
Mathematical Methods

Problem Sheet 2: “Fourier series and Fourier integrals”

Andre Lukas, MT 2022

1) (Fourier series)

a) Find the Fourier series for the function f : [−π, π]→ R defined by

f(x) =

{
0 for −π ≤ x < 0
sinx for 0 ≤ x ≤ π (1)

(b) Find the Fourier series for the functions f : [−π, π]→ R defined by f(x) = x2.

(c) Use the result from part (b) to sum the series
∑∞

k=1
1
k4

.

2) (Sine and cosine Fourier series)

(a) For the functions f : [0, π]→ R defined by f(x) = x sinx find the cosine Fourier series.

(b) For the function from part (a), find the sine Fourier series.

(c) For the function f : [0, π]→ R defined by f(x) = x compute the cosine Fourier series.

(d) Compute the sine Fourier series for the function from part (c). Comment on the conver-
gence properties of this series and its cosine Fourier series counterpart. Sum the series∑∞

k=1
1
k2

.

3) (Legendre polynomials as an orthogonal basis)
Denote by (Pn)∞n=0 the Legendre polynomials in L2([[−1, 1]), normalised as ‖ Pn ‖2 = 2

2n+1 .

(a) Show that, for any polynomial p ∈ L2([−1, 1]) with degree less than n, we have 〈Pn, p〉 = 0.

(b) Find explicitly the polynomials P0, . . . , P4.

(c) Write the function f ∈ L2([−1, 1]) with f(x) = x4 as a linear combination of Legendre
polynomials.

(d) Write the function f ∈ L2([−1, 1]) defined by f(x) = 2√
5−4x as an expansion in terms of

Legendre polynomials. (Hint: Think about the generating function for Legendre polyno-
mials.)

4) (Examples of Fourier transforms)
Recall that the Fourier transform of a function f ∈ L1(R) is defined as

f̂(k) = F(f)(k) :=
1√
2π

∫
R
dx f(x)e−ikx . (2)
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(a) Work out the Fourier transform of the function

χ(x) =

{
1 for |x| ≤ 1
0 for |x| > 1

(3)

(b) Show that the Fourier transform χ̂ from part (a) is not in L1(R).

(c) Work out the function f = χ ? χ, where χ is the function from part (a) and the star
denotes the convolution.

(d) Find the Fourier transform of the function f from part (c).

(e) Compute the integral
∫
R dx

sin4 x
x4

. (Hint: Use the fact that the Fourier transform is
unitary.)

5) (Some properties of Fourier transforms)
For a constant a ∈ R and a function f : R→ C, define the dilation operator Da, the translation
operator Ta, the modulation operator Ea and the multiplication operator Mg (for a function
g) by

Da(f)(x) := f(ax) , Ta(f)(x) := f(x−a) , Ea(f)(x) := eiaxf(x) , Mg(f)(x) := g(x)f(x) .

Also, denote the Fourier transform by F and Dx = d
dx , Dk = d

dk .

(a) Show that F ◦ Ta = E−a ◦ F and F ◦ Ea = Ta ◦ F .

(b) Show that F ◦ Da = 1
|a|D1/a ◦ F .

(c) Show that F ◦Dx = Mik ◦ F and F ◦Mx = iDk ◦ F .

6) (More Fourier transforms)

(a) Show that the Gaussian f(x) = e−
x2

2 is invariant under Fourier transformation.

(b) Work out the Fourier transform of a Gaussian fa(x) = e−
x2

2a2 with width a.

(c) Work out the Fourier transform of a Gaussian fa,c(x) = e−
(x−c)2

2a2 with width a and peaked
at x = c.

7) (Hermite polynomials and Fourier transform)

Denote by (Hn)∞n=0 the standard Hermite polynomials and by hn(x) = e−
x2

2 Hn(x) the Hermite
functions which form an orthogonal basis of L2(R).

(a) Show that the Fourier transform of the function g(x) = e−
x2

2
+2xz−z2 is given by ĝ(k) =

e−
k2

2
−2kiz+z2 .
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(b) Show that the Hermite functions hn are eigenfunctions of the Fourier transform F , so
Fhn = λnhn, and compute the eigenvalues λn. (Hint: Think about the generating
function of the Hermite polynomials and use part (a).)

(c) Every function f ∈ L2(Rn) has an expansion f =
∑∞

n=0 anhn in terms of Hermite func-

tions. Write down the expansion of the Fourier transform f̂ in terms of Hermite functions
and in terms of the coefficients an .

Additional computational problems
Computational methods, both numerical and symbolic, are of increasing importance in physics
and symbolic computational tools have become significantly more powerful over the past decade
or so. This is changing the way physicists work. Much as the introduction of the pocket calcu-
lator some 50 years ago has made by-hand numerical calculations unnecessary, modern systems
such as Mathematica, can now take over standard symbolic calculations, such as algebraic ma-
nipulations or integration. This facilitates powerful checks of by-hand calculations but also
allows for calculations which are virtually intractable with a pen-and-paper approach. The
following problems present an opportunity to practice some of these methods in the context
of topics from the Mathematical Methods course. They are supplementary and voluntary but
strongly recommended and hopefully a fun way to engage with symbolic computations early
on. The problems are meant for realisation in Mathematica which can be downloaded from
the university server. Mathematica is easy to use, has good built-in documentation and many
high-level mathematical functions - you can start to experiment immediately.

C1) (Fourier series with Mathematica)
Compute the Fourier series for some of the above functions with Mathematica and check your
results by comparing plots of the actual functions with their Fourier series (truncated to some
appropriate order). Do this for the following functions:

(a) the function from question 1) a)

(b) the function from question 1) b)

(c) the function from question 2) a)

(d) the function from question 2) b) .

C2) (Fourier transform with Mathematica)
Consider the function f : R → R defined by f(t) = e−γt sin(ω0t) for t ≥ 0 and by f(t) = 0 for
t < 0, where γ > 0 and ω0 are real parameters. Compute its Fourier transform and create an
animation which plots f and (the absolute of) its Fourier transform for different values of γ
and ω0.

C3) (Computations with Legendre polynomials)
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(a) Assuming that P0(x) = 1 and P1(x) = x write a short piece of Mathematica code which
generates the Legendre polynomials P0, P1, . . . , Pn up to a given n by using the recursion
relation. Check your result by verifying that the polynomials you obtain are indeed
orthogonal. Plot the first few Pk.

(b) Check that expanding the generating function does indeed lead to the same polynomials.

(c) Expand the function f(x) = ln(1 + x2) in terms of Legendre polynomials (with the series
truncated at some appropriate finite order). Check your result by plotting and by applying
Parseval’s equation.
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