Mathematical Methods, revision lectures

Andre Lukas
 Rudolf-Peierls-Centre for Theoretical Physics

Trinity Term 2023

course website: $h t t p: / / w w w-t h p h y s . p h y s i c s . o x . a c . u k / p e o p l e / A n d r e L u k a s / M a t h M e t h / ~$
 Mathematica notebook: http://www-thphys.physics.ox.ac.uk/people/AndreLukas/MathMeth/mathmeth.nb

Overview

- Inner product vector spaces, Hilbert spaces
- Fourier analysis
- Orthogonal polynomials
- Ordinary linear differential equations
- Partial linear differential equations

Inner product vector spaces, Hilbert spaces

What is an inner product vector space?

A: A vector space with a scalar product.

Definition of a scalar product:

Definition 1.9. A real scalar product on a vector space V over $F=\mathbb{R}$ and a hermitian scalar product on a vector space V over the field $F=\mathbb{C}$ is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$ which satisfies
(S1) $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$, for a real scalar product, $F=\mathbb{R} \longleftarrow$ symmetry
$\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle^{*}$, for a hermitian scalar product, $F=\mathbb{C} \longleftarrow$ hermiticity
(S2) $\langle\mathbf{v}, \alpha \mathbf{u}+\beta \mathbf{w}\rangle=\alpha\langle\mathbf{v}, \mathbf{u}\rangle+\beta\langle\mathbf{v}, \mathbf{w}\rangle \longleftarrow$ linearity
(S3) $\langle\mathbf{v}, \mathbf{v}\rangle>0$ if $\mathbf{v} \neq \mathbf{0} \longleftarrow$ positivity
for all vectors $\mathbf{v}, \mathbf{u}, \mathbf{w} \in V$ and all scalars $\alpha, \beta \in F$.

The norm associated to a scalar product

$$
\|\mathbf{v}\|:=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

satisfies the Cauchy-Schwarz and triangle inequalities

$$
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\| \quad\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|
$$

Features of inner product vector spaces

- ortho-normal basis: vectors $\epsilon_{i} \in V$ with $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle=\delta_{i j}$.

Parseval's equation
coordinates relative to basis: $\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\epsilon}_{i} \quad \Longleftrightarrow \quad \alpha_{i}=\left\langle\boldsymbol{\epsilon}_{i}, \mathbf{v}\right\rangle$ scalar product in terms of coordinates: $\langle\mathbf{v}, \mathbf{w}\rangle=\sum_{i=1}^{n} \alpha_{i}^{*} \beta_{i}$, matrix describing linear map $T: V \rightarrow V: \quad A_{i j}=\left\langle\boldsymbol{\epsilon}_{i}, T\left(\boldsymbol{\epsilon}_{j}\right)\right\rangle$

- hermitian conjugate $T^{\dagger}: V \rightarrow V$ of $T: V \rightarrow V:\langle\mathbf{v}, T \mathbf{w}\rangle=\left\langle T^{\dagger} \mathbf{v}, \mathbf{w}\right\rangle$ for all $\mathbf{v}, \mathbf{w} \in V$.

$$
A_{i j}=\left\langle\boldsymbol{\epsilon}_{i}, T\left(\boldsymbol{\epsilon}_{j}\right)\right\rangle, \quad\left(A^{\dagger}\right)_{i j}=\left\langle\boldsymbol{\epsilon}_{i}, T^{\dagger}\left(\boldsymbol{\epsilon}_{j}\right)\right\rangle .
$$

- hermitian maps: $\langle\mathbf{v}, T(\mathbf{w})\rangle=\langle T(\mathbf{v}), \mathbf{w}\rangle$ for all $\mathbf{v}, \mathbf{w} \in V$. or $T^{\dagger}=T \quad$ (observables in QM) $A_{i j}=\left\langle\epsilon_{i}, T\left(\epsilon_{j}\right)\right\rangle$ is a hermitian matrix

Theorem 1.24. Let V be an inner product vector space. If $T: V \rightarrow V$ is self-adjoint then
(i) All eigenvalues of T are real.
(ii) Eigenvectors for different eigenvalues are orthogonal.

- unitary linear maps: linear map $U: V \rightarrow V$ with $\langle U(\mathbf{v}), U(\mathbf{w})\rangle=\langle\mathbf{v}, \mathbf{w}\rangle$ for all $\mathbf{v}, \mathbf{w} \in V$.

$$
\Leftrightarrow \quad U^{\dagger} U=\mathrm{id}
$$

$U_{i j}=\left\langle\boldsymbol{\epsilon}_{i}\right| U\left|\boldsymbol{\epsilon}_{j}\right\rangle$ is a unitary matrix

Dirac notation

The map $\imath: V \rightarrow V^{*}$ defined by $\imath(\mathrm{v})(\mathrm{w}):=\langle\mathbf{v}, \mathbf{w}\rangle$ is bijective, so vectors and dual vectors can be identified. Dirac notation makes this manifest:

$$
\begin{array}{rrr}
\imath(\mathbf{v}) \rightarrow\langle\mathbf{v}| & \mathbf{w} \rightarrow|\mathbf{w}\rangle & \imath(\mathbf{v})(\mathbf{w})=\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{v} \mid \mathbf{w}\rangle \\
\text { bra } & \text { ket } & \text { bra-c-ket }
\end{array}
$$

matrix elements: $T_{i j}=\left\langle\boldsymbol{\epsilon}_{i}\right| T\left|\boldsymbol{\epsilon}_{j}\right\rangle=\left\langle\boldsymbol{\epsilon}_{i}, T\left(\boldsymbol{\epsilon}_{j}\right)\right\rangle$
operators in terms of ortho-normal basis: $T=\sum_{k, l=1}^{n} T_{k l}\left|\boldsymbol{\epsilon}_{k}\right\rangle\left\langle\boldsymbol{\epsilon}_{l}\right|$
identity in terms of ortho-normal basis: id $=\sum_{i=1}^{n}\left|\epsilon_{i}\right\rangle\left\langle\epsilon_{i}\right|$
components of a vector: $|\mathbf{v}\rangle=\sum_{i=1}^{n}\left|\boldsymbol{\epsilon}_{i}\right\rangle\left\langle\boldsymbol{\epsilon}_{i} \mid \mathbf{v}\right\rangle$
scalar product: $\langle\mathbf{v} \mid \mathbf{w}\rangle=\sum_{i=1}^{n}\left\langle\mathbf{v} \mid \boldsymbol{\epsilon}_{i}\right\rangle\left\langle\boldsymbol{\epsilon}_{i} \mid \mathbf{w}\right\rangle, \quad \||\mathbf{v}\rangle \|^{2}=\langle\mathbf{v} \mid \mathbf{v}\rangle=\sum_{i=1}^{n}\left\langle\mathbf{v} \mid \boldsymbol{\epsilon}_{i}\right\rangle\left\langle\boldsymbol{\epsilon}_{i} \mid \mathbf{v}\right\rangle$
In Hilbert space with ortho-normal basis finite-dimensional expressions generalise to infinite dimensions.

