
Mathematical Methods

Problem Sheet 4: “Partial differential equations”

Andre Lukas, MT 2022

1) (Laplace equation in two dimensions)

(a) Consider complex coordinates z = x + iy and the 45 degree “cake slice” V = {z ∈
C | arg(z) ∈ [0, π/4] , |z| ∈ [0, a]} in the complex plane. Using complex methods, find
solutions φ to the two-dimensional Laplace equation on V which satisfy the boundary
conditions φ|arg(z)=0 = φ|arg(z)=π/4 = 0.

(b) From the solutions found in part (a), select the one which, in addition, satisfies the
boundary condition φ|z|=a = h, where h : [0, π/4]→ R is a given function.

(c) Show that the most general solution to the two-dimensional Laplace equation in polar
coordinates can be written as

φ(r, ϕ) =
a0
2

+
ã0
2

ln r +

∞∑
k=1

(akr
k + ãkr

−k) cos(kϕ) +

∞∑
k=1

(bkr
k + b̃kr

−k) sin(kϕ) . (1)

(d) Consider the annulus V = {(r, ϕ) | a− ≤ r ≤ a+} in the two-dimensional plane and
find the solution φ to the two-dimensional Laplace equation with boundary conditions
φ|r=a± = g± where a+ > a− > 0 and g± : [0, 2π]→ R are two given functions.

2) (Laplace equation in three dimensions)

(a) Consider the region V = {x ∈ R3 | |x ≥ b} outside a ball of radius b and a charge
distribution ρ in V given by a point charge q located at y ∈ V. Using the method of
mirror charge, solve the Laplace equation ∆φ = −4πρ in V, subject to the boundary
condition φ|x|=b = 0. Generalise to the case where ρ corresponds to a number of point
charges q1, . . . , qn located at y1, . . .yn ∈ V.

(b) Using properties of the spherical harmonics Ylm, show that the most general solution to
the Laplace equation ∆φ = 0 in spherical coordinates can be written as

φ(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(Almr
l +Blmr

−l−1)Ylm(θ, ϕ) . (2)

For cases where φ is independent of ϕ, write the above expression in terms of Legendre
polynomials.

(c) Find the solution to the homogeneous Laplace equation inside a ball V = {x ∈ R3 | |x ≤ a}
of radius a, given that the boundary condition is φ(a, θ, ϕ) = φ0(1 + cos θ), where φ0 is a
constant.
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(d) For the region V = {x ∈ R3 | |x ≥ b} outside a ball of radius b find the solution to the
homogeneous Laplace equation which satisfies φ(b, θ, ϕ) = φ0 sin2 θ and approaches zero
as r →∞.

3) (Multipole expansion)

(a) Explain why the solution to ∆φ = −4πρ which goes to zero at infinity can be written as

φ(r) = 4π
∞∑
l=0

l∑
m=−l

qlm
2l + 1

Y m
l (n)

rl+1
, qlm =

∫
R3

Y m
l (n′)∗(r′)lρ(r′) d3r′ . (3)

(b) Find explicitly the spherical harmonics Y 0
0 , Y 0

1 and Y ±11 .

(c) Use the results from (a) and (b) to write the two lowest terms in the above expansion
(that is the monopole term for l = 0 and the dipole term for l = 1) in terms of Cartesian
coordinates. To do this, introduce the total charge Q =

∫
R3 ρ(r′)d3r′ and the dipole

moment p =
∫
R3 r′ρ(r′)d3r′.

4) (Strings)
Consider the wave equation (

∂2

∂x2
− ∂2

∂t2

)
ψ = 0 , (4)

for the string with x ∈ [0, a] and Dirichlet boundary conditions ψ(t, 0) = ψ(t, a) = 0.

(a) Write down the most general solution for this Dirichlet string using the sine Fourier series.

(b) Find the solution with initial condition ψ(0, x) = ψ0 sin
(
πx
a

)
and ψ̇(0, x) = 0, where ψ0

is a constant.

(c) Find the solution with initial condition ψ(0, x) = 0 and ψ̇(0, x) = ψ0 sin
(
2πx
a

)
.

(d) Find the solution with initial condition ψ̇(0, x) = 0 and

ψ(0, x) =

{
hx
b for 0 ≤ x ≤ b
h(a−x)
a−b for b < x ≤ a

(5)

where b and h are constants. Plot the amplitude bk/h of the kth eigenmode as a function
of b/a ∈ [0.1] for k = 1, 2, 3, 4 and discuss.

5) (Membranes)
Consider the membrane (

∂2

∂x2
+

∂2

∂y2
− ∂2

∂t2

)
ψ = 0 , (6)

an the rectangular spatial patch V = [0, a]×[0, b] with Dirichlet boundary conditions ψ(t, 0, y) =
ψ(t, a, y) = ψ(t, x, 0) = ψ(t, x, b) = 0.

