

◆
, (6.101)

where Zk,l are functions of z. Inserting this into the Laplace equation gives an ordinary di↵erential
equation

Z 00
k,l

= ⌫2
k,l

Zk,l , ⌫k,l =

s✓
⇡k

a

◆2

+

✓
⇡l

b

◆2

, (6.102)

for each Zk,l whose general solution is

Zk,l(z) = Ak,le
⌫k,lz + Bk,le

�⌫k,lz , (6.103)

with arbitrary constants Ak,l and Bk,l. Combining this result with Eq. (6.101) leads to the general solution

�(x, y, z) =
1X

k,l=1

�
Ak,le

⌫k,lz + Bk,le
�⌫k,lz

�
sin

✓
⇡kx

a

◆
sin

✓
⇡ly

b

◆
(6.104)

of the Laplace equation in the box V = [0, a] ⇥ [0, b] ⇥ [0, c] which vanishes on the boundaries at x = 0, a
and y = 0, b. To fix the remaining constants we have to specify boundary conditions at z = 0 and z = c.
Suppose we demand that �(x, y, 0) = 0. This can be achieved by setting Ak,l = �Bk,l =: ak,l/2 so that
the solution becomes

�(x, y, z) =
1X

k,l=1

ak,l sinh(⌫k,lz) sin

✓
⇡kx

a

◆
sin

✓
⇡ly

b

◆
. (6.105)

Finally, assume for the last boundary at z = c that �(x, y, c) = h(x, y) for a given function h. Then setting
z = c in Eq. (6.105) is a (double) sine Fourier series for the function h and we can compute the remaining
parameters ak,l by standard Fourier series techniques as

ak,l =
4

ab sinh(⌫k,lc)

Z

[0,a]⇥[0,b]
dx dy sin

✓
⇡kx

a

◆
sin

✓
⇡ly

b

◆
h(x, y) . (6.106)
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want to solve

Spherical coordinates
To discuss the three-dimensional Laplace equation in spherical coordinates it is very useful to recall that
the three-dimensional Laplace operator can be written as

�3,sph =
1

r2
@

@r

✓
r2

@

@r

◆
+

1

r2
�S2 , (6.112)

where �S2 is the Laplacian on the two-sphere. Also recall that we have the spherical harmonics Ylm which
form an orthonormal basis of L2(S2) and are eigenfunctions of �S2 , with

�S2Ylm = �l(l + 1)Ylm . (6.113)

All this suggest we should start with an expansion

�(r, ✓, ') =
1X

l=0

lX

m=�l

Rlm(r)Ylm(✓,') . (6.114)

Inserting this expansion into the homogeneous Laplace equation, �� = 0, and using the eigenvector
property (6.113) leads to the di↵erential equations

d

dr

�
r2R0

lm

�
= l(l + 1)Rlm (6.115)

with general solutions
Rlm(r) = Almrl + Blmr�l�1 , (6.116)

for constants Alm and Blm. Inserting this back into the expansion (6.114) leads to the general solution to
the homogeneous Laplace equation in spherical coordinates:

�(r, ✓, ') =
1X

l=0

lX

m=�l

(Almrl + Blmr�l�1)Ylm(✓,') . (6.117)

The arbitrary constants Alm and Blm are fixed by boundary conditions and, given the choice of coordinates,
they are relatively easy to implement if they are imposed on spherical boundaries. We also note that for
problems with azimutal symmetry, that is, when the boundary conditions and � are independent of
', we only require the m = 0 terms in the above expansion. Since the Yl0 are proportional to the
Legendre polynomials this means, after a re-definition of the constants, that, for such problems, we have
the simplified expansion

�(r, ✓) =
1X

l=0

(Alr
l + Blr

�l�1)Pl(cos ✓) . (6.118)

We conclude with an example on how to fix the constants by imposing boundary conditions. Suppose
that V = {(r, ✓, ') | r  a} is the ball with radius a and we demand that �|r=a = h, where h = h(✓,') is a
given function. Since � needs to be smooth in the interior of the ball we first conclude that all terms with
negative powers in r in the expansion (6.114) must vanish, so Blm = 0. The remaining constant Alm can
be fixed by imposing �|r=a = h and using the orthogonality relations (6.87) of the spherical harmonics.
This leads to

h = �|r=a =
1X

l=0

lX

m=�l

AlmalYlm ) Alm =
1

al
hYlm, hiS2 =

1

al

Z

S2
(Ylm)⇤h dS . (6.119)
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Spherical coordinates
To discuss the three-dimensional Laplace equation in spherical coordinates it is very useful to recall that
the three-dimensional Laplace operator can be written as
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1
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r2
�S2 , (6.112)

where �S2 is the Laplacian on the two-sphere. Also recall that we have the spherical harmonics Ylm which
form an orthonormal basis of L2(S2) and are eigenfunctions of �S2 , with

�S2Ylm = �l(l + 1)Ylm . (6.113)

All this suggest we should start with an expansion

�(r, ✓, ') =
1X

l=0

lX

m=�l

Rlm(r)Ylm(✓,') . (6.114)

Inserting this expansion into the homogeneous Laplace equation, �� = 0, and using the eigenvector
property (6.113) leads to the di↵erential equations

d

dr

�
r2R0

lm

�
= l(l + 1)Rlm (6.115)

with general solutions
Rlm(r) = Almrl + Blmr�l�1 , (6.116)

for constants Alm and Blm. Inserting this back into the expansion (6.114) leads to the general solution to
the homogeneous Laplace equation in spherical coordinates:

�(r, ✓, ') =
1X

l=0

lX

m=�l

(Almrl + Blmr�l�1)Ylm(✓,') . (6.117)

The arbitrary constants Alm and Blm are fixed by boundary conditions and, given the choice of coordinates,
they are relatively easy to implement if they are imposed on spherical boundaries. We also note that for
problems with azimutal symmetry, that is, when the boundary conditions and � are independent of
', we only require the m = 0 terms in the above expansion. Since the Yl0 are proportional to the
Legendre polynomials this means, after a re-definition of the constants, that, for such problems, we have
the simplified expansion

�(r, ✓) =
1X

l=0

(Alr
l + Blr

�l�1)Pl(cos ✓) . (6.118)

We conclude with an example on how to fix the constants by imposing boundary conditions. Suppose
that V = {(r, ✓, ') | r  a} is the ball with radius a and we demand that �|r=a = h, where h = h(✓,') is a
given function. Since � needs to be smooth in the interior of the ball we first conclude that all terms with
negative powers in r in the expansion (6.114) must vanish, so Blm = 0. The remaining constant Alm can
be fixed by imposing �|r=a = h and using the orthogonality relations (6.87) of the spherical harmonics.
This leads to

h = �|r=a =
1X

l=0

lX

m=�l

AlmalYlm ) Alm =
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hYlm, hiS2 =
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al
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Fix constants from boundary conditions



Example: Sphere with constant potential

�(a, ✓,') = �0 , �(r, ✓,')
r!1�! 0
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(3) �(r, ✓,') = �0 for r  a
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(1) finiteness implies Blm = 0

<latexit sha1_base64="7Ix9g1d0ad5tTkR8ir0sr5cR2NY=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV2J6EUIevEYwTwgWcLsZDYZMo91ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSjgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNCrVhDaI4kq3I2woZ5I2LLOcthNNsYg4bUWj26nfeqLaMCUf7DihocADyWJGsHVS+6aXcTG59nulsl/xZ0DLJMhJGXLUe6Wvbl+RVFBpCcfGdAI/sWGGtWWE00mxmxqaYDLCA9pxVGJBTZjN7p2gU6f0Uay0K2nRTP09kWFhzFhErlNgOzSL3lT8z+ukNr4KMyaT1FJJ5ovilCOr0PR51GeaEsvHjmCimbsVkSHWmFgXUdGFECy+vEya55WgWrm4r5Zr1TyOAhzDCZxBAJdQgzuoQwMIcHiGV3jzHr0X7937mLeuePnMEfyB9/kDlgWPow==</latexit>

inside: outside:

(1) vanishing at infinity: Alm = 0
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) Alm = 0 for l > 0
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) Blm = 0 for l > 0
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Helmholz equation

8 Other linear partial di↵erential equations

In this chapter, we will discuss a number of other linear partial di↵erential equations which are important
in physics, including the Helmholz equation, the wave equation and the heat equation. We will cover a
number of methods to solve these equations but in the interest of keeping these notes manageable we will
not be quite as thorough as we have been for the Laplace equation. We begin with the Helmholz equation
which is closest to the Laplace equation.

8.1 The Helmholz equation

The homogeneous and inhomogeneous Helmholz equations in R3 (with coordinates x = (xi)) are given by

(� + k2) = 0 , (� + k2) = f , (8.1)

where k 2 R is a real number and � is the three-dimensional Laplace operator (although the equation can,
of course, also be considered in other dimensions). This equation appears, for example, in wave problems
with fixed wave number k, as we will see in our discussion of the wave equation later on.

As always, the general solution to the inhomogeneous Helmholz equation is given as a sum of the
general solution of the homogeneous equation plus a special solution of the inhomogeneous equation. The
homogeneous Helmholz equation is an eigenvalue equation (with eigenvalue �k2) for the Laplace operator
and many of the methods discussed in the context of the Laplace equation can be applied.

To find a special solution of the inhomogeneous equation we can use the Green function method, in
analogy to what we did for the Laplace equation. Define the functions

G±(r) =
e±ikr

r
, (8.2)

where r = |x| is the radial coordinate. Given that this function is independent of the angles we can use
only the radial part of the Laplacian in spherical coordinates (6.17) to verify that, for r > 0

(� + k2)G± =

✓
1

r2
d

dr

✓
r2

d

dr

◆
+ k2

◆
G± = 0 . (8.3)

Hence, G± solves the homogeneous Helmholz equation for r > 0 in much the same way 1/r solves the
homogeneous Laplace equation. In fact, the analogy goes further as stated in the following

Theorem 8.1. With G = AG+ + BG�, where A, B 2 R and A + B = 1 the distribution TG is a
fundamental solution to the Helmholz operator, that is,

(� + k2)TG = �4⇡�0 . (8.4)

Proof. The proof is very much in analogy with the corresponding one for the Laplace equation 7.4 and
can be found in Ref. [4]. Essentially, it relies on �T1/r = �4⇡�0 and the fact that 1/r is really the only
singularity in G.

With this result, the general solution to the inhomogeneous Helmholz equation can be written as

 (x) =  hom(x) � 1

4⇡
(TG ? f)(x) =  hom(x) � 1

4⇡

Z

R3
d3y G(x � y)f(y) , (8.5)

where  hom is an arbitrary solution of the homogeneous equation.
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in physics, including the Helmholz equation, the wave equation and the heat equation. We will cover a
number of methods to solve these equations but in the interest of keeping these notes manageable we will
not be quite as thorough as we have been for the Laplace equation. We begin with the Helmholz equation
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of course, also be considered in other dimensions). This equation appears, for example, in wave problems
with fixed wave number k, as we will see in our discussion of the wave equation later on.