Examples of inner product vector spaces

- \mathbb{R}^{n} or \mathbb{C}^{n} with standard scalar product $\langle\mathbf{v}, \mathbf{w}\rangle:=\sum_{i=1}^{n} v_{i}^{*} w_{i}$
- function vector spaces, e.g. $\mathcal{C}[a, b]$ with $\langle f, g\rangle:=\int_{a}^{b} d x f(x)^{*} g(x)$. Interesting operators:
- multiplication with function, $M_{p}(f)(x):=p(x) f(x): M_{p}^{\dagger}=M_{p^{*}}$ since

$$
\left\langle f, M_{p}(g)\right\rangle=\int_{a}^{b} d x f(x)^{*}(p(x) g(x))=\int_{a}^{b}\left(p(x)^{*} f(x)\right)^{*} g(x)=\left\langle M_{p^{*}}(f), g\right\rangle
$$

- multiplication with phase $e^{i u(x)}$ is unitary since

$$
M_{p} \circ M_{q}=M_{p q}, \quad M_{1}=\mathrm{id} \quad M_{e^{i u}}^{\dagger} \circ M_{e^{i u}}=M_{e^{-i u}} \circ M_{e^{i u}}=M_{1}=\mathrm{id}
$$

- translation operator $T_{a}(f)(x):=f(x-a)$. Its adjoint is $T_{a}^{\dagger}=T_{-a}$ since

$$
\left\langle f, T_{a}(g)\right\rangle=\int_{-\infty}^{\infty} d x f(x)^{*} g(x-a) \overbrace{=}^{y=x-a} \int_{-\infty}^{\infty} d y f(y+a)^{*} g(y)=\left\langle T_{-a}(f), g\right\rangle
$$

- the translation operator is unitary, since $T_{a}^{\dagger} \circ T_{a}=T_{-a} \circ T_{a}=\mathrm{id}$
- the differential operator $D=d / d x$ has adjoint $\left(\frac{d}{d x}\right)^{\dagger}=-\frac{d}{d x}, \quad\left(\pm i \frac{d}{d x}\right)^{\dagger}= \pm i \frac{d}{d x}$ since

$$
\langle f, D(g)\rangle=\int_{-\infty}^{\infty} d x f(x)^{*} g^{\prime}(x)=\underbrace{\left[f(x)^{*} g(x)\right]_{-\infty}^{\infty}}_{=0}-\int_{-\infty}^{\infty} d x f^{\prime}(x)^{*} g(x)=\langle-D(f), g\rangle
$$

(assuming functions vanish at boundaries)

What is a Hilbert space?

Maths answer: An inner product vector space which is complete. Physics answer: The arena for quantum mechanics.

Complete means that every Cauchy sequence converges.

$\left(\mathbf{v}_{k}\right)$ Cauchy sequence

$\left(\mathbf{V}_{k}\right)$ converges to \mathbf{V}

Hilbert space has an ortho-normal basis iff it is separable -> previous formulae generalise . . .

Hilbert space which appear in practice are separable . . .

Examples of Hilbert spaces

- \mathbb{R}^{n} and \mathbb{C}^{n} with standard scalar product (the latter for finite-dimensional quantum systems)
- general construction: measure set $(X, \Sigma, \mu) \rightarrow L^{2}(X)$
- $\left(\mathbb{N}, \Sigma_{c}, \mu_{c}\right)$ with counting measure $\mu_{c} \rightarrow \ell^{2}$ sequences $\left(x_{i}\right)_{i=1}^{\infty},\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}$ finite

$$
\text { scalar product: }\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle=\sum_{i=1}^{\infty} \bar{x}_{i} y_{i}
$$

(quantum mechanics in "matrix mechanics" formulation)

- Lebesgue measure space $\left(U, \Sigma_{L}(U), \mu_{L}\right), U \subset \mathbb{R}^{n} \rightarrow L^{2}(U)=$ measurable functions $f: U \rightarrow \mathbb{R}$ with $\left(\int_{U} d x|f(x)|^{2}\right)^{1 / 2}$ finite.

$$
\text { scalar product: }\langle f, g\rangle=\int_{U} d x f(x)^{*} g(x)
$$

(quantum mechanics in "wave function" formulation)

- Generalisation to include weight function $w:[a, b] \rightarrow \mathbb{R}^{>0} \rightarrow L_{w}^{2}([a, b])=$ measurable function $f:[a, b] \rightarrow \mathbb{R}$ with $\left(\int_{[a, b]} d x w(x)|f(x)|^{2}\right)^{1 / 2}$ finite.

$$
\text { scalar product: }\langle f, g\rangle:=\int_{[a, b]} d x w(x) f(x)^{*} g(x)
$$

Fourier analysis

(a) Fourier series

Maths idea: find an ortho-normal basis for $L^{2}([a, b])$ based on sine and cosine Physics idea: discrete frequency decomposition: coordinates=frequency strength The Fourier series comes in four flavours:

- Cosine Fourier series on $L_{\mathbb{R}}^{2}([0, a])$:

$$
\begin{aligned}
& \text { basis: } \quad \tilde{c}_{0}=\frac{1}{\sqrt{a}}, \quad \tilde{c}_{k}:=\sqrt{\frac{2}{a}} \cos \left(\frac{k \pi x}{a}\right), \quad k=1,2, \ldots \\
& \text { series: } \quad f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{a}\right) \quad \text { where } \quad a_{k}=\frac{2}{a} \int_{0}^{a} d x \cos \left(\frac{k \pi x}{a}\right) f(x)
\end{aligned}
$$

Parseval's eqn.: $\frac{2}{a} \int_{0}^{a} d x|f(x)|^{2}=\frac{\left|a_{0}\right|^{2}}{2}+\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}$

- Sine Fourier series on $L_{\mathbb{R}}^{2}([0, a])$:

$$
\begin{array}{ll}
\text { basis: } & \tilde{s}_{k}=\sqrt{\frac{2}{a}} \sin \left(\frac{k \pi x}{a}\right), \quad k=1,2, \ldots \\
\text { series: } & f(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi x}{a}\right) \quad \text { where } \quad b_{k}=\frac{2}{a} \int_{0}^{a} d x \sin \left(\frac{k \pi x}{a}\right) f(x)
\end{array}
$$

Parseval's eqn.: $\frac{2}{a} \int_{0}^{a} d x|f(x)|^{2}=\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}$

- Real standard Fourier series on $L_{\mathbb{R}}^{2}([-a, a])$:

$$
\begin{aligned}
& \text { basis: } \quad c_{0}:=\frac{1}{\sqrt{2 a}}, \quad c_{k}:=\frac{1}{\sqrt{a}} \cos \left(\frac{k \pi x}{a}\right), \quad s_{k}:=\frac{1}{\sqrt{a}} \sin \left(\frac{k \pi x}{a}\right), \quad k=1,2, \ldots, \\
& \text { series: } \quad f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos \left(\frac{k \pi x}{a}\right)+b_{k} \sin \left(\frac{k \pi x}{a}\right)\right) \\
& \\
& \quad a_{0}=\frac{1}{a} \int_{-a}^{a} d x f(x), \quad a_{k}=\frac{1}{a} \int_{-a}^{a} d x \cos \left(\frac{k \pi x}{a}\right) f(x), \quad b_{k}=\frac{1}{a} \int_{-a}^{a} d x \sin \left(\frac{k \pi x}{a}\right) f(x)
\end{aligned}
$$

Parseval's eqn.: $\frac{1}{a} \int_{-a}^{a} d x|f(x)|^{2}=\frac{\left|a_{0}\right|^{2}}{2}+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)$

- Complex standard Fourier series on $L_{\mathbb{C}}^{2}([-a, a])$:

$$
\begin{aligned}
& \text { basis: } \quad e_{k}:=\frac{1}{\sqrt{2 a}} \exp \left(\frac{i k \pi x}{a}\right), \quad k \in \mathbb{Z} \\
& \text { series: } f(x)=\sum_{k \in \mathbb{Z}} a_{k} \exp \left(\frac{i k \pi x}{a}\right) \quad \text { where } \quad a_{k}=\frac{1}{2 a} \int_{-a}^{a} d x \exp \left(\frac{-i k \pi x}{a}\right) f(x)
\end{aligned}
$$