2



(a) Write down the most general solution for the rectangular membrane and find its spec-
trum of frequencies. What is the ratio of the two lowest eigenfrequencies for the square
membrane?

(b) Find the most general solution to a triangular membrane with Dirichlet boundary condi-
tions along all sides, by constraining the general solution of the square membrane along
the diagonal x = y. What is the spectrum of the triangular membrane?

6) (Eigenfunctions of the Laplacian)
Consider the eigenvalue problem

−∆ψ = Eψ (7)

in three dimensions and with boundary condition ψ||x|=a = 0. (In quantum mechanics, this
correspond to finding the energy eigenstates of a particle in an infinite spherical well.)

(a) Write the three-dimensional Laplacian in terms of a radial coordinate r and the Laplacian
∆S2 on the two-sphere and start by expanding ψ(r, θ, ϕ) =

∑
l.mRl,m(r)Ylm(θ, ϕ), where

Rlm are functions to be determined. Show that the Rlm must satisfy the differential
equation r2y′′ + 2ry′ + (Er2 − l(l + 1))y = 0.

(b) Introduce a new coordinate ρ =
√
Er and define ỹ =

√
ρy. Show that, in terms of

these new quantities, the differential equation from part (a) becomes a Bessel differential
equation ρ2ỹ′′+ρỹ′+(ρ2− (l+1/2)2)ỹ = 0 (where the prime now denotes a ρ derivative).

(c) Find the solutions for Rlm and impose the boundary condition Rlm(a) = 0. Which
eigenvalues E do you find?

7 (Heat equation)
Consider the heat equation

κ
∂2ψ

∂x2
=
∂ψ

∂t
, (8)

where κ is a positive constant, x ∈ [0, a] and ψ is real-valued. For t > 0, we demand Dirichlet
boundary conditions ψ(t, 0) = ψ0 at x = 0 (where ψ0 is a constant) and von Neumann boundary
conditions ∂ψ

∂x (t, a) = 0 at x = a. The initial condition is ψ(0, x) = 0.

(a) As a preparation, we introduce the functions gk : [0, a]→ R defined by

gk(x) =

√
2

a
sin(qkx) , qk =

π

a

(
k +

1

2

)
(9)

where k = 0, 1, . . .. Show that these functions satisfy the boundary conditions gk(0) = 0
and g′k(a) = 0, that they form an ortho-normal system relative to the standard scalar

product on L2([0, a]) and that they are eigenfunctions of d2

dx2
with

d2

dx2
gk = −q2kgk . (10)

3



(b) Argue that the functions gk from part (a) form, in fact, an ortho-normal basis of the space
L2
b([0, a]), of square integrable functions f on [0, a] with a Dirichlet boundary condition

f(0) = 0 at x = 0 and a von Neumann condition f ′(a) = 0 at x = a. (Hint: Think about
the sine Fourier series on [0, 2a].)

(c) Based on the results in (a) and (b) argue that the most general ψ with the correct
boundary conditions can be written as ψ(t, x) = ψ0+

∑∞
k=0 Tk(t)gk(x). Find the solutions

for the functions Tk.

(d) Fix the remaining constants in your solution by imposing the initial condition. Compute
the average value ψ̄(t) of ψ(x, t) by averaging over x ∈ [0, a] and find an approximate
equation for the time as a function of r := (ψ0 − ψ̄(t))/ψ0.

Additional computational problems
Computational methods, both numerical and symbolic, are of increasing importance in physics
and symbolic computational tools have become significantly more powerful over the past decade
or so. This is changing the way physicists work. Much as the introduction of the pocket calcu-
lator some 50 years ago has made by-hand numerical calculations unnecessary, modern systems
such as Mathematica, can now take over standard symbolic calculations, such as algebraic ma-
nipulations or integration. This facilitates powerful checks of by-hand calculations but also
allows for calculations which are virtually intractable with a pen-and-paper approach. The
following problems present an opportunity to practice some of these methods in the context
of topics from the Mathematical Methods course. They are supplementary and voluntary but
strongly recommended and hopefully a fun way to engage with symbolic computations early
on. The problems are meant for realisation in Mathematica which can be downloaded from
the university server. Mathematica is easy to use, has good built-in documentation and many
high-level mathematical functions - you can start to experiment immediately.

C1) (Heat equation)
Create an animation for the solution to question 7, above - the heating-up of a rod. Plot the
solution ψ(t, x) as a function of x and animate in time t. Also, show the average temperature
as a function of t.

C2 ( Motion of a string)
Create an animation for the motion of the string from question 4 above.

C3 (Representations of su(2))

(a) Check that the matrices τi = σi/2 (where σi are the Pauli matrices) satisfy the standard
su(2) commutation relations.

(b) Find the representation matrices Ti of τi for a given (but arbitrary) spin j and check that
they satisfy the same commutation relations.
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