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1) (Green function)

Consider the differential operator T = d2

dx2
+ 2c ddx + 1, where 0 < c < 1.

a) Determine the value of ω for which y1(x) = e−cx cos(ωx) and y2(x) = e−cx sin(ωx) solve
the homogeneous equation Ty = 0.

(b) Show that the solutions y1 and y2 are linearly independent by computing the Wronski
determinant W = y1y

′
2 − y′1y2.

(c) Find the Green function G(x, t) = y1(t)y2(x)−y1(x)y2(t)
W (t) for the operator T .

(d) Write down the general solution for the inhomogeneous equation Ty = f , where f is a
given function, in terms of the Green function.

2) (Hermite polynomials again)
Consider the space L2

w(R) with weight function w(x) = e−x
2
. The Hermite polynomials Hn ∈

L2
w(R) can be defined by the Rodriguez formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
. (1)

(a) Show that the Hn form an orthogonal system on L2
w(R) with 〈Hn, Hm〉 =

√
π2nn! δnm.

(b) Show that the Hermite polynomials satisfy the recursion relation Hn+1(x) = 2xHn(x)−
2nHn−1(x) and H ′n = 2nHn−1.

(c) Show that Hn satisfies the differential equation y′′ − 2xy′ + 2ny = 0.

(d) Solve the differential equation from part (c) with a power series Ansatz.

(e) Using reduction of order, show that the second solution to the Hermite differential equa-
tion for n = 1 (in addition to H1(x) = 2x) is given by

ỹ(x) =
∞∑
k=0

x2k

2(2k − 1)k!
. (2)

Verify that the above solution ỹ is consistent with the recursion relation for the coefficients
obtained in part (d).

3) (Hermitian and unitary operators)
Let V be the vector space of infinitely many times differentiable functions f : R → C with
xnf(x)→ 0 for x→ ±∞ and any n ≥ 0. On V we have the usual scalar product

〈f, g〉 =

∫
R
dx f(x)∗g(x) . (3)
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(a) Let T : V → V and S : V → V be two hermitian operators. Show that T ◦S is hermitian
iff [T, S] = 0.

(b) For T : V → V anti-hermitian, show that iT is hermitian. Show that every linear operator
T : V → V can be written as a sum of a hermitian and an anti-hermitian operator.

(c) Which of the following operators are hermitian? (i) i ddx , (ii) xk, (iii) d
dx + x2, (iv) i d

3

dx3
,

(v) ix d
dx . Write the ones which are not hermitian as a sum of a hermitian and an anti-

hermitian operator.

(d) Show that eigenvalues λ of a unitary operator U : V → V must satisfy |λ| = 1.

(e) Show that the translation operator Ta : V → V defined by Ta(f)(x) := f(x−a) is unitary.

4) (Quantum harmonic oscillator)
Consider the operator

H = − ~2

2m

d2

dξ2
+

1

2
mω2ξ2 , (4)

associated to the quantum harmonic oscillator, where ξ ∈ R. We would like to solve the
eigenvalue problem HΨ = EΨ.

(a) Introduce the new coordinate x =
√

mω
~ ξ and ε = E

~ω and show that the equation HΨ =
EΨ can be re-written as

Hψ = εψ , H =
1

2

(
− d2

dx2
+ x2

)
. (5)

Comment on the practical and physical significance of this re-writing.

(b) Write ψ(x) = y(x)e−x
2/2. Show that ψ satisfies the differential equation (5) iff y satisfies

the Hermite differential equation y′′ − 2xy′ + (2ε− 1)y = 0.

(c) Show that the solutions to equation (5) in L2(R) are given by the hermite functions
hn(x) = Hn(x)e−x

2/2/An with ε = n + 1
2 . (Here, An = π1/42n/2

√
n! is a normalisation

factor such that ‖ hn ‖ = 1.)

(d) Define the operators a = 1√
2

(
x+ d

dx

)
, a† = 1√

2

(
x− d

dx

)
and N = a†a and show that

H = N + 1
2 .

(e) Define |n〉 := |hn〉 and show that a†|n〉 =
√
n+ 1|n+1〉, a|n〉 =

√
n|n−1〉 andN |n〉 = n|n〉.

(Hint: Use the relations for Hermite polynomials from question 2(b).) Hence, verify that
H|n〉 =

(
n+ 1

2

)
|n〉.