Parseval's eqn.: $\frac{1}{2 a} \int_{-a}^{a} d x|f(x)|^{2}=\sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}$

- Cosine series: $f(x)=x, \quad x \in[0, \pi]$

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{\cos (k x)}{k^{2}}
$$

k up to 5

k up to 3

k up to 7

- Sine series: $f(x)=x, \quad x \in[0, \pi]$

$$
f(x)=2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin (k x)
$$

- Real standard Fourier series:

$$
f(x)=|x|, \quad x \in[-\pi, \pi]
$$

(even extension)

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{\cos (k x)}{k^{2}}
$$

- Real standard Fourier series

$$
\begin{aligned}
& f(x)=x, \quad x \in[-\pi, \pi] \\
& \text { (odd extension) }
\end{aligned}
$$

$$
f(x)=2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin (k x)
$$

kup to 3

k up to 2
k up to 4

Parseval: $\quad \frac{2 \pi^{2}}{3}=\frac{1}{\pi} \int_{-\pi}^{\pi} d x x^{2}=\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}=4 \sum_{k=1}^{\infty} \frac{1}{k^{2}}$

(b) Fourier transform

Maths idea: Fourier transform is a unitary map $\mathcal{T}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$
Physics idea: frequency analysis, in QM: relation between wave fct. in position and momentum space

- Definition of Fourier transform

$$
\begin{aligned}
\hat{f}(\mathbf{k})= & \mathcal{F}(f)(\mathbf{k}):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} d^{n} x \exp (-i \mathbf{x} \cdot \mathbf{k}) f(\mathbf{x}) \\
& \tilde{\mathcal{F}}(\hat{f})(\mathbf{x}):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} d k^{n} \hat{f}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \quad \text { (inverse FT) }
\end{aligned}
$$

- Interpretation

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(i k_{0} x\right) \quad \Rightarrow \quad \hat{f}(k)=\frac{1}{2 \pi} \int_{\mathbb{R}} d x \exp \left(i\left(k_{0}-k\right) x\right)=\delta\left(k-k_{0}\right)
$$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \sum_{i} \exp \left(i k_{i} x\right) \Rightarrow \hat{f}(k)=\sum_{i} \delta\left(k-k_{i}\right)
$$

superposition with wave numbers $k_{i} \rightarrow \quad$ FT has sharp peaks at k_{i}

$$
f_{a}(\mathbf{x})=e^{-\frac{|\mathbf{x}|^{2}}{2 a^{2}}} \Rightarrow \widehat{f}_{a}(\mathbf{k})=a^{n} e^{-a^{2}|\mathbf{k}|^{2} / 2}
$$

Gaussian with width a \quad Gaussian with width $1 / a$
$\Delta x \sim a, \quad \Delta k \sim 1 / a \Rightarrow \Delta x \Delta k \sim 1 \longleftarrow$ uncertainty relation

$$
\begin{array}{ll}
f(x)=e^{-x^{2}} \sin \left(k_{0} x\right) & \text { (blue) } \\
|\mathcal{F}(f)(x)| & \text { (yellow) }
\end{array}
$$

- How does FT intertwine with other linear operators?
translation
$T_{\mathbf{a}}(f)(\mathbf{x}):=f(\mathbf{x}-\mathbf{a})$,
modulation
dilatation
$\mathcal{D}_{\lambda}(f)(\mathbf{x}):=f(\lambda \mathbf{x}), \quad M_{g}(f)(\mathbf{x}):=g(\mathbf{x}) f(\mathbf{x})$
$\mathcal{F} \circ T_{\mathbf{a}}=E_{-\mathbf{a}} \circ \mathcal{F} \quad \mathcal{F} \circ E_{\mathbf{b}}=T_{\mathbf{b}} \circ \mathcal{F} \quad$ exchanges translation and modulation"
$\mathcal{F} \circ \mathcal{D}_{\lambda}=\frac{1}{|\lambda|^{n}} \mathcal{D}_{1 / \lambda} \circ \mathcal{F} \quad$ "dilation with λ to dilation with $1 / \lambda$ "
$\mathcal{F} \circ D_{x_{j}}=M_{i k_{j}} \circ \mathcal{F} \quad \mathcal{F} \circ M_{x_{j}}=i D_{k_{j}} \circ \mathcal{F} . \quad$ exchanges differentiation and multiplication"
- Convolution

$$
(f \star g)(\mathbf{x}):=\int_{\mathbb{R}^{n}} d y^{n} f(\mathbf{y}) g(\mathbf{x}-\mathbf{y}) \quad \Rightarrow \quad \widehat{f \star g}=(2 \pi)^{n / 2} \hat{f} \hat{g}
$$

Example:

$\hat{\chi}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} d x e^{-i k x}=\sqrt{\frac{2}{\pi}} \frac{\sin k}{k}$

$$
\hat{f}(k)=\widehat{\chi \star \chi}(k)=\sqrt{2 \pi} \hat{\chi}^{2}(k)=2 \sqrt{\frac{2}{\pi}} \frac{\sin ^{2} k}{k^{2}}
$$

Orthogonal polynomials

Setting: $L_{w}^{2}([a, b])$ with scalar product $\langle f, g\rangle=\int_{a}^{b} d x w(x) f(x) g(x)$

Q: Can we find an ortho-normal basis of polynomials on this space?

$$
\left(P_{n}\right)_{n=0}^{\infty} \quad P_{n} \text { is of degree } n \quad\left\langle P_{n}, P_{m}\right\rangle=h_{n} \delta_{n m}
$$

If we can find such a basis then every $f \in L_{w}^{2}([a, b])$ can be expanded as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \hat{P}_{n}(x), \quad a_{n}=\int_{a}^{b} d x w(x) \hat{P}_{n}(x) f(x) \quad \quad \hat{P}_{n}:=\frac{1}{\left\|P_{n}\right\|} P_{n}=\frac{1}{\sqrt{h_{n}}} P_{n}
$$

We can indeed find such polynomial bases and thinking about the different types of intervals and different weight functions leads to a classification.
(An elementary method to obtain the orthogonal polynomials is to apply the Gram-Schmidt procedure to the monomials $\left(1, x, x^{2}, x^{3}, \cdots\right)$.)

Types of orthogonal polynomials

$[a, b]$	α, β	X	$w(x)$	name	symbol
$[-1,1]$	$\alpha>-1, \beta>-1$	$x^{2}-1$	$(1-x)^{\alpha}(x+1)^{\beta}$	Jacobi	$P_{n}^{(\alpha, \beta)}$
$[-1,1]$	$\alpha=\beta>-1$	$x^{2}-1$	$(1-x)^{\alpha}(x+1)^{\alpha}$	Gegenbauer	$P_{n}^{(\alpha, \alpha)}$
$[-1,1]$	$\alpha=\beta= \pm \frac{1}{2}$	$x^{2}-1$	$(1-x)^{ \pm 1 / 2}(x+1)^{ \pm 1 / 2}$	Chebyshev	$T_{n}^{(\pm)}$
$[-1,1]$	$\alpha=\beta=0$	$x^{2}-1$	1	Legendre	P_{n}
$[0, \infty]$	$\alpha>-1$	x	$e^{-x} x^{\alpha}$	Laguerre	$L_{n}^{(\alpha)}$
$[0, \infty]$	$\alpha=0$	x	e^{-x}	Laguerre	L_{n}
$[-\infty, \infty]$		1	$e^{-x^{2}}$	Hermite	H_{n}

Rodriguez formula:

$$
\begin{aligned}
P_{n}(x)=\frac{1}{K_{n} w(x)} \frac{d^{n}}{d x^{n}}\left(w(x) X^{n}\right), \quad X & = \begin{cases}(b-x)(a-x) & \text { for }|a|,|b|<\infty \\
x-a & \text { for }|a|<\infty, b=\infty \\
1 & \text { for }-a=b=\infty\end{cases} \\
w(x) & = \begin{cases}(b-x)^{\alpha}(x-a)^{\beta} & \text { for }|a|,|b|<\infty \\
e^{-x}(x-a)^{\alpha} & \text { for }|a|<\infty, b=\infty \\
e^{-x^{2}} & \text { for }-a=b=\infty\end{cases}
\end{aligned}
$$

All these different types of orthogonal polynomials have common features:

Recursion formula: $\quad P_{n+1}(x)=\left(A_{n} x+B_{n}\right) P_{n}(x)-C_{n} P_{n-1}(x)$

Differential equation: $\quad X y^{\prime \prime}+K_{1} P_{1} y^{\prime}-n\left(k_{1} K_{1}+\frac{n-1}{2} X^{\prime \prime}\right) y=0$
Generating function: $\quad G(x, z)=\sum_{n=0}^{\infty} P_{n}(x) z^{n}$
Where do they appear in physics?