As always, the general solution to the inhomogeneous Helmholz equation is given as a sum of the
general solution of the homogeneous equation plus a special solution of the inhomogeneous equation. The
homogeneous Helmholz equation is an eigenvalue equation (with eigenvalue �k2) for the Laplace operator
and many of the methods discussed in the context of the Laplace equation can be applied.

To find a special solution of the inhomogeneous equation we can use the Green function method, in
analogy to what we did for the Laplace equation. Define the functions
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where r = |x| is the radial coordinate. Given that this function is independent of the angles we can use
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Hence, G± solves the homogeneous Helmholz equation for r > 0 in much the same way 1/r solves the
homogeneous Laplace equation. In fact, the analogy goes further as stated in the following
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fundamental solution to the Helmholz operator, that is,
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Proof. The proof is very much in analogy with the corresponding one for the Laplace equation 7.4 and
can be found in Ref. [4]. Essentially, it relies on �T1/r = �4⇡�0 and the fact that 1/r is really the only
singularity in G.
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Example: Infinite spherical well

This means the general solution is given by

 (t, x, y) =
1X

k,l=1

(ak,l sin(!k,lt) + bk,l cos(!k,lt)) sin

✓
k⇡x

a

◆
sin

✓
l⇡y

b

◆
. (43)

and the coe�cients ak,l and bk,l are fixed by the initial conditions and can be explicitly
computed via a double sine Fourier series. For the square membrane a = b the two lowest
frequencies are

!1,1 =
p
2
⇡

a
, !1,2 = !2,1 =

p
5
⇡

a
. (44)

(b) Starting from the general solution (43) we can specialise to a solution which vanishes
along the diagonal x = y demanding that ak,l = �al,k and bk,l = �bl,k. In this way we
get

 (t, x, y) =
X

k<l

(ak,l sin(!k,lt) + bk,l cos(!k,lt))

⇥
✓
sin

✓
k⇡x

a

◆
sin

✓
l⇡y

a

◆
� sin

✓
l⇡x

a

◆
sin

✓
k⇡y

a

◆◆
(45)

It is easy to see that this does indeed vanish if x = y and that this is the most general
solution to the square membrane which does. On the other hand, any solution for the tri-
angular membrane can be “completed” to a solution for the square membrane by “adding
the upper triangle” and which vanishes along the diagonal. In short, Eq. (45) is the most
general solution to the triangular membrane with Dirichlet boundary conditions. The
spectrum is given by !k,l with k < l, so the lowest frequency is now !1,2 =

p
5⇡
a .

6) (Eigenfunctions of the Laplacian)
Consider the eigenvalue problem

�� = E (46)

in three dimensions and with boundary condition  ||x|=a = 0. (In quantum mechanics, this
correspond to finding the energy eigenstates of a particle in an infinite spherical well.)

(a) Write the three-dimensional Laplacian in terms of a radial coordinate r and the Laplacian
�S2 on the two-sphere and start by expanding  (r, ✓,') =

P
l.mRl,m(r)Ylm(✓,'), where

Rlm are functions to be determined. Show that the Rlm must satisfy the di↵erential
equation r2y00 + 2ry0 + (Er2 � l(l + 1))y = 0.

(b) Introduce a new coordinate ⇢ =
p
Er and define ỹ =

p
⇢y. Show that, in terms of

these new quantities, the di↵erential equation from part (a) becomes a Bessel di↵erential
equation ⇢2ỹ00+⇢ỹ0+(⇢2� (l+1/2)2)ỹ = 0 (where the prime now denotes a ⇢ derivative).

(c) Find the solutions for Rlm and impose the boundary condition Rlm(a) = 0. Which
eigenvalues E do you find?
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Rlm are functions to be determined. Show that the Rlm must satisfy the di↵erential
equation r2y00 + 2ry0 + (Er2 � l(l + 1))y = 0.

(b) Introduce a new coordinate ⇢ =
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⇢y. Show that, in terms of

these new quantities, the di↵erential equation from part (a) becomes a Bessel di↵erential
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8

Problem: solve eigenvalue problem              with boundary cond.  

Solution

(a) This follows immediately by inserting the Ansatz into the eigenvalue equation with the
Laplacian written in the form

�3,sph =
1

r2
@

@r

✓
r2
@

@r

◆
+

1

r2
�S2 . (47)

and using that �S2Ylm = �l(l + 1)Ylm.

(b) A simple calculation leads to the desired result.

(c) The equation in part (b) is a Bessel di↵erential equation for ⌫ = l+ 1/2. Hence, we have
for the radial part

Rl,m(r) ⇠ 1p
r
Jl+1/2(

p
Er) . (48)

(The other Bessel function Nl+1/2 leads to a singularity at the origin and cannot be used.)

We denote by zl,n, where n = 1, 2, . . . the nth zero of the Bessel function Jl+1/2. Then,

the boundary condition Rl,m(a) = 0 means that
p
Ea = zl,n so we have the eigenvalues

E =
z2l,n
a2

. (49)

and associated eigenfunctions

 n,l,m(r, ✓,') ⇠ 1p
r
Jl+1/2

⇣zl,nr
a

⌘
Ylm(✓,') . (50)

7 (Heat equation)
Consider the heat equation


@2 

@x2
=
@ 

@t
, (51)

where  is a positive constant, x 2 [0, a] and  is real-valued. For t > 0, we demand Dirichlet
boundary conditions  (t, 0) =  0 at x = 0 (where  0 is a constant) and von Neumann boundary
conditions @ 

@x (t, a) = 0 at x = a. The initial condition is  (0, x) = 0.