5) (Sturm-Liouville operators)
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(a) Show that every second order differential operator

T = α2(x)
d2

dx2
+ α1(x)

d

dx
+ α0(x) (6)

where α2(x) 6= 0 can be written in Sturm-Liouville form.

(b) Write the Legendre, Laguerre and Hermite differential equations as a Sturm-Liouville
eigenvalue problem, TSLy = λy, and find the explicit form of TSL in each case.

(c) For the cases in part (b), explain what the relevant inner product vector spaces are and
show that the Sturm-Liouville operators TSL are hermitian.

6) (Bessel functions)
The Bessel differential equation is given by

x2y′′ + xy′ + (x2 − ν2)y = 0 . (7)

(a) Solve this equation with a power series Ansatz of the form y(x) =
∑∞

k=0 akx
k+α, where

α = ±ν. Show that all ak with k odd must vanish and find a recursion relation for the
ak with k even.

(b) Solve the recursion relation to find a formula for a2k in terms of a0 and write down the
complete series solutions J±ν for α = ±ν, choosing a0 = (2αΓ(α+ 1))−1.

(c) Show that J1/2(x) =
√

2
πx sinx and J−1/2(x) =

√
2
πx cosx .

Additional computational problems
Computational methods, both numerical and symbolic, are of increasing importance in physics
and symbolic computational tools have become significantly more powerful over the past decade
or so. This is changing the way physicists work. Much as the introduction of the pocket calcu-
lator some 50 years ago has made by-hand numerical calculations unnecessary, modern systems
such as Mathematica, can now take over standard symbolic calculations, such as algebraic ma-
nipulations or integration. This facilitates powerful checks of by-hand calculations but also
allows for calculations which are virtually intractable with a pen-and-paper approach. The
following problems present an opportunity to practice some of these methods in the context
of topics from the Mathematical Methods course. They are supplementary and voluntary but
strongly recommended and hopefully a fun way to engage with symbolic computations early
on. The problems are meant for realisation in Mathematica which can be downloaded from
the university server. Mathematica is easy to use, has good built-in documentation and many
high-level mathematical functions - you can start to experiment immediately.

C1) (Hermite polynomials)

3



(a) For the first few Hermite polynomials, check the Rodriguez formula, the differential equa-
tion and orthogonality. Expand the function f : R → R given by f(x) = x2/(1 + x2)
(truncate at finite order) and compare the truncated series and the function f by plotting.

(b) Compute the (first few) Hermite polynomials from their generating function.

(c) Find the matrix which describes the Hamilton operator H of the harmonic oscillator,
relative to an ortho-normal basis of eigenfunctions of H (focusing on the first few smallest
eigenvalues). Introduce a new Hamilton operator H1 = H + εx4 for an anharmonic
oscillator and find the matrix which describes H1 relative to the eigenbasis of H. Analyse
how the lowest eigenvalues change as ε increases.

C2) (Potentials and gradients)

(a) Define an electrostatic potential V for a set of point charges at specified locations in the
x-y plane and compute the associated electric field E. In the x-y plane, visualise V by a
contour plot and E by a vector plot.

(b) Introduce a probe charge q i(also located in the x-y plane) into the system and show how
the vector plot for E for varying locations (x0, y0) of the probe charge. (You can use the
Manipulate module.)

C3) (Simple spin systems)

(a) Consider a two-dimensional Hilbert space (over the complex numbers) with ortho-normal
basis (| ↑〉, | ↓〉) which describes a simple two-state spin system. The matrix elements
Hss′ = 〈s|H|s′〉, where s, s′ =↑, ↓, for the Hamilton operator H of the system form a
hermitian 2 × 2 matrix. Write the most general such matrix as H = b012 +

∑3
i=1 biσi,

where b0 and bi are real number and σi are the Pauli matrices. Find the eigenvalues and
eigenvectors of H and write down the energy eigenstates of H as a linear combination of
the basis (| ↑〉, | ↓〉).

(b) Write down the general solution ψ(t) to the time-dependent Schrödinger equation, using
the results from part (a) and specialise to b0 = b1 = 1 and b2 = b3 = 0.

(c) Find the specific solution ψ(t) to the time-dependent Schrödinger equation for which
ψ(0) = | ↑〉. For this solution, compute the probabilities p↑(t) and p↓(t) of finding the
system in the spin up and down states, as a function of time.

4