- Legendre: problem with an angle θ so that $\cos (\theta) \in[-1,1]$, problems with spherical coordinates (r, θ, ϕ),
Laplacian on sphere, spherical harmonics,
E\&M: multipole expansion, QM: angular part of H wave function.
- Laguerre: typically function of a radial coordinate $r \in[0, \infty]$, QM: radial part of H wave function.
- Hermite: depend on coordinate $x \in[-\infty, \infty]$, QM: essentially wave function of quantum harmonic oscillator.

(a) Legendre polynomials

- Orthogonal polynomials P_{n} on $L^{\overline{2}}([-1,1])$
- Rodriguez formula: $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
- First few: $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
- Expansion: $f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x), \quad a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} d x P_{n}(x) f(x)$
- Recursion formula: $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$
- Differential equation: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$
- Generating function: $G(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) z^{n}$

Application: Multipole expansion of Coulomb term

$$
V\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r} \frac{1}{\sqrt{1-2\left(\frac{r^{\prime}}{r}\right) \cos \theta+\left(\frac{r^{\prime}}{r}\right)^{2}}}=\frac{1}{r} G(x, z)=\frac{1}{r} \sum_{n=0}^{\infty} P_{n}(\cos \theta)\left(\frac{r^{\prime}}{r}\right)^{n}
$$

(a) Hermite polynomials

- Orthogonal polynomials H_{n} on $L_{w}^{2}(\mathbb{R})$, where $w(x)=e^{-x^{2}}$
- Rodriguez formula: $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$
- First few: $H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2, \quad H_{3}(x)=8 x^{3}-12 x$
- Recursion relation: $H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$
- Differential equation: $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$
- Generating function: $G(x, z)=\exp \left(2 x z-z^{2}\right)=\sum_{n=0}^{\infty} H_{n}(x) \frac{z^{n}}{n!}$

Application: Quantum harmonic oscillator

$$
\begin{array}{ll}
H \Psi=E \Psi & H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d \xi^{2}}+\frac{1}{2} m \omega^{2} \xi^{2} \\
\text { define } x=\sqrt{\frac{m \omega}{\hbar}} \xi, & \epsilon=\frac{E}{\hbar \omega} \\
\mathcal{H} \psi=\epsilon \psi & \mathcal{H}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right)
\end{array}
$$

(i) wave function treatment

$$
\begin{array}{llr}
\psi(x)=y(x) e^{-x^{2} / 2} & \xrightarrow{\text { into Schroedinger eq. }} & y^{\prime \prime}-2 x y^{\prime}+(2 \epsilon-1) y=0 \\
\psi_{n}(x)=H_{n}(x) e^{-x^{2} / 2} / A_{n} & \epsilon_{n}=n+\frac{1}{2} & E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
\end{array}
$$

(ii) operator treatment

$$
\begin{aligned}
& \text { define } a=\frac{1}{\sqrt{2}}\left(x+\frac{d}{d x}\right), a^{\dagger}=\frac{1}{\sqrt{2}}\left(x-\frac{d}{d x}\right) \text { and } N=a^{\dagger} a \\
& \Rightarrow \quad H=N+\frac{1}{2} \quad\left[a, a^{\dagger}\right]=1 \quad\left[N, a^{\dagger}\right]=a^{\dagger} \quad[N, a]=-a
\end{aligned}
$$

define ground state $|0\rangle$ by $a|0\rangle=0$, and state $|n\rangle$ by $|n\rangle=\frac{1}{\sqrt{n}} a^{\dagger}|n-1\rangle$

$$
\Rightarrow \quad N|n\rangle=n|n\rangle \quad \mathcal{H}|n\rangle=\left(n+\frac{1}{2}\right)|n\rangle
$$

(iii) relation between (i) and (ii)

$$
\psi_{n}(x)=\langle x \mid n\rangle
$$

Ordinary linear differential equations

The problem

Solve ordinary, second order homogeneous or inhomogeneous diff. eqs.:

$$
\left.\left.\begin{array}{l}
\alpha_{2}(x) y^{\prime \prime}+\alpha_{1}(x) y^{\prime}+\alpha_{0}(x) y=f(x) \\
\alpha_{2}(x) y^{\prime \prime}+\alpha_{1}(x) y^{\prime}+\alpha_{0}(x) y=0
\end{array}\right\} \quad \text { or } \quad \begin{array}{l}
T y=f \\
T y=0
\end{array}\right\} \quad T=\alpha_{2} D^{2}+\alpha_{1} D+\alpha_{0}
$$

Initial conditions:

Solutions and how to find them

- structure of solution space

Two solutions $y_{1}, y_{2} \in V_{H}$ form a basis of V_{H} iff the Wronski determinant

$$
W:=\operatorname{det}\left(\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)(x)=\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)(x)
$$

is non-zero.

Example: $y^{\prime \prime}+y=0 \quad \rightarrow \quad y_{1}(x)=\sin (x), \quad y_{2}(x)=\cos (x)$

$$
W=-\sin ^{2}(x)-\cos ^{2}(x)=-1 \quad \Rightarrow \quad\left(y_{1}, y_{2}\right) \text { basis of } V_{H}
$$

- How to get an inhom. solution y from a basis $\left(y_{1}, y_{2}\right)$ of V_{H} :

$$
y(x)=\int_{x_{0}}^{x} d t G(x, t) f(t) \quad G(x, t)=\frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{\alpha_{2}(t) W(t)}
$$

Example: $\quad T y=f, \quad T=\frac{d^{2}}{d x^{2}}+1$

$$
\begin{aligned}
\Rightarrow & V_{H}=\operatorname{Span}\left(y_{1}=\sin y_{2}=\cos \right), \quad W=-1, \quad \alpha_{2}=1 \\
\Rightarrow & G(x, t)=\sin (x-t) \\
& y_{0}(x)=\int_{x_{0}}^{x} d t G(x, t) f(t)=\int_{x_{0}}^{x} d t \sin (x-t) f(t) \\
& V_{I}=y_{0}+V_{H}
\end{aligned}
$$

- How to find a solution to the hom. eqs. (if you already have one)

Suppose y is a solution, $T y=0$. Then, another solution \tilde{y} can be obtained by

$$
\tilde{y}(x)=y(x) u(x), \quad u^{\prime}(x)=\frac{1}{y(x)^{2}} \exp \left(-\int_{x_{0}}^{x} d t \frac{\alpha_{1}(t)}{\alpha_{2}(t)}\right)
$$

Example: The other solution to the $(n=1)$ Legendre diff. eqn.