(a) As a preparation, we introduce the functions gk : [0, a] ! R defined by

gk(x) =

r
2

a
sin(qkx) , qk =

⇡

a

✓
k +

1

2

◆
(52)

where k = 0, 1, . . .. Show that these functions satisfy the boundary conditions gk(0) = 0
and g0k(a) = 0, that they form an ortho-normal system relative to the standard scalar

product on L2([0, a]) and that they are eigenfunctions of d2

dx2 with

d2

dx2
gk = �q2kgk . (53)
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(1) recall:

This means the general solution is given by

 (t, x, y) =
1X

k,l=1

(ak,l sin(!k,lt) + bk,l cos(!k,lt)) sin

✓
k⇡x

a

◆
sin

✓
l⇡y

b

◆
. (43)

and the coe�cients ak,l and bk,l are fixed by the initial conditions and can be explicitly
computed via a double sine Fourier series. For the square membrane a = b the two lowest
frequencies are

!1,1 =
p
2
⇡

a
, !1,2 = !2,1 =

p
5
⇡

a
. (44)

(b) Starting from the general solution (43) we can specialise to a solution which vanishes
along the diagonal x = y demanding that ak,l = �al,k and bk,l = �bl,k. In this way we
get

 (t, x, y) =
X

k<l

(ak,l sin(!k,lt) + bk,l cos(!k,lt))

⇥
✓
sin

✓
k⇡x

a

◆
sin

✓
l⇡y

a

◆
� sin

✓
l⇡x

a

◆
sin

✓
k⇡y

a

◆◆
(45)

It is easy to see that this does indeed vanish if x = y and that this is the most general
solution to the square membrane which does. On the other hand, any solution for the tri-
angular membrane can be “completed” to a solution for the square membrane by “adding
the upper triangle” and which vanishes along the diagonal. In short, Eq. (45) is the most
general solution to the triangular membrane with Dirichlet boundary conditions. The
spectrum is given by !k,l with k < l, so the lowest frequency is now !1,2 =

p
5⇡
a .

6) (Eigenfunctions of the Laplacian)
Consider the eigenvalue problem

�� = E (46)

in three dimensions and with boundary condition  ||x|=a = 0. (In quantum mechanics, this
correspond to finding the energy eigenstates of a particle in an infinite spherical well.)

(a) Write the three-dimensional Laplacian in terms of a radial coordinate r and the Laplacian
�S2 on the two-sphere and start by expanding  (r, ✓,') =

P
l.mRl,m(r)Ylm(✓,'), where

Rlm are functions to be determined. Show that the Rlm must satisfy the di↵erential
equation r2y00 + 2ry0 + (Er2 � l(l + 1))y = 0.

(b) Introduce a new coordinate ⇢ =
p
Er and define ỹ =

p
⇢y. Show that, in terms of

these new quantities, the di↵erential equation from part (a) becomes a Bessel di↵erential
equation ⇢2ỹ00+⇢ỹ0+(⇢2� (l+1/2)2)ỹ = 0 (where the prime now denotes a ⇢ derivative).

(c) Find the solutions for Rlm and impose the boundary condition Rlm(a) = 0. Which
eigenvalues E do you find?

8

(2) expand:
Bessel diff. eq. for ⌫ = l +

1

2
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(3) insert and find eq. for radial part      :Rl,m
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and the coe�cients ak,l and bk,l are fixed by the initial conditions and can be explicitly
computed via a double sine Fourier series. For the square membrane a = b the two lowest
frequencies are

!1,1 =
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a
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a
. (44)

(b) Starting from the general solution (43) we can specialise to a solution which vanishes
along the diagonal x = y demanding that ak,l = �al,k and bk,l = �bl,k. In this way we
get
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It is easy to see that this does indeed vanish if x = y and that this is the most general
solution to the square membrane which does. On the other hand, any solution for the tri-
angular membrane can be “completed” to a solution for the square membrane by “adding
the upper triangle” and which vanishes along the diagonal. In short, Eq. (45) is the most
general solution to the triangular membrane with Dirichlet boundary conditions. The
spectrum is given by !k,l with k < l, so the lowest frequency is now !1,2 =

p
5⇡
a .

6) (Eigenfunctions of the Laplacian)
Consider the eigenvalue problem

�� = E (46)

in three dimensions and with boundary condition  ||x|=a = 0. (In quantum mechanics, this
correspond to finding the energy eigenstates of a particle in an infinite spherical well.)

(a) Write the three-dimensional Laplacian in terms of a radial coordinate r and the Laplacian
�S2 on the two-sphere and start by expanding  (r, ✓,') =

P
l.mRl,m(r)Ylm(✓,'), where

Rlm are functions to be determined. Show that the Rlm must satisfy the di↵erential
equation r2y00 + 2ry0 + (Er2 � l(l + 1))y = 0.

(b) Introduce a new coordinate ⇢ =
p
Er and define ỹ =

p
⇢y. Show that, in terms of

these new quantities, the di↵erential equation from part (a) becomes a Bessel di↵erential
equation ⇢2ỹ00+⇢ỹ0+(⇢2� (l+1/2)2)ỹ = 0 (where the prime now denotes a ⇢ derivative).

(c) Find the solutions for Rlm and impose the boundary condition Rlm(a) = 0. Which
eigenvalues E do you find?
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and the coe�cients ak,l and bk,l are fixed by the initial conditions and can be explicitly
computed via a double sine Fourier series. For the square membrane a = b the two lowest
frequencies are
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p
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⇡
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. (44)

(b) Starting from the general solution (43) we can specialise to a solution which vanishes
along the diagonal x = y demanding that ak,l = �al,k and bk,l = �bl,k. In this way we
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(4) radial part: 

Solution

(a) This follows immediately by inserting the Ansatz into the eigenvalue equation with the
Laplacian written in the form

�3,sph =
1

r2
@

@r

✓
r2
@

@r

◆
+

1

r2
�S2 . (47)

and using that �S2Ylm = �l(l + 1)Ylm.

(b) A simple calculation leads to the desired result.

(c) The equation in part (b) is a Bessel di↵erential equation for ⌫ = l+ 1/2. Hence, we have
for the radial part

Rl,m(r) ⇠ 1p
r
Jl+1/2(

p
Er) . (48)

(The other Bessel function Nl+1/2 leads to a singularity at the origin and cannot be used.)

We denote by zl,n, where n = 1, 2, . . . the nth zero of the Bessel function Jl+1/2. Then,

the boundary condition Rl,m(a) = 0 means that
p
Ea = zl,n so we have the eigenvalues

E =
z2l,n
a2

. (49)

and associated eigenfunctions

 n,l,m(r, ✓,') ⇠ 1p
r
Jl+1/2

⇣zl,nr
a

⌘
Ylm(✓,') . (50)

7 (Heat equation)
Consider the heat equation


@2 

@x2
=
@ 

@t
, (51)

where  is a positive constant, x 2 [0, a] and  is real-valued. For t > 0, we demand Dirichlet
boundary conditions  (t, 0) =  0 at x = 0 (where  0 is a constant) and von Neumann boundary
conditions @ 

@x (t, a) = 0 at x = a. The initial condition is  (0, x) = 0.

(a) As a preparation, we introduce the functions gk : [0, a] ! R defined by

gk(x) =

r
2

a
sin(qkx) , qk =

⇡

a

✓
k +

1

2

◆
(52)

where k = 0, 1, . . .. Show that these functions satisfy the boundary conditions gk(0) = 0
and g0k(a) = 0, that they form an ortho-normal system relative to the standard scalar

product on L2([0, a]) and that they are eigenfunctions of d2

dx2 with

d2

dx2
gk = �q2kgk . (53)

9
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Time evolution

Many problems in physics are of the form

(i) 

8.2 Eigenfunctions and time evolution

Many partial di↵erential equations in physics involve a number of spatial coordinates x = (x1, . . . , xn)T 2
V ⇢ U ⇢ Rn as well as time t 2 R and are of the form

H =
1

c
 ̇ or H =  ̈ , (8.6)

where  =  (t,x), the dot denotes the derivative @

@t
and c is a constant. We assume that H is a second

order linear di↵erential operator in the spatial di↵erentials @

@xi
, so a di↵erential operator on C1(U)\L2(U)

which is time-independent and hermitian relative to the standard scalar product on L2(U). If boundary
conditions are imposed on @V we assume that they are also time-independent. Under these conditions
there frequently exists a (time-independent) ortho-normal basis (�i)1i=1 of L2(U) with the desired boundary
behaviour which consists of eigenfunctions of H, so

H�i = �i�i , (8.7)

where the eigenvalues �i are real since H is hermitian. The problem is to solve the above equations
subject to an initial condition  (0,x) =  0(x) and, in addition,  ̇(0,x) =  ̇0(x) in the case of the second
equation (8.6), for given functions  0 and  ̇0. This can be done by expanding the function  , for any
given time t, in terms of the basis (�i), so that

 (t,x) =
X

i

Ai(t)�i(x) . (8.8)

Inserting this into the first Eq. (8.6) leads to

Ȧi = c�iAi ) Ai = aie
c�it (8.9)

so that the complete solution reads

 (t,x) =
X

i

ai�i(x)ec�it . (8.10)

The remaining constants ai are fixed by the initial condition  (0,x) =
P

i
ai�i(x)

!
=  0(x) which can be

solved in the usual way, using the orthogonality relations h�i,�ji = �ij . This leads to

ai = h�i, 0i . (8.11)

A similar calculation for the second equation (8.6) (assuming that �i < 0) leads to

Äi = �|�i|Ai ) Ai = ai sin
⇣p

|�i| t
⌘

+ bi cos
⇣p

|�i| t
⌘

(8.12)

so that
 (t,x) =

X

i

⇣
ai sin

⇣p
|�i| t

⌘
+ bi cos

⇣p
|�i| t

⌘⌘
�i(x) . (8.13)

The constants ai and bi are fixed by the initial conditions  (0,x) =
P

i
bi�i(x)

!
=  0(x) and  ̇(0,x) =

P
i
ai
p

|�i|�i(x)
!
=  ̇0(x) and are, hence, given by

ai =
1p
|�i|

h�i,  ̇0i , bi = h�i, 0i . (8.14)

Below, we will discuss various examples of this structure more explicitly.
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+ bi cos
⇣p

|�i| t
⌘

(8.12)

so that
 (t,x) =

X

i

⇣
ai sin

⇣p
|�i| t

⌘
+ bi cos

⇣p
|�i| t

⌘⌘
�i(x) . (8.13)

The constants ai and bi are fixed by the initial conditions  (0,x) =
P

i
bi�i(x)

!
=  0(x) and  ̇(0,x) =

P
i
ai
p

|�i|�i(x)
!
=  ̇0(x) and are, hence, given by

ai =
1p
|�i|

h�i,  ̇0i , bi = h�i, 0i . (8.14)

Below, we will discuss various examples of this structure more explicitly.
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Fix constants from initial conditions on           and  (0,x)
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Example: Evolution of a spin system

Hilbert space: H = {c | "i+ d | #i | c, d 2 C}
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Wave equation

and the initial condition  (0,x) =  0(x) translates into F(�) =  0 which can be inverted using the inverse
Fourier transform, so � = F̃( 0).