$$
\begin{aligned}
& \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \quad \text { solved by } \quad y(x)=P_{1}(x)=x \\
& \alpha_{1}(x)=-2 x \quad \alpha_{2}(x)=1-x^{2} \\
& \Rightarrow \quad u^{\prime}(x)=\frac{1}{x^{2}} \exp \left(\int^{x} d t \frac{2 t}{1-t^{2}}\right)=\frac{1}{x^{2}\left(1-x^{2}\right)} \\
& \Rightarrow \quad u(x)=-\frac{1}{x}+\frac{1}{2} \ln \frac{1+x}{1-x} \\
& \Rightarrow \quad \tilde{y}(x)=x u(x)=\frac{x}{2} \ln \frac{1+x}{1-x}-1
\end{aligned}
$$

- How to find a solution to the hom. eqs. in the first place

Power series Ansatz: $y(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$
Insert and determine recursion formula for coefficients a_{k}
Works well if $\alpha_{2}, \alpha_{1}, \alpha_{0}$ are polynomial ...
Example: Legendre differential equation

$$
\begin{aligned}
& \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \\
& \Rightarrow \quad \sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2}-(k(k+1)-n(n+1)) a_{k}\right] x^{k}=0 \\
& \Rightarrow \quad a_{k+2}=\frac{k(k+1)-n(n+1)}{(k+1)(k+2)} a_{k}, \quad k=0,1, \ldots
\end{aligned}
$$

- How to satisfy the boundary conditions
- Find all hom. solutions, V_{H}
- Find all solutions in V_{H} which satisfy the right boundary conditions
- Construct inhom. solution which satisfies the right boundary conditions
- How to find a solution to inhom. eqs. which satisfies boundary conditions
E.g. Dirichlet: $\quad \alpha_{2}(x) y^{\prime \prime}+\alpha_{1}(x) y^{\prime}+\alpha_{0}(x) y=f(x), \quad y(a)=0, \quad y(b)=0$

$$
y(x)=\int_{a}^{b} d t G(x, t) f(t) \quad G(x, t)=\frac{y_{1}(t) y_{2}(x) \theta(x-t)+y_{1}(x) y_{2}(t) \theta(t-x)}{\alpha_{2}(t) W(t)}
$$

$$
\text { (where } y_{1}(a)=y_{2}(b)=0 \text {) }
$$

Example: $T y=f, \quad T=\frac{d^{2}}{d x^{2}}+1 \quad y(0)=y(\pi / 2)=0$

$$
\begin{aligned}
& y_{1}=\sin , y_{2}=\cos , W=-1, \alpha_{2}=1 \\
& \Rightarrow \quad G(x, t)=-\sin (t) \cos (x) \theta(x-t)-\sin (x) \cos (t) \theta(t-x) \\
& \Rightarrow \quad y(x)=\int_{0}^{\pi / 2} d t G(x, t) f(t)
\end{aligned}
$$

Sturm Liouville operators

Every $T=\alpha_{2}(x) \frac{d^{2}}{d x^{2}}+\alpha_{1}(x) \frac{d}{d x}+\alpha_{0}(x)$ can be re-written in SL form

$$
T_{\mathrm{SL}}=\frac{1}{w(x)}\left[\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x)\right]
$$

where $\quad p(x)=\exp \left(\int_{x_{0}}^{x} d t \frac{\alpha_{1}(t)}{\alpha_{2}(t)}\right), \quad w(x)=\frac{p(x)}{\alpha_{2}(x)}, \quad q(x)=\alpha_{0}(x) w(x)$

Why is this interesting?
A: $T_{\text {SL }}$ is a hermitian operator for the scalar product $\langle f, g\rangle=\int_{a}^{b} d x w(x) f(x) g(x)$ (if boundary terms can be made to vanish)

Consider Sturm-Liouville eigenvalue problem: $T_{\mathrm{SL}} y=\lambda y$
-> eigenfunctions are orthogonal w.r.t. above scalar product

Example: Hermite differential equation in SL form

$$
\begin{aligned}
& T=\frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x} \quad \Rightarrow \quad \alpha_{2}=1, \quad \alpha_{1}=-2 x, \quad \alpha_{0}=0 \\
& p=\exp \left(\int^{x} d x \frac{\alpha_{1}}{\alpha_{2}}\right)=\exp \left(-2 \int^{x} d x x\right)=e^{-x^{2}} \quad w=\frac{p}{\alpha_{2}}=e^{-x^{2}} \\
& \\
& \\
& \Rightarrow \quad T_{\mathrm{SL}}=\frac{1}{w} \frac{d}{d x}\left(p \frac{d}{d x}\right)=e^{x^{2}}\left(\frac{d}{d x} e^{-x^{2}} \frac{d}{d x}\right)
\end{aligned}
$$

Orthogonal functions can be understood in terms of SL eigenvalue problem:

name	DEQ	p	q	w	$\mathcal{L}_{\mathrm{SL}}[a, b]$	bound. cond.	λ	y
sine Fourier	$y^{\prime \prime}=\lambda y$	1	0	1	$\mathcal{L}_{b}([0, a])$	$y(0)=y(\pi)=0$	$-\frac{\pi^{2} k^{2}}{a^{2}}$	$\sin \left(\frac{k \pi x}{a}\right)$
cosine Fourier	$y^{\prime \prime}=\lambda y$	1	0	1	$\mathcal{L}_{b}([0, a])$	$y^{\prime}(0)=y^{\prime}(\pi)=0$	$-\frac{\pi^{2} k^{2}}{a^{2}}$	$\cos \left(\frac{k \pi x}{a}\right)$
Fourier	$y^{\prime \prime}=\lambda y$	1	0	1	$\mathcal{L}_{p}([-a, a])$	periodic	$-\frac{\pi^{2} k^{2}}{a^{2}}$	$\sin \left(\frac{k \pi x}{a}\right)$
							$-\frac{\pi^{2} k^{2}}{a^{2}}$	$\cos \left(\frac{k \pi x}{a}\right)$
Legendre	$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}=\lambda y$	$1-x^{2}$	0	1	$\mathcal{L}([-1,1])$		$-n(n+1)$	P_{n}
Laguerre	$x y^{\prime \prime}+(1-x) y^{\prime}=\lambda y$	$x e^{-x}$	0	e^{-x}	$\mathcal{L}([0, \infty])$		$-n$	L_{n}
Hermite	$y^{\prime \prime}-2 x y^{\prime}=\lambda y$	$e^{-x^{2}}$	0	$e^{-x^{2}}$	$\mathcal{L}([-\infty, \infty])$		$-2 n$	H_{n}
Bessel	$y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{\nu^{2}}{x^{2}} y=\lambda y$	x	$-\frac{\nu^{2}}{x^{2}}$	x	$\mathcal{L}_{b}([0, a])$	$y(0)=y(a)=0$	$-\frac{z_{\nu k}^{2}}{a^{2}}$	$\hat{J}_{\nu k}$

Partial linear differential equations

- typical problem

On some region $\mathcal{V} \subset U \subset \mathbb{R}^{n}$ solve

$$
\Delta \phi=0 \quad \text { or } \quad \Delta \phi=\rho \quad \text { (where } \Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} \text {) }
$$

with boundary condition $\left.\phi\right|_{\partial \mathcal{V}}=h$ (Dirichlet) or $\left.\mathbf{n} \cdot \nabla \phi\right|_{\partial \mathcal{V}}=h \quad$ (von Neumann)

- Laplacian in different coordinates
- 2d Cartesian: $\quad \Delta_{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
«rectangular boundary conditions
- 2d complex: $\quad \Delta_{2}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$
«_"2d slices", use holomorphic fcts.
- 2d polar:

$$
\Delta_{2, \mathrm{pol}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} \longleftarrow \text { circle boundaries }
$$