Exercise 8.3. Find the solution  (t, x) of the heat equation for x 2 R, square integrable for all t, which

satisfies  (0, x) =  0(x) = T0e
� x2

2a2 .

To solve the inhomogeneous heat equation we would like to find a Green function. It can be verified
by direct calculation, that the function G : Rn+1 ! R defined by

G(t,x) =

(
� 1

(4⇡t)n/2 e�
|x|2
4t for t > 0

0 for t  0
(8.23)

solves the homogeneous heat equation whenever t 6= 0 and x 6= 0.

Exercise 8.4. Show that the function G in Eq. (8.23) solves the homogeneous heat equation for t 6= 0 and
x 6= 0.

In fact we have

Theorem 8.5. The distribution TG with G defined in Eq. (8.23) is a fundamental solution of the heat
equation, so ✓

� � @

@t

◆
TG = �0 . (8.24)

Proof. The proof is similar to the one for the Laplacian in Theorem 7.4 and can be found in Ref. [4].

From this result, the general solution to the inhomogeneous heat equation can be written as

 (t,x) =  hom(t,x) + (TG ? f)(t,x) =  hom(t,x) +

Z

Rn+1
d⌧ dny G(t � ⌧,x � y)f(⌧,y) , (8.25)

where  hom is a solution to the homogeneous equation.

8.4 The wave equation

The homogeneous and inhomogeneous wave equations are of the form

✓
�n � @2

@t2

◆
 = 0 ,

✓
�n � @2

@t2

◆
 = f , (8.26)

where �n is the n-dimensional Laplacian (and n = 1, 2, 3 are the most interesting dimensions for physics).
If this equation is considered on the spatial patch V ⇢ Rn we should specify boundary conditions on @V
for all t. In addition, we require initial conditions  (0,x) =  0(x) and  ̇(0,x) =  ̇0(x) at some initial
time t = 0.

For an Ansatz of the form
 (t,x) =  ̃(x)e�i!t (8.27)

the wave equation turns into the Helmholz equation for  ̃ with k = ! and we can use the methods
discussed in Section 8.1.

Starting with the homogeneous equation with  (t, ·) 2 L2(Rn) we can start with a Fourier integral

 (t,x) =
1

(2⇡)n/2

Z

Rn
dnk  ̃(t,k)e�ik·x . (8.28)
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• Solving the homogeneous equation by (spatial) Fourier transform
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where �n is the n-dimensional Laplacian (and n = 1, 2, 3 are the most interesting dimensions for physics).
If this equation is considered on the spatial patch V ⇢ Rn we should specify boundary conditions on @V
for all t. In addition, we require initial conditions  (0,x) =  0(x) and  ̇(0,x) =  ̇0(x) at some initial
time t = 0.

For an Ansatz of the form
 (t,x) =  ̃(x)e�i!t (8.27)

the wave equation turns into the Helmholz equation for  ̃ with k = ! and we can use the methods
discussed in Section 8.1.

Starting with the homogeneous equation with  (t, ·) 2 L2(Rn) we can start with a Fourier integral
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120
Inserting this into the homogenous equation implies

¨̃ = �|k|2 ̃ )  ̃(t,k) =  +(k)ei|k|t +  �(k)e�i|k|t , (8.29)

and, hence,

 (t,x) =
1

(2⇡)n/2

Z

Rn
dnk ( +(k)ei|k|t +  �(k)e�i|k|t)e�ik·x . (8.30)

The functions  ± are fixed by the initial conditions via  0 = F( + +  �) and  ̇0 = F(i|k|( + �  �))

which can be solved, using the inverse Fourier transform, to give  ± = 1
2 F̃

⇣
 0 ⌥ i

|k|  ̇0

⌘
.

If we work on a spatial patch with boundary conditions which lead to a countable number of eigenvec-
tors of the Laplacian we can use the method in Section 8.2 to solve the homogeneous wave equation. For
one and two spatial dimensions this leads to systems usually referred to as “strings” and “membranes”,
respectively, and we now discuss them in turn.

Strings
The wave equation now reads 8

✓
@2

@x2
� @2

@t2

◆
 = 0 , (8.31)

where  =  (t, x) and x 2 [0, a]. This equation describes various kinds of strings from guitar strings to the
strings of string theory. We will impose Dirichlet boundary conditions  (t, 0) =  (t, a) = 0 as appropriate
for a string with fixed endpoints. (The strings of string theory allow for both Dirichlet and von Neumann
boundary conditions.) In addition, we need to fix the initial position,  (0, x) =  0(x), and initial velocity
 ̇(0, x) =  ̇0(x).

Given the boundary conditions an appropriate set of eigenfunctions is provided by �k = sin
�
k⇡x

a

�
,

that is the functions for the sine Fourier series. We have �00
k

= �k�k with eigenvalues

��k =
k2⇡2

a2
=: !2

k
. (8.32)

Inserting this into the general solution (8.13) leads to

 (t, x) =
1X

k=1


ak sin

✓
k⇡t

a

◆
+ bk cos

✓
k⇡t

a

◆�
sin

✓
k⇡x

a

◆
(8.33)

The coe�cients ak and bk are fixed by the initial conditions via

 (0, x) =
1X

k=1

bk sin

✓
k⇡x

a

◆
!
=  0(x) ,  ̇(0, x) =

1X

k=1

k⇡ak
a

sin

✓
k⇡x

a

◆
!
=  ̇0(x) . (8.34)

These equations can of course be solved for ak and bk using standard Fourier series techniques resulting
in

ak =
2

k⇡

Z
a

0
dx sin

✓
k⇡x

a

◆
 ̇0(x) , bk =

2

a

Z
a

0
dx sin

✓
k⇡x

a

◆
 0(x) . (8.35)

Note that the eigenfrequencies of the system

!k =
k⇡

a
(8.36)

are all integer multiples of the ground frequency !1 = ⇡/a.

8
In a physics context, this equation is frequently written with an additional factor of 1/c

2
in front of the time-derivatives,

where c is the speed of the wave. Such a factor can always be removed by a re-definition ct ! t.
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Inserting this into the homogenous equation implies

¨̃ = �|k|2 ̃ )  ̃(t,k) =  +(k)ei|k|t +  �(k)e�i|k|t , (8.29)

and, hence,

 (t,x) =
1

(2⇡)n/2

Z

Rn
dnk ( +(k)ei|k|t +  �(k)e�i|k|t)e�ik·x . (8.30)

The functions  ± are fixed by the initial conditions via  0 = F( + +  �) and  ̇0 = F(i|k|( + �  �))

which can be solved, using the inverse Fourier transform, to give  ± = 1
2 F̃

⇣
 0 ⌥ i

|k|  ̇0

⌘
.

If we work on a spatial patch with boundary conditions which lead to a countable number of eigenvec-
tors of the Laplacian we can use the method in Section 8.2 to solve the homogeneous wave equation. For
one and two spatial dimensions this leads to systems usually referred to as “strings” and “membranes”,
respectively, and we now discuss them in turn.

Strings
The wave equation now reads 8
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� @2

@t2

◆
 = 0 , (8.31)

where  =  (t, x) and x 2 [0, a]. This equation describes various kinds of strings from guitar strings to the
strings of string theory. We will impose Dirichlet boundary conditions  (t, 0) =  (t, a) = 0 as appropriate
for a string with fixed endpoints. (The strings of string theory allow for both Dirichlet and von Neumann
boundary conditions.) In addition, we need to fix the initial position,  (0, x) =  0(x), and initial velocity
 ̇(0, x) =  ̇0(x).

Given the boundary conditions an appropriate set of eigenfunctions is provided by �k = sin
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Note that the eigenfrequencies of the system
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are all integer multiples of the ground frequency !1 = ⇡/a.

8
In a physics context, this equation is frequently written with an additional factor of 1/c

2
in front of the time-derivatives,

where c is the speed of the wave. Such a factor can always be removed by a re-definition ct ! t.
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initial conditions 

and the initial condition  (0,x) =  0(x) translates into F(�) =  0 which can be inverted using the inverse
Fourier transform, so � = F̃( 0).

Exercise 8.3. Find the solution  (t, x) of the heat equation for x 2 R, square integrable for all t, which

satisfies  (0, x) =  0(x) = T0e
� x2

2a2 .

To solve the inhomogeneous heat equation we would like to find a Green function. It can be verified
by direct calculation, that the function G : Rn+1 ! R defined by

G(t,x) =

(
� 1

(4⇡t)n/2 e�
|x|2
4t for t > 0

0 for t  0
(8.23)

solves the homogeneous heat equation whenever t 6= 0 and x 6= 0.

Exercise 8.4. Show that the function G in Eq. (8.23) solves the homogeneous heat equation for t 6= 0 and
x 6= 0.

In fact we have

Theorem 8.5. The distribution TG with G defined in Eq. (8.23) is a fundamental solution of the heat
equation, so ✓

� � @

@t

◆
TG = �0 . (8.24)

Proof. The proof is similar to the one for the Laplacian in Theorem 7.4 and can be found in Ref. [4].

From this result, the general solution to the inhomogeneous heat equation can be written as

 (t,x) =  hom(t,x) + (TG ? f)(t,x) =  hom(t,x) +

Z

Rn+1
d⌧ dny G(t � ⌧,x � y)f(⌧,y) , (8.25)

where  hom is a solution to the homogeneous equation.

8.4 The wave equation

The homogeneous and inhomogeneous wave equations are of the form

✓
�n � @2

@t2

◆
 = 0 ,

✓
�n � @2

@t2

◆
 = f , (8.26)

where �n is the n-dimensional Laplacian (and n = 1, 2, 3 are the most interesting dimensions for physics).
If this equation is considered on the spatial patch V ⇢ Rn we should specify boundary conditions on @V
for all t. In addition, we require initial conditions  (0,x) =  0(x) and  ̇(0,x) =  ̇0(x) at some initial
time t = 0.

For an Ansatz of the form
 (t,x) =  ̃(x)e�i!t (8.27)

the wave equation turns into the Helmholz equation for  ̃ with k = ! and we can use the methods
discussed in Section 8.1.