- 3d Cartesian: $\quad \Delta_{3}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \longleftarrow$ rectangular boundary conditions
- 3d cylindrical: $\Delta_{3}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\Delta_{2, \text { pol }}+\frac{\partial^{2}}{\partial z^{2}} \longleftarrow$ cylindrical boundaries
- on sphere: $\quad \Delta_{S^{2}}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}$
- 3d spherical: $\quad \Delta_{3, \mathrm{sph}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]$

$$
\begin{aligned}
=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \triangle_{S^{2}} & \leftarrow \text { spherical boundaries } \\
& =-L^{2} \rightarrow \text { quantum mechanics }
\end{aligned}
$$

- Green function of Laplacian (= Coulomb potential)
$G(\mathbf{x}-\mathbf{a})=G_{\mathbf{a}}(\mathbf{x})=\left\{\begin{array}{ll}-\frac{1}{(n-2) v_{n}} \frac{1}{\mathbf{x}-\left.\mathbf{a}\right|^{n-2}} & \text { for } \\ \left.\frac{1}{2 \pi}|\mathrm{ln}| \mathbf{x}-\mathbf{a} \right\rvert\, & \text { for } \\ n=2\end{array} \quad \Rightarrow \quad \Delta G(\mathbf{x}-\mathbf{a})=\delta(\mathbf{x}-\mathbf{a})\right.$

Then, we can write down the solutions to $\Delta \phi=\rho$ as

can be chosen to satisfy
boundary conditions
check: $\quad \Delta_{\mathbf{x}} \phi(\mathbf{x})=\underbrace{\Delta_{\mathbf{x}} \phi_{H}(\mathbf{x})}_{=0}+\int_{\mathbb{R}^{n}} d^{n} y \underbrace{\Delta_{\mathbf{x}} G(\mathbf{x}-\mathbf{y})}_{=\delta(\mathbf{x}-\mathbf{y})} \rho(\mathbf{y})=\rho(\mathbf{x})$

And now for explicit solution methods . . .

Example: Point sources in three dimensions

$$
\begin{aligned}
& G(\mathbf{x})=-\frac{1}{4 \pi|\mathbf{x}|} \quad \rho(\mathbf{x})=\sum_{i} q_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right) \\
& \Rightarrow \quad \phi(\mathbf{x})=\int_{\mathbb{R}^{3}} d^{3} y G(\mathbf{x}-\mathbf{y}) \rho(\mathbf{y})=-\sum_{i} q_{i} \int_{\mathbb{R}^{3}} d^{3} y \frac{\delta\left(\mathbf{y}-\mathbf{x}_{i}\right)}{4 \pi|\mathbf{x}-\mathbf{y}|}=-\sum_{i} \frac{q_{i}}{4 \pi\left|\mathbf{x}-\mathbf{x}_{i}\right|}
\end{aligned}
$$

Example: Rod in two dimensions

$$
\begin{aligned}
& G(\mathbf{x})=\frac{1}{2 \pi} \ln (|\mathbf{x}|) \quad \rho(\mathbf{x})=\left\{\begin{array}{cl}
q \delta(y) & \text { for }-l / 2 \leq x \leq l / 2 \\
0 & \text { otherwise }
\end{array}\right. \\
& \begin{aligned}
& \mathbf{x}=(x, y), \quad \mathbf{y}=\left(x^{\prime}, y^{\prime}\right) \\
& \Rightarrow \quad \phi(\mathbf{x})=\int_{\mathbb{R}^{2}} d^{2} y G(\mathbf{x}-\mathbf{y}) \rho(\mathbf{y}) \\
&=\frac{q}{4 \pi} \int_{-l / 2}^{l / 2} d x^{\prime} \int_{\mathbb{R}} d y^{\prime} \delta\left(y^{\prime}\right) \ln \left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right) \\
&=\frac{q}{4 \pi} \int_{-l / 2}^{l / 2} d x^{\prime} \ln \left(y^{2}+\left(x-x^{\prime}\right)^{2}\right) \\
&=\text { a bit horrible . . }
\end{aligned}
\end{aligned}
$$

- Quick and dirty - separation of variables
e.g. 2d Cartesian coordinates: $\quad \Delta \phi=0, \quad \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
separation Ansatz: $\phi(x, y)=X(x) Y(y)$

$$
\begin{gathered}
\Rightarrow \underbrace{\frac{X^{\prime \prime}}{X}(x)}_{=-\alpha^{2}}+\underbrace{\frac{Y^{\prime \prime}}{Y}(y)}_{=\alpha^{2}}=0 \quad \rightarrow \quad X^{\prime \prime}=-\alpha^{2} X, \quad Y^{\prime \prime}=\alpha^{2} Y \\
\Rightarrow \quad X(x)=a_{\alpha} \cos (\alpha x)+b_{\alpha} \sin (\alpha x), \quad Y(y)=c_{\alpha} e^{\alpha y}+d_{\alpha} e^{-\alpha y} \\
\\
\phi(x, y)=\sum_{\alpha}\left(a_{\alpha} \cos (\alpha x)+b_{\alpha} \sin (\alpha x)\right)\left(c_{\alpha} e^{\alpha y}+d_{\alpha} e^{-\alpha y}\right)
\end{gathered}
$$

Fix range of α and constants from boundary conditions

Example: Potential on an infinite strip

(1) $\phi(x, y)=\sum_{\alpha}\left(a_{\alpha} \cos (\alpha x)+b_{\alpha} \sin (\alpha x)\right)\left(c_{\alpha} e^{\alpha y}+d_{\alpha} e^{-\alpha y}\right)$

(2) $\phi(x, y)=\sum_{k=1,2, \ldots} b_{k} e^{-k \pi y / a} \sin \left(\frac{k \pi x}{a}\right)$
(3) $\phi_{0}=\phi(x, 0)=\sum_{k=1,2, \ldots} b_{k} \sin \left(\frac{k \pi x}{a}\right)$

$$
a_{\alpha}=0, \quad \alpha=\frac{k \pi}{a}
$$

(4) $b_{k}=\frac{2}{a} \int_{0}^{a} d x \sin \left(\frac{k \pi x}{a}\right) \phi_{0}=\left\{\begin{array}{cl}\frac{\phi_{0}}{k \pi} & \text { for } k \text { odd } \\ 0 & \text { for } k \text { even }\end{array}\right.$
(5) $\phi(x, y)=\frac{\phi_{0}}{\pi} \sum_{k=0,1, \ldots} \frac{1}{2 k+1} \sin \left(\frac{(2 k+1) \pi x}{a}\right) e^{-(2 k+1) \pi y / a}$

- More systematic - expanding in an orthonormal function system
e.g. 2d polar coordinates: $\quad \Delta \phi=0$

$$
\Delta=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

Fouries series in $\varphi: \quad \phi(r, \varphi)=\frac{A_{0}(r)}{2}+\sum_{k=1}^{\infty}\left(A_{k}(r) \cos (k \varphi)+B_{k}(r) \sin (k \varphi)\right)$

$$
\begin{aligned}
& \Rightarrow \frac{1}{r}\left(r A_{0}^{\prime}\right)^{\prime}+\sum_{k=1}^{\infty}\left(\frac{1}{r}\left(r A_{k}^{\prime}\right)^{\prime}-\frac{k^{2}}{r^{2}} A_{k}\right) \cos (k \varphi)+\sum_{k=1}^{\infty}\left(\frac{1}{r}\left(r B_{k}^{\prime}\right)^{\prime}-\frac{k^{2}}{r^{2}} B_{k}\right) \sin (k \varphi)=0 \\
& \Rightarrow \quad A_{0}(r)=a_{0}+\tilde{a}_{0} \ln r, \quad A_{k}(r)=a_{k} r^{k}+\tilde{a}_{k} r^{-k}, \quad B_{k}(r)=b_{k} r^{k}+\tilde{b}_{k} r^{-k}
\end{aligned}
$$

$$
\phi(r, \varphi)=\frac{a_{0}}{2}+\frac{\tilde{a}_{0}}{2} \ln r+\sum_{k=1}^{\infty}\left(a_{k} r^{k}+\tilde{a}_{k} r^{-k}\right) \cos (k \varphi)+\sum_{k=1}^{\infty}\left(b_{k} r^{k}+\tilde{b}_{k} r^{-k}\right) \sin (k \varphi)
$$