Starting with the homogeneous equation with  (t, ·) 2 L2(Rn) we can start with a Fourier integral

 (t,x) =
1

(2⇡)n/2

Z

Rn
dnk  ̃(t,k)e�ik·x . (8.28)
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where  =  (t, x) and x 2 [0, a]. This equation describes various kinds of strings from guitar strings to the
strings of string theory. We will impose Dirichlet boundary conditions  (t, 0) =  (t, a) = 0 as appropriate
for a string with fixed endpoints. (The strings of string theory allow for both Dirichlet and von Neumann
boundary conditions.) In addition, we need to fix the initial position,  (0, x) =  0(x), and initial velocity
 ̇(0, x) =  ̇0(x).

Given the boundary conditions an appropriate set of eigenfunctions is provided by �k = sin
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k⇡x
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�
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that is the functions for the sine Fourier series. We have �00
k

= �k�k with eigenvalues
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k
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Inserting this into the general solution (8.13) leads to
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k=1
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◆
+ bk cos
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The coe�cients ak and bk are fixed by the initial conditions via
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bk sin
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These equations can of course be solved for ak and bk using standard Fourier series techniques resulting
in

ak =
2

k⇡

Z
a

0
dx sin

✓
k⇡x

a

◆
 ̇0(x) , bk =

2

a

Z
a

0
dx sin

✓
k⇡x
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◆
 0(x) . (8.35)

Note that the eigenfrequencies of the system

!k =
k⇡

a
(8.36)

are all integer multiples of the ground frequency !1 = ⇡/a.

8
In a physics context, this equation is frequently written with an additional factor of 1/c

2
in front of the time-derivatives,

where c is the speed of the wave. Such a factor can always be removed by a re-definition ct ! t.
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Example: Evolution of a 1d wave

Initial condition:  0(x) :=  (0, x) =
e�x2/2

p
⇡

,  ̇(0, x) = 0
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)  ±(k) =
1

2
F̃( 0)(k) =

e�k2/2

p
2⇡
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Inserting this into the general solution (8.13) leads to
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The coe�cients ak and bk are fixed by the initial conditions via
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These equations can of course be solved for ak and bk using standard Fourier series techniques resulting
in
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Note that the eigenfrequencies of the system
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are all integer multiples of the ground frequency !1 = ⇡/a.
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In a physics context, this equation is frequently written with an additional factor of 1/c
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in front of the time-derivatives,

where c is the speed of the wave. Such a factor can always be removed by a re-definition ct ! t.
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recall:

=
1

2⇡

Z

R
dk e�k2/2

⇣
ei(|k|t�kx) + ei(�|k|t�kx)

⌘
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=
e�

1
2 (t+x)2

�
e2tx + 1

�

2
p
⇡
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• Solving the inhomogeneous equation with Green function

Expanding  (t, r,') =
P

m,n
Tmn(t)�mn(r,') we find the di↵erential equations T̈mn = �!2

mnTmn so that
!mn are the eigenfrequencies of the round membrane. As is clear from Eq. (8.43) these eigenfrequencies
are determined by the zeros of the Bessel functions so they are quite irregular.

Returning to the inhomogeneous wave equation, we would like to find a Green function G, satisfying

✓
�3 � @2

@t2

◆
G(t,x) = �4⇡�(t)�(x) . (8.44)

(We are using the intuitive notion of Delta “functions” to be closer to the standard physics treatment
but our discussion of distributions should reassure us that this leads to sensible results.) If we Fourier
transform G in the t-direction

G(t,x) =
1

2⇡

Z

R
d! G̃(!,x)e�i!t (8.45)

it follows that the Fourier transform G̃ satisfies

(� + !2)G̃(!,x) = �4⇡�(x) , (8.46)

and is, hence, a Green function for the Helmholz equation. From our discussion in Section 8.1 there are
essentially two choices for this Green function, namely

G̃±(!,x) =
e±i!|x|

|x| . (8.47)

Inserting this into the Fourier integral (8.45) and using the result (7.46) gives

G±(t,x) =
�(t ⌥ |x|)

|x| . (8.48)

The general solution to the inhomogeneous wave equation, using the so-called retarded Green function
G+, is then given by

 (t,x) =  hom(t,x) � 1

4⇡

Z

R4
dt0 d3x0 G+(t � t0,x � x0)f(t0,x0)

=  hom(t,x) � 1

4⇡

Z

R4
dt0 d3x0 �(t � t0 � |x � x0|)

|x � x0| f(t0,x0)

=  hom(t,x) � 1

4⇡

Z

R3
d3x0

✓
f(t0,x0)

|x � x0|

◆

t0=t�|x�x0|
(8.49)

Note that this formula is very much in analogy with the corresponding result for the Laplace equation. The
di↵erence is of course the dependence on t. The source f is evaluated at the retarded time t0 = t� |x�x0|
to produce the solution at time t. The physical interpretation is that this takes into account the time it
takes for the e↵ect of the source at x0 to influence the solution at x. The above result is the starting point
for calculating the electromagnetic radiation from moving charges.
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d3x0

✓
f(t0,x0)

|x � x0|

◆

t0=t�|x�x0|
(8.49)

Note that this formula is very much in analogy with the corresponding result for the Laplace equation. The
di↵erence is of course the dependence on t. The source f is evaluated at the retarded time t0 = t� |x�x0|
to produce the solution at time t. The physical interpretation is that this takes into account the time it
takes for the e↵ect of the source at x0 to influence the solution at x. The above result is the starting point
for calculating the electromagnetic radiation from moving charges.
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Good luck!