Fix constants from boundary conditions

Example: Potential on a disk

(1) $\phi(r, \varphi)=\frac{a_{0}}{2}+\frac{\tilde{a}_{0}}{2} \ln r+\sum_{k=1}^{\infty}\left(a_{k} r^{k}+\tilde{a}_{k} r^{-k}\right) \cos (k \varphi)+\sum_{k=1}^{\infty}\left(b_{k} r^{k}+\tilde{b}_{k} r^{-k}\right) \sin (k \varphi)$
(2) finiteness of potential on disk: $\tilde{a}_{k}=\tilde{b}_{k}=0$

$$
\phi(r, \varphi)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} r^{k}\left(a_{k} \cos (k \varphi)+b_{k} \sin (k \varphi)\right)
$$

(3) $\phi(a, \varphi)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a^{k}\left(a_{k} \cos (k \varphi)+b_{k} \sin (k \varphi)\right) \stackrel{!}{=} \phi_{0}(\sin (\varphi)+\cos (\varphi))$ $\Rightarrow \quad a_{1}=\frac{\phi_{0}}{a}, \quad b_{1}=\frac{\phi_{0}}{a}, \quad$ all others 0
(4) $\phi(r \varphi)=\frac{\phi_{0} r}{a}(\sin (\varphi)+\cos (\varphi))=\frac{\phi_{0}}{a}(x+y)$

eigenvalue problem: $\Delta_{S^{2}} f=\lambda f$
eigenfcts. are spherical harmonics:

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \varphi)=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \varphi}, \quad l=0,1, \ldots, \quad m=-l, \ldots, l \\
& Y_{l}^{0}(\theta, \varphi)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta) \longrightarrow \varphi \text { independent problems } \\
& \Rightarrow \quad \Delta_{S^{2}} Y_{l}^{m}=-l(l+1) Y_{l}^{m}
\end{aligned}
$$

The spherical harmonics form on ortho-normal basis on $L^{2}\left(S^{2}\right)$ w.r.t. scalar product

$$
\langle f, g\rangle_{S^{2}}=\int_{S^{2}} f(x)^{*} g(x) d S, \quad d S=\sin \theta d \theta d \varphi
$$

- Laplacian in 3d spherical coordinates
want to solve $\Delta \phi=0$

$$
\Delta_{3, \mathrm{sph}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \Delta_{S^{2}}
$$

expand in spherical harmonics: $\quad \phi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} R_{l m}(r) Y_{l m}(\theta, \varphi)$

$$
\Rightarrow \quad \frac{d}{d r}\left(r^{2} R_{l m}^{\prime}\right)=l(l+1) R_{l m} \quad \Rightarrow \quad R_{l m}(r)=A_{l m} r^{l}+B_{l m} r^{-l-1}
$$

$$
\begin{aligned}
& \phi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(A_{l m} r^{l}+B_{l m} r^{-l-1}\right) Y_{l m}(\theta, \varphi) \\
& \phi(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+B_{l} r^{-l-1}\right) P_{l}(\cos \theta) \longrightarrow \varphi \text { independent problems }
\end{aligned}
$$

Fix constants from boundary conditions

Example: Sphere with constant potential

$$
\left.\begin{array}{cc}
\phi(a, \theta, \varphi)=\phi_{0}, & \phi(r, \theta, \varphi) \xrightarrow{r \rightarrow \infty} 0
\end{array} \quad \phi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(A_{l m} r^{l}+B_{l m} r^{-l-1}\right) Y_{l m}(\theta, \varphi)\right)
$$

(1) finiteness implies $B_{l m}=0$
(1) vanishing at infinity: $A_{l m}=0$

$$
\text { (2) } \begin{aligned}
\phi(a, \theta, \varphi) & =\sum_{l, m} A_{l m} a^{l} Y_{l m}(\theta, \varphi) \stackrel{!}{=} \phi_{0} \\
\Rightarrow \quad A_{l m} & =0 \text { for } l>0
\end{aligned}
$$

(2) $\phi(a, \theta, \varphi)=\sum_{l, m} B_{l m} a^{-l-1} Y_{l m}(\theta, \varphi) \stackrel{!}{=} \phi_{0}$
$\Rightarrow \quad B_{l m}=0$ for $l>0$
(3) $\phi(r, \theta, \varphi)=\phi_{0}$ for $r \leq a$
(3) $\phi(a, \theta, \varphi)=\frac{a \phi_{0}}{r}$ for $r \geq a$

$$
\left(\Delta+k^{2}\right) \psi=0, \quad\left(\Delta+k^{2}\right) \psi=f
$$

homogeneous eq.: eigenvalue problem for Laplacian
inhomogeneous eq.: Green function $G=A G_{+}+B G_{-}, A+B=1$ where

$$
G_{ \pm}(r)=\frac{e^{ \pm i k r}}{r}
$$

$$
\begin{aligned}
\left(\Delta+k^{2}\right) G(\mathbf{x}) & =-4 \pi \delta(\mathbf{x}) \\
\psi(\mathbf{x}) & =\psi_{\mathrm{hom}}(\mathbf{x})-\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} d^{3} y G(\mathbf{x}-\mathbf{y}) f(\mathbf{y})
\end{aligned}
$$

Example: Infinite spherical well
Problem: solve eigenvalue problem $-\Delta \psi=E \psi$ with boundary cond. $\left.\psi\right|_{|\mathbf{x}|=a}=0$
(1) recall: $\Delta_{3, \mathrm{sph}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \Delta_{S^{2}}$

$$
\Delta_{S^{2}} Y_{l m}=-l(l+1) Y_{l m}
$$

(2) expand: $\psi(r, \theta, \varphi)=\sum_{l . m} R_{l, m}(r) Y_{l m}(\theta, \varphi)$
(3) insert and find eq. for radial part $R_{l, m}: \rho^{2} \tilde{y}^{\prime \prime}+\rho \tilde{y}^{\prime}+\left(\rho^{2}-(l+1 / 2)^{2}\right) \tilde{y}=0$
(4) radial part: $R_{l, m}(r) \sim \frac{1}{\sqrt{r}} J_{l+1 / 2}(\sqrt{E} r)$

$$
\tilde{y}=\sqrt{\rho} y \quad \rho=\sqrt{E} r
$$

(5) $R_{l, m}(a)=0 \quad \Rightarrow \quad E=\frac{z_{l, n}^{2}}{a^{2}} \longleftarrow$ zeros of Bessel function $J_{l+1 / 2}$
(6) $\psi_{n, l, m}(r, \theta, \varphi) \sim \frac{1}{\sqrt{r}} J_{l+1 / 2}\left(\frac{z_{l, n} r}{a}\right) Y_{l m}(\theta, \varphi)$

Many problems in physics are of the form
(i) $H \psi=\frac{1}{c} \dot{\psi}$
(ii) $H \psi=\ddot{\psi}$
e.g. Schroedinger eq.
e.g. wave equations in E\&M
where $\psi=\psi(t, \mathbf{x})$ and H is a second order diff. operator in \mathbf{x}.

If $\left(\phi_{i}\right)_{i=1}^{\infty}$ is an ortho-normal basis of eigenfunctions of H,

$$
H \phi_{i}=\lambda_{i} \phi_{i}
$$

we can expand $\psi(t, \mathbf{x})=\sum_{i} A_{i}(t) \phi_{i}(\mathbf{x})$. The full solution is then

$$
\begin{array}{ll}
\text { (i) } \psi(t, \mathbf{x})=\sum_{i} a_{i} \phi_{i}(\mathbf{x}) e^{c \lambda_{i} t} & \text { (ii) } \psi(t, \mathbf{x})=\sum_{i}\left(a_{i} \sin \left(\sqrt{\left|\lambda_{i}\right|} t\right)+b_{i} \cos \left(\sqrt{\left|\lambda_{i}\right|} t\right)\right) \phi_{i}(\mathbf{x}) \\
\lambda_{i}<0
\end{array}
$$

Fix constants from initial conditions on $\psi(0, \mathbf{x})$ and $\dot{\psi}(0, \mathbf{x})$

Example: Evolution of a spin system

Hilbert space: $\mathcal{H}=\{c|\uparrow\rangle+d|\downarrow\rangle \mid c, d \in \mathbb{C}\}$
$\langle\uparrow \mid \uparrow\rangle=\langle\downarrow \mid \downarrow\rangle=1$
$\langle\uparrow \mid \downarrow\rangle=0$
Hamiltonian: $H_{i j}=\langle i| \hat{H}|j\rangle=a \delta_{i j}+\sum_{i} b_{\alpha}\left(\sigma_{\alpha}\right)_{i j}$, e.g.

$$
\begin{array}{ll}
\Rightarrow & \hat{H}\left|E_{ \pm}\right\rangle=E_{ \pm}\left|E_{ \pm}\right\rangle \\
& \left|E_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle \pm|\downarrow\rangle)
\end{array}
$$

eigenvalues $E_{ \pm}=a \pm b_{1}$
eigenvectors $\mathbf{v}_{ \pm}=(1, \pm 1)^{T} / \sqrt{2}$
time evolution: $|\psi(t)\rangle=\beta_{+} e^{-i E_{+} t}\left|E_{+}\right\rangle+\beta_{-} e^{-i E_{-} t}\left|E_{-}\right\rangle$
initial condition: $|\psi(0)\rangle=|\uparrow\rangle=\frac{1}{\sqrt{2}}\left(\left|E_{+}\right\rangle+\left|E_{-}\right\rangle\right) \quad \Rightarrow \quad|\psi(t)\rangle=\frac{e^{-i a t}}{\sqrt{2}}\left(e^{-i b_{1} t}\left|E_{+}\right\rangle+e^{i b_{1} t}\left|E_{-}\right\rangle\right)$
probability of finding spin down:

$$
\begin{aligned}
& p_{\downarrow}=|\langle\downarrow \mid \psi(t)\rangle|^{2}=\frac{1}{4}\left|\left(\left\langle E_{+}\right|-\left\langle E_{-}\right|\right)\left(e^{-i b_{1} t}\left|E_{+}\right\rangle+e^{i b_{1} t}\left|E_{-}\right\rangle\right)\right|^{2}=\sin ^{2}\left(b_{1} t\right) \\
& p_{\uparrow}=|\langle\uparrow \mid \psi(t)\rangle|^{2}=\cos ^{2}\left(b_{1} t\right)
\end{aligned}
$$

$$
\left(\Delta_{n}-\frac{\partial^{2}}{\partial t^{2}}\right) \psi=0, \quad\left(\Delta_{n}-\frac{\partial^{2}}{\partial t^{2}}\right) \psi=f
$$

- Solving the homogeneous equation by (spatial) Fourier transform

$$
\begin{gathered}
\psi(t, \mathbf{x})=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} d^{n} k \tilde{\psi}(t, \mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
\Rightarrow \quad \ddot{\tilde{\psi}}=-|\mathbf{k}|^{2} \tilde{\psi} \quad \Rightarrow \quad \tilde{\psi}(t, \mathbf{k})=\psi_{+}(\mathbf{k}) e^{i|\mathbf{k}| t}+\psi_{-}(\mathbf{k}) e^{-i \mathbf{k} \mid t} \\
\psi(t, \mathbf{x})=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} d^{n} k\left(\psi_{+}(\mathbf{k}) e^{i|\mathbf{k}| t}+\psi_{-}(\mathbf{k}) e^{-i|\mathbf{k}| t}\right) e^{-i \mathbf{k} \cdot \mathbf{x}}
\end{gathered}
$$

initial conditions $\psi(0, \mathbf{x})=\psi_{0}(\mathbf{x})$ and $\dot{\psi}(0, \mathbf{x})=\dot{\psi}_{0}(\mathbf{x}) \Rightarrow \quad \psi_{ \pm}=\frac{1}{2} \tilde{\mathcal{F}}\left(\psi_{0} \mp \frac{i}{|\mathbf{k}|} \dot{\psi}_{0}\right)$

Example: Evolution of a 1d wave
Initial condition: $\psi_{0}(x):=\psi(0, x)=\frac{e^{-x^{2} / 2}}{\sqrt{\pi}}, \quad \dot{\psi}(0, x)=0$

$$
\Rightarrow \quad \psi_{ \pm}(k)=\frac{1}{2} \tilde{\mathcal{F}}\left(\psi_{0}\right)(k)=\frac{e^{-k^{2} / 2}}{\sqrt{2 \pi}}
$$

recall: $\quad \psi(t, \mathbf{x})=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} d^{n} k\left(\psi_{+}(\mathbf{k}) e^{i|\mathbf{k}| t}+\psi_{-}(\mathbf{k}) e^{-i|\mathbf{k}| t}\right) e^{-i \mathbf{k} \cdot \mathbf{x}}$

$$
=\frac{1}{2 \pi} \int_{\mathbb{R}} d k e^{-k^{2} / 2}\left(e^{i(|k| t-k x)}+e^{i(-|k| t-k x)}\right)=\frac{e^{-\frac{1}{2}(t+x)^{2}}\left(e^{2 t x}+1\right)}{2 \sqrt{\pi}}
$$

- Solving the inhomogeneous equation with Green function

$$
G_{ \pm}(t, \mathbf{x})=\frac{\delta(t \mp|\mathbf{x}|)}{|\mathbf{x}|} \quad\left(\Delta_{3}-\frac{\partial^{2}}{\partial t^{2}}\right) G(t, \mathbf{x})=-4 \pi \delta(t) \delta(\mathbf{x})
$$

$$
\begin{aligned}
\psi(t, \mathbf{x}) & =\psi_{\mathrm{hom}}(t, \mathbf{x})-\frac{1}{4 \pi} \int_{\mathbb{R}^{4}} d t^{\prime} d^{3} x^{\prime} G_{+}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) f\left(t^{\prime}, \mathbf{x}^{\prime}\right) \\
& =\psi_{\mathrm{hom}}(t, \mathbf{x})-\frac{1}{4 \pi} \int_{\mathbb{R}^{4}} d t^{\prime} d^{3} x^{\prime} \frac{\delta\left(t-t^{\prime}-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} f\left(t^{\prime}, \mathbf{x}^{\prime}\right) \\
& =\psi_{\mathrm{hom}}(t, \mathbf{x})-\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} d^{3} x^{\prime}\left(\frac{f\left(t^{\prime}, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)_{t^{\prime}=t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
\end{aligned}
$$

Good luck!

